对无阻尼两自由度自由振动的振动系统
- 格式:docx
- 大小:13.81 KB
- 文档页数:1
1.请指出弹簧的串、并联组合方式的计算方法。
确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。
答:n 个刚度为i k 的弹簧串联,等效刚度∑==ni ieq k k 111;n 个刚度为i k 的弹簧并联的等效刚度为∑==ni i eq k k 1;并联弹簧的刚度较各组成弹簧“硬”,串联弹簧较其任何一个组成弹“簧软”。
确定弹性元件是串联还是并联的方法:若弹性元件是共位移——端部位移相等,则为并联关系;若弹性元件是共力——受力相等,则为串联关系。
2.非粘性阻尼包括哪几种?它们的计算公式分别是什么? 答:非粘性阻尼包括:(1)库仑阻尼计算公式⎪⎭⎫⎝⎛⋅=.sgn -x mg F e μ,其中,sgn 为符号函数,这里定义为)()()(sgn t x t x x ∙∙∙=,须注意,当0)(x =∙t 时,库仑阻尼力是不定的,它取决于合外力的大小,而方向与之相反;(2)流体阻尼计算公式:是当物体以较大速度在粘性较小的流体(如空气、液体)中运动是,由流体介质所产生的阻尼,计算公式为⎪⎭⎫⎝⎛-=∙∙x x F n sgn 2γ;(3)结构阻尼:由材料内部摩擦所产生的阻尼,计算公式为2X E s α=∆ 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么?答:单自由度无阻尼系统的自由振动的运动微分方程()0=+∙∙t kx x m ; 自然频率:mk f n n ππω212==; 振幅:202⎪⎪⎭⎫ ⎝⎛+=nv x X ω;初相角:0x v arcrann ωϕ=。
4.对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么?答:单自由度无阻尼系统自由振动,确定自然频率的方法:(1)静变形法:该方法不需要到处系统的运动微分方程,只需根据静变形的关系就可以确定出固有频率具体如下:mg k st =δ,又mkn =ω,将这两个式子联立即可求得stn gδω=;(2)能量法,该方法又可以分为三种思路来求自然频率。
单自由度无阻尼自由振动的系统分析在结构动力学之中,单自由度体系的振动是最简单的振动,但单自由度体系的频率计算在结构动力学计算中有着十分重要的意义,因为从中我们能得到关于振动理论的一些最基本的概念和分析方法同时也为更复杂的多质点多自由度体系振动问题奠定基础,同时现实工程中也有许多振动问题可以简化为单自由度问题近似的利用单自由度振动理论去分析解决。
在单层厂房、水塔等建筑物中得到有效的利用结构的自由振动是指结构受到扰动离开平衡位置后,不再受到任何外力影响的振动过程,此处动力系统是否有阻尼项,会直接影响到动力系统的反应。
在此,我们把自由振动分为无阻尼自由振动与有阻尼的自由振动。
一、无阻尼自由系统的振动分析目前,以弹簧-质量系统为力学模型,研究单自由度系统的振动具有非常普遍的实际意义,因为工程中许多问题简化后,用单自由度体系的振动理论就能得到很好的解决。
而对多自由度系统和连续振动,在特殊坐标的考察时,也会显示出与单自由度系统类似的振动。
进行无阻尼自由振动分析的主要目的是为了获得系统固有振动的特性,只有充分地了解系统的自身振动特性才能有效的计算系统的动力响应,目前在单质点单自由度无阻尼自由振动体系中我们的运动方程为:0)()(..=+t ku t um (1) 或 0u(t))(=+ωt u (2)其中的ω是振动圆频率,是反应系统动力的重要参数,其计算公式为:m k m ==δω12 (3)由上式可以看出,ω只和系统的刚度及质量有关,而与系统所受到的初始受力状态无关。
ω的量纲与角速度相同为rad/s ,它反映了系统自由振动的快慢。
自由振动系统的这一特性,我们在日常生活中司空见惯。
比如,键盘类乐器标定后,按动某一个琴键,不管你按动的轻重如何,琴键所发出的声音的频率是一定的,按得轻或按得重仅影响声音的强弱。
(2)式经过三角函数的转换可表示为:)sin()(νω+=t A t u (4)其通解为t A t A t u ωωsin cos )(21+= 常数A 1与A 2与初始条件有关,01χ=A ωχ/02 =A式(4)是标准的简谐方程其中A 是其振幅,则ν是其初相角,他们的计算公式2020)(ωx x A += ,00arctan x x v ω=对于质点振动系统,质量越大,则系统的固有频率越低;刚度越大,则系统的固有频率越高。
第三章两自由度系统振动§3-1 概述单自由度系统的振动理论是振动理论的基础。
在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。
两自由度系统是最简单的多自由度系统。
从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。
研究两自由度系统是分析和掌握多自由度系统振动特性的基础。
所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。
很多生产实际中的问题都可以简化为两自由度的振动系统。
例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。
只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。
以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。
此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。
这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。
在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。
取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。
这样x1和x2就是用以确定磨头系统运动的广义坐标。
(工程实际中两自由度振动系统) [工程实例演示]§3-2 两自由度系统的自由振动一、系统的运动微分方程(①汽车动力学模型)②以图3.2的双弹簧质量系统为例。