第二章2-单自由度系统阻尼自由振动
- 格式:ppt
- 大小:1.49 MB
- 文档页数:38
第二章 单自由度无阻尼系统的振动单自由度系统是指用一个独立参量便可确定系统位置的振动系统。
系统的自由度数是指确定系统位置所必须的独立参数的个数,这种独立参量称为广义坐标,广义坐标可以是线位移、角位移等。
单自由度系统振动理论是振动理论的基础,尽管实际的机械都是弹性体,属多自由度系统,然而要掌握多自由度系统振动的基本理论和规律,就必须先掌握单自由度系统的振动理论。
此外,许多工程实际问题在一定条件下可以简化为单自由度振动系统来研究。
单自由度系统的力学模型如图2-1所示,图中,m 为质量元件(或惯性元件),k 为线性弹簧,C 为线性阻尼器。
图2-1所示系统称为单自由度有阻尼系统,若该系统不计阻尼,则称之为单自由度无阻尼系统,若在质量元件上作用有持续外界激扰力,则系统作强迫振动,如无持续的外界激扰力而只有初始的激扰作用,则系统作自由振动。
下面先研究单自由度无阻尼系统的自由振动,再进一步研究其强迫振动。
2—1 自由振动图2-2左图所示为单自由度无阻尼的弹簧质量系统。
现用牛顿第二定律来建立该系统的运动微分方程。
取质量m 的静平衡位置为坐标原点,取x 轴铅直向下为正,当系统处于平衡位置时有,δk mg =,故有静位移δ=mg/k (a )当系统处在位置x 处时,作用在质量上的力系不再平衡,有:mg x k xm ++-=)(δ (b) 式中:22/dt x d x = 是质量的加速度,将(a )式代入(b )式;则得 kx xm -= 即 0=+kx xm (2-1) 注意,上式中-kx 是重力与弹簧力的合力,它的大小与位移x 的大小成正比,但其方向却始终与位移的方向相反,即始终指向平衡位置,故称其为弹性恢复力。
由式(2-1)可以看到,只要取物体的静平衡位置为坐标原点,则在列运动微分方程时,可以不再考虑物体的重力与弹簧的静变形。
将(2-1)式改写成 0=+x m k x,令2p mk= 则得 02=+x p x (2-2)这是一个二阶齐次线性常系数微分方程。
第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。
(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。
此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。
[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。
[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。
忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。
把它们看成是只有惯性而无弹性的集中质点。
于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。
在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。
阻尼器由一个油缸和活塞、油液组成。
汽车轮悬置系统等等。
[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。
所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。
以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。
在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。
有时在振动系统中还作用有一个持续作用的激振力P。
应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。
(牛顿运动定律) (达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零)(动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。
第二章 单自由度无阻尼系统的振动单自由度系统是指用一个独立参量便可确定系统位置的振动系统。
系统的自由度数是指确定系统位置所必须的独立参数的个数,这种独立参量称为广义坐标,广义坐标可以是线位移、角位移等。
单自由度系统振动理论是振动理论的基础,尽管实际的机械都是弹性体,属多自由度系统,然而要掌握多自由度系统振动的基本理论和规律,就必须先掌握单自由度系统的振动理论。
此外,许多工程实际问题在一定条件下可以简化为单自由度振动系统来研究。
单自由度系统的力学模型如图2-1所示,图中,m 为质量元件(或惯性元件),k 为线性弹簧,C 为线性阻尼器。
图2-1所示系统称为单自由度有阻尼系统,若该系统不计阻尼,则称之为单自由度无阻尼系统,若在质量元件上作用有持续外界激扰力,则系统作强迫振动,如无持续的外界激扰力而只有初始的激扰作用,则系统作自由振动。
下面先研究单自由度无阻尼系统的自由振动,再进一步研究其强迫振动。
2—1 自由振动图2-2左图所示为单自由度无阻尼的弹簧质量系统。
现用牛顿第二定律来建立该系统的运动微分方程。
取质量m 的静平衡位置为坐标原点,取x 轴铅直向下为正,当系统处于平衡位置时有,δk mg =,故有静位移δ=mg/k (a )当系统处在位置x 处时,作用在质量上的力系不再平衡,有:mg x k xm ++-=)(δ (b) 式中:22/dt x d x = 是质量的加速度,将(a )式代入(b )式;则得 kx xm -= 即 0=+kx xm (2-1) 注意,上式中-kx 是重力与弹簧力的合力,它的大小与位移x 的大小成正比,但其方向却始终与位移的方向相反,即始终指向平衡位置,故称其为弹性恢复力。
由式(2-1)可以看到,只要取物体的静平衡位置为坐标原点,则在列运动微分方程时,可以不再考虑物体的重力与弹簧的静变形。
将(2-1)式改写成 0=+x m k x,令2p mk= 则得 02=+x p x (2-2)这是一个二阶齐次线性常系数微分方程。
25第2章 单自由度系统的自由振动2.1 无阻尼系统的自由振动设有质量为m 的物块(可视为质点)挂在弹簧的下端,弹簧的自然长度为l 0,弹簧刚度为k ,如不计弹簧的质量,这就构成典型的单自由度系统,称之为弹簧质量系统如图2-1所示。
工程中许多振动问题都可简化成这种力学模型。
例如,梁上固定一台电动机,当电机沿铅直方向振动时,梁和电机组成一个振动系统,如不计梁的质量,则它在该系统中的作用相当于一根无重弹簧,而电机可视为集中质量。
于是这个系统可简化成如图2-1所示的弹簧质量系统。
2.1.1自由振动方程以图2-1所示的弹簧质量系统为研究对象。
取物块的静平衡位置为坐标原点O ,x 轴顺弹簧变形方向铅直向下为正。
当物块在静平衡位置时,由平衡条件∑F x = 0,得到st δk mg = (A )st δ称为弹簧的静变形。
当物块偏离平衡位置为x 距离时,物块的运动微分方程为mxkx &&=− (2-1) 将式(2-1)两边除以m ,并令mkp =n (2-2) 则式(2-1)可写成02n =+x p x && (2-3)这就是弹簧质量系统置之只在线弹性力-kx 的作用下所具有的振动微分方程,称之为无阻尼自由振动的微分方程,是二阶常系数线性齐次方程。
由微分方程理论可知,式(2-3)的通解为t p C t p C x n 2n 1sin cos +=其中C 1和C 2为积分常数,由物块运动的起始条件确定。
设0=t 时,x x xx ==00,&&。
可解得 C x 10= n02p xC &=t p p xt p x x n n0n 0sin cos &+= (2-4) 式(2-4)亦可写成下述形式)sin(n α+=t p A x (2-5)26 其中⎪⎪⎩⎪⎪⎨⎧=+=)arctan()(00n 2n020x x p p x x A &&α (2-6) 式(2-4)、(2-5)是物块振动方程的两种形式,称为无阻尼自由振动,简称自由振动。