空间几何体教学案教学文稿
- 格式:doc
- 大小:901.50 KB
- 文档页数:10
空间几何体的结构教案第一章:绪论1.1 空间几何体的概念学习目标:了解空间几何体的定义和分类,能够识别常见的空间几何体。
教学内容:介绍空间几何体的概念,解释点、线、面、体之间的关系。
教学活动:通过实物展示和图形演示,让学生直观地理解空间几何体的概念。
1.2 空间几何体的分类学习目标:掌握空间几何体的分类,能够区分各种几何体的特点。
教学内容:介绍空间几何体的分类,包括立体几何体的分类和旋转体几何体的分类。
教学活动:通过图形展示和分类讨论,让学生掌握空间几何体的分类。
第二章:立体几何体的结构特征2.1 立方体学习目标:了解立方体的结构特征,能够计算立方体的表面积和体积。
教学内容:介绍立方体的定义、性质和结构特征,讲解立方体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生了解立方体的结构特征。
2.2 球体学习目标:掌握球体的结构特征,能够计算球体的表面积和体积。
教学内容:介绍球体的定义、性质和结构特征,讲解球体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生掌握球体的结构特征。
第三章:旋转体几何体的结构特征3.1 圆柱体学习目标:了解圆柱体的结构特征,能够计算圆柱体的表面积和体积。
教学内容:介绍圆柱体的定义、性质和结构特征,讲解圆柱体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生了解圆柱体的结构特征。
3.2 圆锥体学习目标:掌握圆锥体的结构特征,能够计算圆锥体的表面积和体积。
教学内容:介绍圆锥体的定义、性质和结构特征,讲解圆锥体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生掌握圆锥体的结构特征。
第四章:空间几何体的相互转化4.1 立方体与球体的转化学习目标:了解立方体与球体的相互转化方法,能够进行相关的计算。
教学内容:介绍立方体与球体的相互转化方法,讲解转化的条件和转化的过程。
教学活动:通过几何模型操作和数学证明,让学生了解立方体与球体的相互转化。
空间几何体的结构一、教学目标:1. 让学生了解并掌握空间几何体的基本概念和性质。
2. 培养学生空间想象能力和思维能力。
3. 使学生能够运用空间几何体的知识解决实际问题。
二、教学内容:1. 空间几何体的定义及分类。
2. 空间几何体的基本性质。
3. 空间几何体的直观图和三视图。
4. 空间几何体的度量关系。
5. 空间几何体的位置关系。
三、教学重点与难点:1. 教学重点:空间几何体的定义、性质、直观图和三视图、度量关系、位置关系。
2. 教学难点:空间几何体的直观图和三视图的绘制,空间几何体的度量关系和位置关系的应用。
四、教学方法:1. 采用讲授法,讲解空间几何体的基本概念、性质、度量关系和位置关系。
2. 利用多媒体展示空间几何体的直观图和三视图,帮助学生建立空间想象能力。
3. 结合实际例子,让学生运用空间几何体的知识解决实际问题。
4. 开展小组讨论,培养学生合作学习和思考能力。
五、教学过程:1. 导入新课:通过生活中的实例,引出空间几何体的概念,激发学生兴趣。
2. 讲解空间几何体的定义、性质、度量关系和位置关系,结合多媒体展示直观图和三视图,帮助学生理解并掌握。
3. 课堂练习:让学生绘制空间几何体的直观图和三视图,巩固所学知识。
4. 实例分析:结合实际例子,让学生运用空间几何体的知识解决实际问题。
6. 课后作业:布置有关空间几何体的练习题,巩固所学知识。
7. 课后反思:教师对本节课的教学情况进行反思,为下一步教学做好准备。
六、教学评价:1. 评价学生对空间几何体的定义、性质、度量关系和位置关系的掌握程度。
2. 评价学生空间想象能力和思维能力的提高情况。
3. 评价学生运用空间几何体的知识解决实际问题的能力。
七、教学拓展:1. 探讨空间几何体在现实生活中的应用。
2. 介绍空间几何体在其他学科领域中的应用。
3. 探索空间几何体的新性质和新方法。
八、教学资源:1. 多媒体课件:用于展示空间几何体的直观图和三视图。
空间几何体教案一、教学目标:1. 知识与技能(1)掌握空间几何体的定义和特征;(2)能够判断和辨别不同空间几何体;(3)能够根据给定的条件,进行空间几何体的推理和证明;2. 过程与方法(1)通过观察实物和图片,引导学生认识空间几何体;(2)通过实例引导学生总结空间几何体的特征;(3)通过小组合作讨论,提高学生的思维能力;(4)通过游戏和实践操作,培养学生的动手能力;3. 情感态度和价值观(1)激发学生对几何学的兴趣和好奇心;(2)培养学生的观察力和思考能力;(3)培养学生的合作意识和团队精神。
二、教学内容:1. 空间几何体的定义和特征;2. 空间几何体的种类和性质;3. 判断和辨别不同空间几何体;4. 空间几何体的推理和证明方法。
三、教学过程:1. 导入(5分钟)引导学生观察教室中的各种物体,提问:你能说出这些物体属于哪些种类的几何体吗?为什么?引发学生对几何体的思考和讨论。
2. 模块讲解(10分钟)通过投影仪或实物,向学生展示不同种类的空间几何体,并简单介绍它们的定义和特征。
3. 典型例题解析(20分钟)(1)通过讲解典型例题,引导学生总结空间几何体的特征和性质;(2)通过提问和讨论,培养学生的思维能力和合作意识;(3)通过实例引导学生进行空间几何体的推理和证明。
4. 小组合作(15分钟)将学生分成小组,每个小组选择一种空间几何体进行研究,要求:(1)找出这种几何体的特征和性质;(2)举例说明这种几何体在生活中的应用;(3)设计一个小游戏或实践活动,让其他小组猜猜你们选择的几何体是什么。
5. 游戏和实践操作(15分钟)设计几个与空间几何体相关的小游戏或实践操作活动,让学生在游戏中巩固和应用所学知识,培养动手能力和团队精神。
6. 总结归纳(10分钟)让学生回顾今天的学习内容,总结空间几何体的定义和特征,回答教师提出的问题。
四、教学反思:通过今天的教学,学生对空间几何体的定义和特征有了初步的了解,通过小组合作和游戏实践,学生不仅巩固了所学知识,还培养了观察力、思考能力和动手能力。
高中数学空间几何体教案
一、教学目标:
1. 掌握空间几何体表面积和体积的计算方法。
2. 能够应用所学知识解决实际问题。
3. 培养学生的逻辑思维和空间想象能力。
二、教学内容与重点:
1. 空间几何体的概念及分类。
2. 空间几何体的表面积和体积的计算公式。
3. 实际问题的应用。
三、教学过程:
1. 导入(5分钟)
展示几何体模型,引导学生讨论几何体的特点,并引出今天的学习内容。
2. 讲解(15分钟)
介绍空间几何体的概念、分类以及表面积和体积的计算方法,讲解相关公式及求解步骤。
3. 实例演练(20分钟)
选择几个简单的例题进行讲解和演练,让学生掌握计算方法和技巧。
4. 练习与拓展(20分钟)
让学生自行完成一些练习题目,并带领学生讨论解题方法和思路。
同时提供一些拓展题目,拓展学生的思维空间。
5. 总结与展示(10分钟)
对本节课的内容进行总结,并提出一些学生容易疏漏的地方进行讲解。
通过展示一些实际
问题,让学生了解数学在日常生活中的应用价值。
四、课后作业:
1. 完成教师布置的练习题目。
2. 总结今天所学知识,完成一道实际问题的解答。
五、评价与反思:
本节课主要通过知识的传授和实例的演示让学生掌握了空间几何体的表面积和体积计算方法,培养了学生的逻辑思维和空间想象能力。
教学过程中应注重引导学生学会灵活运用所学知识解决实际问题,激发学生的学习兴趣和思考能力。
第一章:空间几何体1.1空间几何体的结构一、教学目标:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
(5) 能判断组合体是由哪些简单几何体构成的。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括及判断组合体是由哪些简单几何体构成的。
三、教学过程一、创设情景,揭示课题:在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。
由这些物体抽象出来的空间图形叫做空间几何体。
下面请同学们观察课本P2图1.1-1的物体,然后回答以下问题:这些图片中的物体具有什么样的几何结构特征?你能对它们进行分类吗?学生观察思考,发现上图中的物体大体可分为两大类.其中(2),(5),(7),(9),(13),(14),(15),(16) 具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10),(11),(12) 具有相同的特点:组成它们的面不全是平面图形.想一想,我们应该给上述两大类几何体取个什么名称才好呢?(一)由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面。
相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
(二)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。
这节课我们主要学习多面体——柱、锥的结构特征。
二、研探新知:1. 棱柱的结构特征:请同学们仔细观察下列几何体,说说他们的共同特点.(师生共同讨论,总结出棱柱的定义及其相关概念)(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
关于空间几何体的表面积和体积数学教案教案章节一:引言与立方体教学目标:1. 让学生了解空间几何体的概念。
2. 引导学生通过观察立方体来理解表面积和体积的定义。
教学内容:1. 介绍空间几何体的基本概念,如立方体、球体、圆柱体等。
2. 通过观察立方体的实物或模型,让学生理解表面积和体积的定义。
教学步骤:1. 引入空间几何体的概念,展示立方体的实物或模型。
2. 引导学生观察立方体的特征,如六个面、八个顶点等。
3. 解释表面积和体积的定义,让学生理解它们是描述空间几何体大小的重要指标。
作业布置:1. 让学生绘制一个立方体,并标注出它的表面积和体积。
教案章节二:立方体的表面积和体积计算教学目标:1. 让学生掌握立方体的表面积和体积的计算方法。
2. 培养学生运用数学知识解决实际问题的能力。
教学内容:1. 介绍立方体的表面积和体积的计算公式。
2. 通过实例讲解如何运用公式计算立方体的表面积和体积。
1. 回顾立方体的特征,引导学生理解表面积和体积的计算方法。
2. 介绍立方体的表面积和体积的计算公式,如表面积=6a²,体积=a³。
3. 通过实例讲解如何运用公式计算立方体的表面积和体积,如给定边长a,计算表面积和体积。
作业布置:1. 让学生运用公式计算不同边长的立方体的表面积和体积,并进行比较。
教案章节三:球体的表面积和体积计算教学目标:1. 让学生掌握球体的表面积和体积的计算方法。
2. 培养学生运用数学知识解决实际问题的能力。
教学内容:1. 介绍球体的表面积和体积的计算公式。
2. 通过实例讲解如何运用公式计算球体的表面积和体积。
教学步骤:1. 引导学生回顾立方体的表面积和体积计算方法,引出球体的概念。
2. 介绍球体的表面积和体积的计算公式,如表面积=4πr²,体积=4/3πr³。
3. 通过实例讲解如何运用公式计算球体的表面积和体积,如给定半径r,计算表面积和体积。
作业布置:1. 让学生运用公式计算不同半径的球体的表面积和体积,并进行比较。
空间几何教案:小学数学立体图形教案优秀范文在小学数学教学中,学生接触到的第一个几何概念就是平面图形,如:正方形、三角形等,而随着学习程度的提高,他们会逐渐熟悉立体图形,如:长方体、正方体、球体等。
而对于小学生来说,如何教授他们立体图形中几何概念的思维和技巧是非常重要的。
因此,教师在授课时需要精心准备教案,今天我分享一个优秀的小学数学立体图形教案范文。
一、教学目标1、了解几何概念。
能够区分不同的几何图形,包括立体图形和平面图形。
2、了解如何透视。
从三个方向了解立体图形。
3、了解几何内部细节。
了解立体图形内部的空间结构和布局。
4、提高几何思维方法。
提高几何思考的灵活性和准确性。
二、教学过程1、引入篇通过实物展示,让学生区分不同的几何图形:立方体、长方体、球体等。
告诉学生立体图形是三维空间的图形,区别于平面图形。
2、教学内容第一步:透视图法给学生展示用透视图画出的立体图形,然后引导学生自己画出立体图形。
过程中,老师可以提醒学生需要注意的点,如:线段之间的夹角需要与真实数据一致,画出线段的长度也应符合实物长度。
让学生对透视法产生认识,并培养几何思考的灵活性。
第二步:交叉透视法在交叉方向观察立体图形,可以更加清晰地了解其中的构图和结构。
引导学生绘制具有交叉透视的立体图形,并锻炼学生观察第三维度的能力。
第三步:拆解法可以将立体图形分解成平面图形,然后再重新组合成立体图形,让学生在加强认识几何构图的同时,提升几何思考的灵活性。
第四步:空间认识法引导学生在立体图形内部进行思考,让他们探索如何合理地放置和组合所有的元素,增强几何构图的准确性和内部空间的协调性。
三、教师评价该教案采用了多种教学方法,如:透视图法、交叉透视法、拆解法和空间认识法。
这些方法扩展了学生对立体图形的认识和理解,同时培养几何思考的灵活性和准确性。
通过实用性的教学方法,该教案达到了提高学生几何思维方法的目的。
高中数学人教版《空间几何体》教案2023版教案一:立体几何的基本概念在学习空间几何体之前,首先需要了解立体几何的基本概念。
立体可以理解为有长度、宽度和高度的物体。
空间几何体则是指具有三个维度(长、宽、高)的几何体,包括点、线、面和体。
在本节中,我们将重点介绍立方体、长方体、正方体、棱柱和棱锥等几何体的定义、性质以及相关的公式和计算方法。
1. 立方体立方体是一种具有六个相等的正方形面的空间几何体。
它的特点是六个面都平行于对面,并且相邻两个面的边长相等。
立方体的体积公式为V = a³,其中a表示立方体的边长。
2. 长方体长方体是一种具有六个矩形面的空间几何体。
它的特点是相邻两个面的边长相等,并且具有两组平行且相等的边。
长方体的体积公式为V = l×w×h,其中l、w和h分别表示长方体的长、宽和高。
3. 正方体正方体是一种具有六个正方形面的空间几何体。
它的特点是各个面的边长相等,且相邻两个面之间的角度为直角。
正方体的体积公式与立方体相同,也为V = a³。
4. 棱柱棱柱是一种具有两个相等底面的平行四边形的空间几何体。
它的特点是两个底面之间的连线都垂直于底面,并且所有的侧面都是矩形。
棱柱的体积公式为V = B×h,其中B表示底面的面积,h表示棱柱的高。
5. 棱锥棱锥是一种具有一个底面和多个侧面的空间几何体。
它的底面可以是任意形状的,侧面都是由底面的一个顶点和底面上的点连接而成。
棱锥的体积公式为V = 1/3×B×h,其中B表示底面的面积,h表示棱锥的高。
教案二:计算空间几何体的体积和表面积在上一节中,我们介绍了立方体、长方体、正方体、棱柱和棱锥的基本概念和性质。
本节将重点学习如何计算这些几何体的体积和表面积。
1. 立方体的体积和表面积立方体的体积公式为V = a³,其中a表示立方体的边长。
而立方体的表面积公式为A = 6a²,其中A表示立方体的表面积。
第一章空间几何体1. 1.1柱、锥、台、球的结构特征【教学目标】1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】1.情景导入教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习3、合作探究、交流展示(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?5、典型例题例1:判断下列语句是否正确。
高中数学《1.2空间几何体的三视图和直观图》教案新人教A版必修(含五篇)第一篇:高中数学《1.2空间几何体的三视图和直观图》教案新人教A版必修高中数学《1.2 空间几何体的三视图和直观图》教案新人教A版必修2一、二、三、教学目标:1知识与技能:了解中心投影与平行投影;能画出简单几何体的三视图;能识别三视图所表示的空间几何体。
2过程与方法:通过学生自己的亲身实践,动手作图来完成“观察、思考”栏目中提出的问题。
3情感态度与价值观:培养学生空间想象能力和动手实践能力,激发学习兴趣。
二、教学重点:画出简单组合体的三视图三、教学难点:识别三视图所表示的空间几何体四、教学过程:(一)、新课导入:问题1:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
” 对于我们所学几何体,常用三视图和直观图来画在纸上.三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、机械制造、日常生活.(二)、讲授新课: 1.中心投影与平行投影:① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。
人们将这种自然现象加以的抽象,总结其中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。
其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.③平行投影:在一束平行光线照射下形成的投影.分正投影、斜投影.讨论:点、线、三角形在平行投影后的结果.2.柱、锥、台、球的三视图:① 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上到下)② 讨论:几何体三视图在形状、大小方面的关系?→ 画出长方体的三视图,并讨论所反应的长、宽、高的关系,得出结论:正俯一样长,俯侧一样宽,正侧一样高。
空间几何体教学案1.1.1棱柱、棱锥、棱台的结构特征(第一课时)教材分析几何学是研究现实世界中物体的形状、大小和位置关系的学科.空间几何体是几何学的重要组成部分,是第二章研究空间点、线、面位置关系的载体,对于培养和发展学生的空间想象能力,推理论证能力、运用图形语言进行交流的能力有着十分重要的作用.第一章空间几何体的第一节空间几何体的结构包括两节内容.本节课是第一节的第一课时,介绍了棱柱、棱锥、棱台等多面体的结构特征,是学习第二节简单组合体的结构特征的基础,同时体会和旋转体的区别.课时分配本节是空间几何体的第一节,用2课时完成,第1课时主要讲解棱柱、棱锥、棱台的结构特征.教学目标重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台的结构特征.难点:棱柱、棱锥、棱台的结构特征的概括.知识点:让学生观察、讨论、归纳、概括所学的知识.能力点:培养学生的空间想象能力和抽象概括能力.教育点:使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性.自主探究点:通过实物操作,增强学生的直观感知.考试点:会表示有关于几何体以及棱柱、棱锥、棱台的分类.易错易混点:能根据几何结构特征对空间物体进行分类.拓展点:会用语言概述棱柱、棱锥、棱台的结构特征.教具准备多媒体课件课堂模式课前自主预习,完成导学案;课堂自学辅导式教学.一、引入新课【问题】在我们生活中有不少有特色的建筑物,你能举一些例子吗?这些建筑的几何结构特征如何?【师生活动】教师借助多媒体动态演示不同的建筑,引导学生观察这些建筑物的几何特征;学生积极思考并回答教师提出的问题;最后教师总结所举的建筑物基本上都是由这些几何体组合而成的(展示具有棱柱、棱锥、棱台结构特征的空间物体),引出本节课的课题。
【设计说明】教师借助不同的建筑物,提出新的问题,有利于开阔学生的视野,引起学生的思考,并激发学生的学习兴趣.二、探究新知1.分析空间几何体的结构特征、分类归纳图1. 1-1【师生活动】教师出示投影片图1. 1-1,按小组分给学生实物,引导学生从空间几何体的名称,结构特征,与平面图形的联系以及组成几何体的每个面的特点,面与面的关系等方面进行观察、思考,学生讨论并尝试回答,教师引导学生观察(2)(5)(7)(9)(13)(14)(15)(16)与(1)(3)(4)(6)(8)(10)(11)(12)的不同,然后给出多面体的定义和旋转体的定义,教师要在引导学生感知其形成过程的基础上加以理解.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.【设计意图】通过具体的实物及实物图象,引导学生主动地对图形及实物进行观察、分析、比较,并由图形的特点进行分类,根据不同类别图形的特点,抽象概括出多面体的定义,培养学生的观察、分类、概括能力.2.棱柱的结构特征【问题】通过观察图1. 1-1中的(2)(5)(7)(9),你能根据其结构特点概括出棱柱的定义吗?【师生活动】学生分成小组对这两种模型进行观察、讨论,概括出这两种几何体的结构特点,并由此得出棱柱的定义.一般地,有两个面互相平行;其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.两个相互平行的面叫底面;其余各面叫棱柱的侧面;相邻侧面的公共边叫棱柱的侧棱;侧面与底面的公共顶点叫棱柱的顶点.C′B′E′A′D′F′顶点棱柱的分类:底面是三角形、四边形、五边形……的棱柱分别叫 做三棱柱、四棱柱、五棱柱…….棱柱的表示:底面各顶点的字母表示棱柱,如图1.1 -2可表示为 六棱柱ABCDEF A B C D E F ''''''-教师出示投影片图1.1 -2,学生进一步落实棱柱的结构特征.图1.1 -2 【设计说明】通过引导学生对长方体的包装盒、螺丝帽模型等具体的实物进行观察、比较、分析,一方面进一步感知多面体的定义,另一方面可引导学生抽象出棱柱的定义,分析其结构上的共同点,分类的原则,培养学生的观察、分析、解决问题的能力.3.棱锥的结构特征【师生活动】教师出示投影片图1. 1-1,引导学生通过观察(14)、(15),指出其结构特点与棱柱的区别与联系,由学生通过合作学习,自己归纳出棱锥的结构特点,学生分组讨论,通过比较分析,得到(14)、(15)与棱柱的共同点是,其各个面均由平面图形围成,不同点是只有一个面是多边形,其余各面都是三角形,并且这些三角形都有一个公共顶点.点的三角形,由这些面所围成的多面体叫做棱锥面叫做棱锥的底面或底;的侧面;各侧面的公共顶点叫做棱锥的顶点边叫做棱锥的侧棱.棱锥的分类:底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥…….棱锥的表示:用表示顶点和底面各顶点的字母来表示,如图1. 1-3可表示为四棱锥S-ABCD .底面 DC A 侧面DE 侧棱FC B A 底面B图1. 1-3【设计说明】通过引导学生把投影片图1.1-1中(14)、(15)的结构特点与棱柱的结构特点进行分析总结,让学生利用类比的思维方法,探索出棱锥的定义、结构特点以及表示方法,培养学生自主探索的学习习惯和分析问题、解决问题的能力.4.棱台的结构特征【问题】出示投影片图1.1—1中(13)、(16),通过与棱柱、棱锥的结构特点相比较,你能得到棱台的概念、结构名称及分类标准吗?【师生活动】学生自主发言,教师及时点评得出棱台的定义、结构名称、分类标准以及表示方法,可以借助投影片图1. 1-4,让学生对棱台的结构名称进一步地认识,另外注意结合棱柱及棱锥的结构名称、分类标准及表示方法理解认识棱台的结构名称、分类标准以及表示方法.在学习时一定要注意比较方法的运用,尤其要注意棱台与棱锥结构特点的区别与联系.用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面.棱台的分类:底面是三角形、四边形、五边形……的棱台分别叫做三棱台、四棱台、五棱台…….棱台的表示:用各底面顶点字母表示,如图1.1-4可表示为四棱台ABCD A B C D ''''-.图1. 1-4【设计说明】通过学生对投影片图1. 1-1中(13)、(16)进行观察、分析,类比与棱柱及棱锥的联系与区别,得出棱台的概念、结构名称以及分类标准,培养学生自主学习能力及独立思考的习惯.通过比较进行学习,便于知识的建构.三、理解新知深化棱柱、棱锥、棱台的概念,掌握各自的结构特点.1、观察螺杆头部模型,有多少对平行的平面?能作为棱柱底面的有几对?解析:平行平面共有四对,但能作为棱柱底面的只有一对,即上下两个平行平面.老师引导学生探究:棱柱的哪些平行的面能作为底面,此时侧面是什么?哪些平行的平面不能作为底面?2、下列说法正确的是(B)A.由五个平面围成的多面体只能是四棱柱B.棱锥最少有四个顶点C.仅有一组对面平行的六面体是棱台D.一个面是多边形,其余各面是三角形的几何体是棱锥【设计说明】把学生的注意力引导到用概念进行判断上来,即看所给的几何体是否符合棱柱或棱锥、棱台定义的条件.四、运用新知例1、如图,过BC的截面截去长方形的一角,所得的几何体是不是棱柱?解析:以A ABB ''和D DCC ''为底即知所得几何体是棱柱.【师生活动】有的学生可能会认为不是棱柱,因为如果选择上下两平面为底,则不符合棱柱结构特征的第二条.例2、已知长方体的长宽高之比是4:3:,对角线长为14cm,则长宽高分别是多少?解析:设长方体的长为4a 7a =所以 7142a a ==长方体的长宽高分别是8,6,cm cm .【设计意图】体会立体几何中的数形结合思想.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法?学生作答:棱柱、棱锥、棱台结构特征和有关概念.教师总结: 1、注意观察分析立体图形的特征,培养空间想象能力;2、归纳、类比和数形结合的思想方法. 【设计意图】通过对本节课的小结,让学生建构自己的知识树.六、布置作业必做题:教科书第8~9页,习题1. 1A 组第1、2题并观察身边的物体,举出一些具有棱锥、棱台、圆台、球体特征的物体,说明它们各自具有的特征选做题:1.已知棱长为a ,底面是正方形的四棱锥,求它底面上的高.2.已知一个正四棱台的两底面的面积分别为16和25,则这个棱台的高与截得该棱台的棱锥的高的比为 .3.下列三个命题,其中正确的有( )(1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;(2)两个地面平行且相似,其余各面都是梯形的多面体是棱台;(3)有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.七、教后反思本节课先展示大量几何体的实物、模型、图片等,让学生直观感受空间几何体的整体结构,然后再引导学生抽象出空间几何体的结构特征,之所以这样安排,是因为先从总体上认识空间几何体,再深入细节(点、直线、平面之间的位置关系)的认识,更符合学生的认识规律.本节亮点在于始终以学生为中心,给学生留下足够的时间供其操作、思考、交流,学生的探索及自主学习能力都能得到提高.本节不足之处是学生可能对棱柱与棱台定义中两面平行产生疑惑,面面平行是第二章的内容,学生还没有学习,可能对具体什么是面面平行,两面平行又会有什么性质结论不清楚,比较含糊,而在课堂上没有及时利用实物举例帮助学生解惑.比如:教室的屋顶与地面,学生课桌与地面等,让学生对它们进行描述,这样帮助学生形成“面面平行”的直观认识的话,教学效果更好.课下还需要对备课细节多琢磨,多从学生角度考虑教学设计,以提高教学质量.八、板书设计。