立方根和开立方ppt
- 格式:pptx
- 大小:7.30 MB
- 文档页数:20
6.2立方根(第1课时)教学目标:知识与技能:1.通过立方根概念的学习,会用根号表示一个数的立方根,会求一个数的立方根.2.了解开立方与立方互为逆运算的关系.3.通过探究能分析、归纳立方根的性质,并理解立方根与平方根的异同.过程与方法:1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想方法.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.情感与态度:1.在立方根概念、符号、运算及性质的探究过程中,让学生树立联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.重点:引导学生类比平方根,学习立方根的概念和求法.难点:立方根的求法;立方根与平方根的联系及区别.教学过程:一、复习回顾问题1:定义平方根的定义?它的符号怎么表示?问题2:上节课我们还学习了一种新的运算,是什么运算呢?它是怎么定义的?问题3:那么平方根有什么样的性质呢?二、设计情境导入新课64m的正方体形状的包装箱,这种包装箱的棱长应该是多少?情境1:要制作一种容积为3你是怎么知道的?问题4:本题是已知一个数x的立方,求这个数的值,而平方根是已知一个数的平方,求这个数.对比平方根的定义,你能归纳出立方根的定义是什么吗?43=,所以4是64的立方根.因此,在上面问题中,因为64类似开平方的运算,我们也可以定义出开立方运算:求一个数的立方根的运算,叫做开立方.三、创设问题,探究新知探究一:根据立方根的意义填空,你能发现如何求一个数的立方根吗?因为823=,所以8的立方根是();因为(3)=0.064,所以0.064的立方根是();因为(3)=0,所以0的立方根是();因为(3)=–8,所以–8的立方根是();因为( 3)=278-,所以278-的立方根是( ). 探究二:认真算一算,你有什么样的猜想?___,___,___;___,___,____;======Q Q 例题 求下列各数的值 (1)364; (2)381-; (3)36427- 四、巩固练习1.下列计算错误的是( )2.一个数的立方根是它本身,则这个数是( )A.1B.0或1C.-1或1D.0或1± 3.81的平方根与-8的立方根之和为( )A.-5B.7C.-5或1D.7或-114.若033=+y x ,则x 与y 的关系是互为相反数。
第二讲立方根和开立方【要点梳理】一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3x a=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.要点诠释:一个数a a是被开方数,3是根指数. 开立方和立方互为逆运算.二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任意一个实数都有立方根,而且只有一个立方根,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.三、立方根的性质=a=3a=要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.0.060.6660. 五、n次方根如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.当n 为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.求一个数a的n次方根的运算叫做开n次方,a叫做被开方数,n叫做根指数.要点诠释:实数a的奇次方根有且只有一个,正数a的偶次方根有两个,它们互为相反数;负数的偶次方根不存在.;零的n0=.【典型例题】例1、下列结论正确的是()A.64的立方根是±4 B.12-是16-的立方根C.立方根等于本身的数只有0和1D=例2、我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.例3、求下列各式的值:(1)327102-- (2)3235411+⨯(3)336418-⋅ (4(5)10033)1(412)2(-+÷--例4、计算:(1=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 例5、求下列各式中x 的值:(1)3(x ﹣1)3=24. (2)(x+1)3=﹣64.例6、求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______;(3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.例7、将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________。