当前位置:文档之家› 氧气顶吹转炉炼钢终点碳控制的方法

氧气顶吹转炉炼钢终点碳控制的方法

氧气顶吹转炉炼钢终点碳控制的方法
氧气顶吹转炉炼钢终点碳控制的方法

氧气顶吹转炉炼钢终点碳控制的方法

终点碳控制的方法有三种,即一次拉碳法、增碳法和高拉补吹法。

一次拉碳法

按出钢要求的终点碳和终点温度进行吹炼,当达到要求时提枪。

这种方法要求终点碳和温度同时到达目标,否则需补吹或增碳。一次拉碳法要求操作技术水平高,其优点颇多,归纳如下:

(1) 终点渣TFe含量低,钢水收得率高,对炉衬侵蚀量小。

(2) 钢水中有害气体少,不加增碳剂,钢水洁净。

(3) 余锰高,合金消耗少。

(4) 氧耗量小,节约增碳剂。

增碳法

是指吹炼平均含碳量≥0.08%的钢种,均吹炼到ω[C]=0.05%~0.06%提枪,按钢种规范要求加入增碳剂。增碳法所用碳粉要求纯度高,硫和灰分要很低,否则会玷污钢水。

采用这种方法的优点如下:

(1)终点容易命中,比“拉碳法”省去中途倒渣、取样、校正成分及温度的补吹时间,因而生产率较高;

(2)吹炼结束时炉渣Σ(FeO)含量高,化渣好,去磷率高,吹炼过程的造渣操作可以简化,有利于减少喷溅、提高供氧强度和稳定吹炼工艺;

(3)热量收入较多,可以增加废钢用量。

采用“增碳法”时应严格保证增碳剂质量,推荐采用C>95%、粒度≤10毫米的沥青焦。增碳量超过0.05%时,应经过吹Ar等处理。

高拉补吹法

当冶炼中、高碳钢钢种时,终点按钢种规格稍高一些进行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。

由于在中、高碳(ω[c]>0.40%)钢种的碳含量范围内,脱碳速度较快,火焰没有明显变化,从火花上也不易判断,终点人工一次拉碳很难准确判断,所以采用高拉补吹的办法。用高拉补吹法冶炼中、高碳钢时,根据火焰和火花的特征,参考供氧时间及氧耗量,按所炼钢种碳规格要求稍高一些来拉碳,使用结晶定碳和钢样化学分析,再按这一碳含量范围内的脱碳速度补吹一段时间,以达到要求。高拉补吹方法只适用于中、高碳钢的吹炼。根据某厂30 t 转炉吹炼的经验数据,补吹时的脱碳速度一般为0.005%/s。当生产条件变化时,其数据也有变化。

转炉炼钢终点控制技术现状研究

转炉炼钢终点控制技术现状研究 摘要】在炼钢过程中,终点控制技术是一个相对重要的环节,该项工作的效率 会直接影响到转炉炼钢的整体效率。基于此,本文对转炉炼钢中的终点控制技术 进行了具体研究,以期从根本上把握终点的控制技术,充分发挥技术优势,在提 高技术专业化水准的同时,进一步提高转炉炼钢的生产效率,促使炼钢企业朝着 更好的方向发展。 【关键词】转炉炼钢;终点控制;技术应用 实施终点控制技术的作用在于控制炼钢时间,这是一项重要的操作程序,需 要在转炉炼钢后期进行,具体包括动态化控制、静态化控制、人工控制以及自动 化控制等四项技术。每种控制技术都有各自的优势,其所产生的应用效果也存在 差异。在今后的生产过程中,为了能够更好地利用该项技术,相关技术人员要根 据生产实际,并结合以往的实践经验,切实做好技术应用工作,本文就此展开论述。 一、终点控制技术的应用实践 (一)动态化控制技术 1、炉气动态分析终点控制 炉气动态分析终点控制主要是由根据炉口表的成分检测结果,计算钢铁熔池 脱碳的实际速率,该操作在吹炼的后期阶段进行,当确定了钢水的温度和成分后,方可实现转炉炼钢的终点动态化目标。该项技术通过连续性动作来提示钢水的实 际含碳量和温度,同时还能够利用动态化分析对控制系统加以校正,更加直观的 向工作人员展现钢水的 P、S 实际变化状况。就实际操作结果分析,笔者发现终点钢水的碳实际质量分数与其测量的精准度和命中率是成反比的。由此可见,炉气 动态分析终点技术在终点碳温的命中几率提升方面具有积极意义。 2、副枪动态分析终点控制 技术人员要在即将到达吹炼终点期时,将副枪插入熔池内,从而获取池内的 碳实际含量和相应的温度检测数值。根据最终检测结果,技术人员要对静态模型 进行客观分析,最终计算结果,并给予更正处理。此外,吹炼的终点需要加入足 量的副原料,当供氧量足够时,技术人员必须严格控制终点命中率,以此来保证 转炉冶炼的稳定性。在计算机技术的辅助作用下,得以实现高水平、高质量的转 炉冶炼动态化的控制目标。当钢中碳的质量分数较低时,技术人员要用结晶的定 碳技术去分析该项数据,获取到最精确的实时测量数据;而当该项数值处于较高 的分数时,技术人员是无法保证测量精准度的。因此副枪动态分析终点控制技术 多用于低、中型的碳钢生产企业。 (二)静态化控制技术 静态化控制技术的实际应用较为严格,需要技术人员把握好原材料的基础条 件和吹炼的钢种目标等因素,通过对各种材料的精准化分析,最终确定供氧量标准,其后方可进行下一步的操作。静态化控制技术对于吹炼操作期间的更改难度 提出了更高的要求,其终点命中率通常会受到多种客观因素的影响,因此在该项 技术的实际应用期间,技术人员需要结合以往的实践经验,牢牢控制终点控制标准,该种技术应用环境下的终点碳温实际命中几率大约为 80%。 (三)自动化控制技术 炉渣在线式检测专项技术是自动化控制技术中的典型,通过技术应用能够对 炉渣实际状态进行实时化的监控和探测,且在吹炼操作期间,该项技术还能够合

太钢第二炼钢厂顶底复吹转炉工艺生产实践解读

太钢第二炼钢厂顶底复吹转炉工艺生产实践 发表日期:2007-3-14 阅读次数:328 摘要:太钢第二炼钢厂通过引进钢铁研究总院的“长寿复吹转炉炼钢工艺技术”,将2号、3号顶吹氧气转炉改造为顶底复吹转炉。总结阐述了改造后复吹转炉终点碳氧积、脱磷、脱碳、造渣和吹炼等各项工艺的研究。 关键词:顶底复吹转炉工艺研究 太原钢铁(集团)有限公司(以下简称太钢)第二炼钢厂有3座转炉,其中2号、3号转炉冶炼碳钢,原设计公称容量为50t顶吹氧气转炉,是1970年从奥地利引进投产的,2000年将其出钢量扩容为80t。2004年,引进钢铁研究总院的“长寿复吹转炉炼钢工艺技术”,将顶吹氧气转炉改造为顶底复吹转炉。 1 顶底复合吹炼转炉主要工艺技术指标 1.1 复吹转炉终点碳氧积 2005年对Q235-A、HP345、T5IOL、45钢等钢种进行了68炉碳氧积的测定,表明:在终点w(C)为0.07%,温度为1669℃的条件下,碳氧浓度积为0.00277。顶底复吹转炉终点碳氧关系见图1。 从图1中看出,随着转炉终点C含量的降低,终点溶解氧含量升高,特别是w(C)低于0.05%,溶解氧升高明显,因此在生产高碳钢时应控制终点C含量。使C含量控制在规格上限,降低溶解氧含量,提高钢液纯净度。 1.2 复吹转炉脱磷研究 1.2.1 复吹转炉吹炼终点渣中,FeO含量、碱度同磷分配比的关系 由于复吹终点渣中FeO含量明显降低,熔池相对平稳,致使脱磷困难,磷分配比低,仅为46.75。2005年,通过工艺摸索,提高转炉造渣工艺,转炉成品P含量降低,磷分配比明显提高,达到了76.44。取样分析渣中FeO含量、碱度同磷分配比的关系,结果见图2、图3。

世界氧气顶吹转炉炼钢技术发展史

世界氧气顶吹转炉炼钢技术发展史 氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。炉衬用镁砂或白云石等碱性耐火材料制作。所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。 简史 空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。炼钢是氧化熔炼过程,空气是自然界氧的主要来源。然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde—Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二

次世界大战开始后转到瑞士的冯?罗尔(V.Roll)公司继续进行研究。1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。1948年丢勒尔(R.Durrer)等在冯?罗尔(VonRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。这样就最后完成了转炉吹氧炼钢的实验室试验。从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯?罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。由于钢的质量很好而且炼钢工艺的

顶吹转炉

太原科技大学 课程设计说明书 设计题目: 50t 氧气顶吹转炉设计 设计人:郭晓琴 指导老师:杨晓蓉 专业:冶金工程 班级:冶金工程081401 学号: 200814070105 材料科学与工程学院 2011年12月30 日

目录 摘要................................................ 错误!未定义书签。第一章绪论................................................ 错误!未定义书签。 1.1 氧气顶吹转炉炼钢的发展概况......................... 错误!未定义书签。 1.2 氧气顶吹转炉炼钢的优点............................. 错误!未定义书签。 1.3 转炉炼钢生产技术发展趋势........................... 错误!未定义书签。第二章炉型尺寸计算........................................ 错误!未定义书签。 2.1转炉炉型及其选择.................................... 错误!未定义书签。 2.2转炉炉型尺寸计算.................................... 错误!未定义书签。 2.2.1 熔池尺寸...................................... 错误!未定义书签。 2.2.2 炉容比(容积比).............................. 错误!未定义书签。 2.2.3炉帽尺寸...................................... 错误!未定义书签。 2.2.4炉身尺寸...................................... 错误!未定义书签。 2.2.5出钢口尺寸.................................... 错误!未定义书签。第三章氧气顶吹转炉耐火材料................................ 错误!未定义书签。 3.1 炉衬的组成和材质的选择............................. 错误!未定义书签。 3.2炉衬厚度的确定...................................... 错误!未定义书签。第四章氧气顶吹转炉金属构件的确定.......................... 错误!未定义书签。 4.1炉壳组成及结构形成................................. 错误!未定义书签。 4.2炉壳钢板材质与厚度的确定 (7) 4.3支撑装置 (7) 4.3.1 托圈......................................... 错误!未定义书签。 4.3.2炉衬的组成和材质的选择....................... 错误!未定义书签。 4.3.3耳轴及其轴承................................. 错误!未定义书签。 4.4倾动机构........................................... 错误!未定义书签。 4.5高径比的核定....................................... 错误!未定义书签。参考文献.............................................................. - 12 -

50吨氧气顶吹转炉炉体设计

50吨氧气顶吹转炉炉体设计 1 氧气顶吹转炉炼钢的发展概况 氧气顶吹转炉炼钢法是20世纪50年代产生和发展起来的炼钢技术,但从起出现至今已有100多年的历史。早在1856年英国人亨利·贝塞麦就研究开发了酸性底吹转炉炼钢法,以铁水为原料,从转炉底部通入空气氧化去除杂质冶炼成钢。第一次实现了液态钢冶炼的规模生产,从此进入了现代钢铁工业生产阶段。1878年德国尼·托马斯研究发明的碱性底吹转炉炼钢法,以碱性耐火材料砌筑炉衬,吹炼过程中可加入石灰造渣,能够脱除铁水中的P、S,解决了高磷铁水冶炼技术问题。由于转炉炼钢法有生产率高、成本低、设备简单等优点,在欧洲得到迅速的发展,并成为当时主要的炼钢方法。 第二次世界大战之后,从空气中分离氧气技术的成功,提供了大量廉价的工业纯氧,使贝塞麦的氧气炼钢设想得以实现。由于氧气顶吹转炉炼钢首先在林茨和多那维茨两城投入生产,所以取这两个城市名称的第一个字母L-D(LD)作为氧气顶吹转炉炼钢法的代称。 LD炼钢法具有反应速度快,热效率高,又可使用约30%的废钢为原料;并克服了底吹转炉钢质量差,品种少的缺点;因而一经问世就显示出巨大的优越性和生命力。进入20世纪70年代以后,顶吹转炉炼钢技术趋于完善。转炉的最大公称吨位达380t;单炉生产能力达到400~500万t/a;能够冶炼全部平炉钢种,若与有关精炼技术相匹配,还可以冶炼部分电炉钢种;大型转炉炉龄在1999年达到10000炉次/炉役以上;并实现了计算机控制终点碳与出钢温度。 1951年碱性空气侧吹转炉炼钢法首先在我国唐山钢厂试验成功,并于1952年投入工业生产。1954年开始了小型氧气顶吹转炉炼钢的试验研究工作,1962年将首钢试验厂空气侧吹转炉改建成3t氧气顶吹转炉,开始了工业性试验。在试验取得成功的基础上,我国第一个氧气顶吹转炉炼钢车间(2×30t)在首钢建成,于1964年12月26日投入生产。以后,又在唐山、上海、杭州等地改建了一批3.5~5t的小型氧气顶吹转炉。1966年上钢一厂将原有的一个空气侧吹转炉炼钢车间,改建成3座30t的氧气顶吹转炉炼钢车间,并首次采用了先进的烟气净化回收系统,于当年8月投入生产,还建设了弧形连铸机与之相配套,试验和扩大了氧气顶吹转炉炼钢的品种。这些都为我国日后氧气顶吹转炉炼钢技术的发展提供了宝贵经验。此后,我国原有的一些空气侧吹转炉车间逐渐改建成中小型氧气顶吹转炉车间,并新建了一批中、大型氧气顶吹转炉车间。20世纪80年代宝钢从日本引进建成具有70年代末技术水平的300t大型转炉3座、首钢购入二手设备建成210t转炉车间;90年代宝钢又建成250t转炉车间,武钢引进250t 转炉,唐钢建成150t转炉车间,重钢和首钢又建成80t转炉炼钢车间;许多平炉车间改建成氧气顶吹转炉车间等。到1998年,我国氧气顶吹转炉共有221座,其中100t以下的转炉有188座,(50-90t的转炉有25座),100-200t的转炉有23

氧气顶吹转炉炼钢终点碳控制的方法

氧气顶吹转炉炼钢终点碳控制的方法 终点碳控制的方法有三种,即一次拉碳法、增碳法和高拉补吹法。 一次拉碳法 按出钢要求的终点碳和终点温度进行吹炼,当达到要求时提枪。 这种方法要求终点碳和温度同时到达目标,否则需补吹或增碳。一次拉碳法要求操作技术水平高,其优点颇多,归纳如下: (1) 终点渣TFe含量低,钢水收得率高,对炉衬侵蚀量小。 (2) 钢水中有害气体少,不加增碳剂,钢水洁净。 (3) 余锰高,合金消耗少。 (4) 氧耗量小,节约增碳剂。 增碳法 是指吹炼平均含碳量≥0.08%的钢种,均吹炼到ω[C]=0.05%~0.06%提枪,按钢种规范要求加入增碳剂。增碳法所用碳粉要求纯度高,硫和灰分要很低,否则会玷污钢水。 采用这种方法的优点如下: (1)终点容易命中,比“拉碳法”省去中途倒渣、取样、校正成分及温度的补吹时间,因而生产率较高; (2)吹炼结束时炉渣Σ(FeO)含量高,化渣好,去磷率高,吹炼过程的造渣操作可以简化,有利于减少喷溅、提高供氧强度和稳定吹炼工艺; (3)热量收入较多,可以增加废钢用量。 采用“增碳法”时应严格保证增碳剂质量,推荐采用C>95%、粒度≤10毫米的沥青焦。增碳量超过0.05%时,应经过吹Ar等处理。 高拉补吹法 当冶炼中、高碳钢钢种时,终点按钢种规格稍高一些进行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。 由于在中、高碳(ω[c]>0.40%)钢种的碳含量范围内,脱碳速度较快,火焰没有明显变化,从火花上也不易判断,终点人工一次拉碳很难准确判断,所以采用高拉补吹的办法。用高拉补吹法冶炼中、高碳钢时,根据火焰和火花的特征,参考供氧时间及氧耗量,按所炼钢种碳规格要求稍高一些来拉碳,使用结晶定碳和钢样化学分析,再按这一碳含量范围内的脱碳速度补吹一段时间,以达到要求。高拉补吹方法只适用于中、高碳钢的吹炼。根据某厂30 t 转炉吹炼的经验数据,补吹时的脱碳速度一般为0.005%/s。当生产条件变化时,其数据也有变化。

转炉炼钢名词解释讲解

转炉炼钢名词解释讲解

转炉炼钢名词解释 答1.同素异构转变 答案:固态金属在不同的温度和压力下具有不同的晶格的现象称为同素异构现象,具有同素异构现象的金属随温度的变化发生晶格形式的转变,称为同素异构转变。 2.韧性 答案:是材料塑性变形和断裂全过程中吸收能量的能力,是材料强度和塑性的综合表现,可以用材料在塑性变形和断裂全过程中吸收能量的多少表示韧性。 3.双相钢 答案:是指低碳钢和低碳低合金钢经临界区处理或控制轧制而得到的主要由铁素体 4.固溶强化 答案:采用添加溶质元素使固溶体强度升高的强化机制,是通过改变材料的化学成分来提高强度的方法,其强化的金属学基础是由于运动的位错与异质原子之间 的相互作用的结果。 5.塑性(重点) 答案:是指金属材料在静载荷的作用下产生永久变形而不破坏的能力。 6.什么叫钢的同素异构转变? 答案:钢是铁与碳的合金。铁在不同的温度范围内呈现不同的晶格形式,对碳有不同的溶解能力。因此,钢在固态随温度发生变化,其晶格形式发生转变,其物理性质也不同,称这种现象为钢的同素异构转变。 7.什么叫完全退火?什么叫再结晶退火? 答案:完全退火是将钢加热至Ac3以上20~30℃,经完全奥氏体化后进行缓慢冷却,以获得近于平衡组织的热处理工艺。 再结晶退火是把冷却变形后的金属加热到再结晶温度以上保持适当时间,使变形晶粒重新转变为均匀等轴晶粒而消除加工硬化的热处理工艺。 8.超声波探伤 答案:是利用超声波的物理性质检验低倍组织缺陷,用这种方法可直接检查钢材的内部缺陷,例如检验锅炉管,还可检查大锻件的内部质量。 9.塑性变形(重点) 答案:物体受外力作用而产生变形,当外力去除后,物体不能够恢复其原始形状和尺寸,遗留下了不可恢复的永久变形,这种变形称为塑性变形。 56.共析转变 10.韧性(重点) 答案:是材料塑性变形和断裂全过程中吸收能量的能力,它是强度和塑性的综合答案:一定成份的固溶体,在某一恒温下,同时析出两种固相的转变称为共

氧气底吹转炉炼铅法

金属硫化物精矿不经焙烧或烧结焙烧直接生产出金属的熔炼方法称为直接熔炼。 对硫化铅精矿来说,这种粒度仅为几十微米的浮选精矿因其微粒小,比表面积大,化学反映和熔化过程都有可能很快进行,充分利用硫化矿粒子的化学活性和氧化热,采用高效、节能、少污染的直接熔炼流程处理是合理的。传统的烧结—鼓风炉流程将氧化——还原两过程分别在两台设备中进行,存在许多难以克服的弊端。随着能源、环境污染控制以及生产效率和生产成本对冶炼过程的要求越来越严格,传统炼铅法受到多方面的严峻挑战。具体说来,传统法有如下主要缺点: (1)随着选矿技术的进步,铅精矿品位一般可以达到60%,这样精矿给正常烧结带来许多困难,导致大量的熔剂、反粉或还有炉渣的加入,将烧结炉料的含量降至40%~50%。送往熔炼的是低品位的烧结块,致使每生产1t多炉渣,设备生产能力大大降低。 (2)1t PbS精矿氧化并造渣可放出2x106kJ以上的热量,这种能量在烧结作业中几乎完全损失掉,而在鼓风炉熔炼过程中又要另外消耗大量昂贵的冶金焦。 (3)铅精矿一般含硫15%~20%,处理1t精铅矿可生产0.5t硫酸,但烧结焙烧脱硫率只有70%左右,故硫的回收率往往低于70%,还有30%左右,还有30%左右的硫进入鼓风炉烟气,回收很困难,容易给环境造成污染。 (4)流程长,尤其是烧结及其返粉制备系统,含铅物料运转量大,粉尘多,大量散发的铅蒸汽、铅粉尘严重恶化了车间劳动卫生条件,容易造成劳动者铅中毒。 近30年来,冶金工作者力图通过PbS受控氧化即按反映式PbS+O 2=Pb+SO 2 的途径来实现硫化铅精矿的直接熔炼,以简化生厂流程,降低生产成本,利用氧化反应的热能以降低能耗,产出高浓度的SO 2 烟气用于制硫,减小对环境污染。但由于直接熔炼产生大量铅蒸汽、铅粉尘,且熔炼产物不是粗铅含硫高就是炉渣含铅高,致使许多直接熔炼方法都不很成功。 冶金工作者通过Pb-S—O系化学势图的研究,找到了获得成分稳定的金属铅的操作条件,但也明确指出,直接熔炼要么产出高硫铅,要么形成高铅渣;要

氧气底吹转炉炼钢

通过转炉底部的氧气喷嘴,把氧气吹入炉内熔池进行炼钢的方法。 简史?? 氧气底吹转炉始于改造托马斯转炉(见托马斯法)。西欧富有高磷铁矿资源,用它炼出的生铁含磷高达1.6%~2.0%。以这种高磷铁水为原料的传统炼钢方法即托马斯法,也即碱性空气底吹转炉法,其副产品钢渣可作磷肥。对于高磷铁水,托马斯法过去一直是综合技术经济指标较好的一种炼钢方法。直至20世纪60年代,西欧还存在年产能力约1000万t钢的托马斯炉。但作为炼钢氧化剂的空气,其中氧气仅占1/5,其余4/5的氮气不仅吸收大量热量,并使钢中氮含量增加,引起低碳钢的脆性。为此人们一直试图用纯氧代替空气,以改进钢的质量和提高热效率。但采用氧气后,化学反应区的温度很高,底吹所用氧气喷嘴很快被烧坏。1965年加拿大空气液化公司为了抑制氧气炼钢产生的大量污染环境的褐色烟尘,试验在氧枪外层通气态或液态冷却剂,取得了预期效果,并同时解决了氧枪烧损快的问题。1967年联邦德国马克西米利安冶金厂(Maximilianshttte)引进了这项技术,以丙烷为氧喷嘴冷却剂,用于改造容量为24t的托马斯炉,首先试验成功氧气底吹转炉炼钢,取名OBM 法。1970年法国文代尔一西代尔公司(Wendel—Sidelor?? Co.)的隆巴(Rombas)厂以燃料油为氧喷嘴冷却剂,也成功地将24t托马斯炉改造成氧气底吹转炉,称为LWS法。随后用氧气底吹氧枪改造的托马斯炉在西欧得到迅速推广,炉容量大多为25~70t,用于高磷铁水炼钢,脱磷仍在后吹期完成,副产品钢渣作磷肥。1971年美国钢铁公司(U.S.Steel? Corp.)引进COBM法,为了解决经济有效地吹炼低磷生铁和设备大型化问题,在该公司炼钢实验室的30t试验炉上作了系列的中间试验,增加了底部吹氧同时喷吹石灰粉的系统,吹炼低磷普通铁水可在脱碳同时完成脱磷,称为Q—BOP法。随后,在菲尔菲德(Fairfield)厂和盖里(Gary)厂分别建设了两座200tQ—BOP炉和3座235tQ—BOP炉。前者取代原有平炉,后者取代正在建设的氧气顶吹转炉。从而实现了氧气底吹转炉的大型化,并扩大了应用范围。到20世纪70年代末氧气底吹转炉年产钢能力总计约3500万t。在中国,1973年钢铁研究总院在300kg 氧气底吹试验转炉上进行了底吹氧气和石灰粉的炼钢试验。随后,该院与北京钢铁设计研究总院及有关单位合作,在唐山钢厂、首都钢铁公司、济南第二钢厂及马鞍山钢铁公司先后完成了5t氧气底吹转炉炼钢的工业性试验。同时还进行了铁水提铌、提钒的试验。后由于顶底复吹转炉的出现和发展而停止。 工艺特点?? 氧气底吹转炉所用炉衬耐火材料、原材料及基本工艺和氧气顶吹转炉相同或相似。主要金属炉料是铁水和约10%~25%的废钢。供氧压力约为0.6~1.0MPa(6~10atm)。每炉吹炼时间(吹氧时间)一般为15~20min。每炉冶炼周期(本炉出钢到下炉出钢时间)一般为30~40min。氧耗量为50~60m3/t。主要工艺特点是从转炉底部供氧。(见图1)装有氧喷嘴的转炉炉底可以拆卸、更换。氧喷嘴由同心的双层套管组成。内层为铜管或不锈钢无缝管,外层用碳素钢无缝管。内层通氧气,并可同时喷吹石灰粉。两层套管之间的间隙通冷却剂。冷却剂通常为气态或液态的碳氢化合物,如天然气、丙烷或燃料油等。依靠碳氢化合物裂解吸热,并在氧流周围形成保护气膜,以及高速气流带走热量,以降低氧喷嘴及其附近反应区的温度,达到保护氧气喷嘴、减缓烧损的目的。为了使熔池搅拌均匀,反应界面大,吹炼平稳,并避免氧喷嘴个数少、直径过大、氧流比较集中而导致氧气穿透熔池,因此采用多支氧喷嘴,分散供氧。每支氧喷嘴的内径尺寸不超过熔池深度的1/35。这个数据适用于吹氧压力约为0.5~1MPa的中、小型转炉。例如:容量为30t的转炉,熔池平均深度为700mm,据此每支氧喷嘴最大内径为20mm;氧气压力为0.8MPa;氧气含石灰粉为1~2kg/m3,则氧气流量约为130m3/h?cm2;耗氧量为60m3/t;吹炼时间最多为20min。因此可以算出:需要供氧流量为5400m3/h,所需氧喷嘴内管总横截面约为42cm2,所需氧喷嘴数为14个。大型氧气底吹转炉的氧喷嘴直径与熔池深度之比可以大于上述数据,一般不超过熔池深度的1/15。例如200~240t氧气底吹转炉所用氧喷嘴数可采用10~16个。氧喷嘴之间以及氧喷嘴与炉壁之间要有适当间距,使熔池搅拌均匀和反应平稳,并减轻对炉衬耐火材料的侵蚀。氧喷

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

转炉炼钢

转炉炼钢文献综述

内蒙古科技大学毕业设计说明书(毕业论文) 摘要 根据炼钢厂设计要求及设计任务书的要求,本设计阐述了230万吨合格铸坯的转炉车间的设计工艺,并且介绍了近年来国内外转炉炼钢的现状和发展。本设计主要对转炉炼钢生产的生产规模、产品方案、工艺流程、车间组成和车间布置进行设计,并对120吨转炉炉型、原料供应系统进行了详细计算。对厂房各跨宽度,长度进行了估算。此外,对转炉车间的一些主要的附属设备进行了选择并对其技术性能进行讲解。 随着现代炼钢技术的发展,新建转炉炼钢车间要求炼钢过程洁净、高效、负能耗、设备可靠等等。设计中为实现上述目标,借鉴了国内外大中型转炉炼钢厂的一系列先进且成熟的技术,同时参阅了大量的文献资料。设计的炼钢车间理论上能够生产绝大多数钢种,但是结合实际考虑经济效益,主要生产重轨钢和一部分高附加值的碳素结构钢及合金结构钢等,以满足230万吨合格铸坯全连铸炼钢厂的匹配。 关键词:转炉炼钢重轨钢冶炼

文献综述 1.1 引言 21世纪钢铁工业的发展面临着机遇和挑战。根据市场预测:至2010年发达国家钢材消费年均增长量为0.7%;而发展中国家将达到3.8%;太平洋地区的增长为4.57%。世界钢材市场消费量的缓慢增长,为钢铁工业发展,特别是太平洋地区发展中国钢铁工业发展提供了良好的机遇。 21 世纪国际钢铁工业发展面临的严峻挑战, 主要来自三个方面: (1)钢铁生产能力过剩,残酷的市场竞争将使一些落后的钢铁厂倒闭; (2)环境保护对钢铁工业发展产生巨大压力,一些污染严重的落后工艺将被强制淘汰;(3)世界钢材价格呈下降趋势。 进入21 世纪, 面对机遇和挑战,钢铁企业必须努力发展高效生产工艺,降低生产成本,提高产品质量和减轻对环境的污染,才可能立于不败之地[1]。 1.2 我国转炉炼钢的发展及现状 1.2.1我国钢产量 作为转炉炼钢主要炉料的生铁逐年增长, 为转炉炼钢钢产量的大幅度增长提供了良好而充裕的原料条件, 与世界各主要产钢国家相比, 我国铁钢比较高, 近年来我国生铁产量及铁钢比如表1.1所示。

转炉终点钢中氧含量控制(精)

转炉终点钢中氧含量控制 冷轧深冲薄板表面线状缺陷和表面起皮缺陷主要来源于连铸板坯皮下含有Al2O3、 CaO·Al2O3 等类型夹杂物。因此要提高冷轧板表面质量, 就要降低钢中脱氧夹杂物, 而要降低钢中夹杂物首先就要降低转炉终点钢水氧含量, 这是产生夹杂物的源头,同时降低转炉终点氧含量,还可以增加合金的收得率。转炉炼钢是在高温强热条件下进行,过程复杂,影响终点氧含量的因素很多,以下各因素对转炉冶炼终点氧含量有较大影响。 (1)终点[C] 钢液中氧含量主要受到碳含量的控制,转炉吹炼过程中碳氧反应式为: [C]+[O]={CO} 碳氧浓度积[%C]·[%O],可以反映转炉吹炼终点钢水氧含量的控制水平。转炉冶炼终点由副枪测定的[C]和[O]活度统计关系如图1 所示。 图1 转炉冶炼终点C-O关系图 由图1得,w (C < 0. 03%, w ( [O] = (100~ 1200 ×10- 6 ,w ( [C] ·w ( [O] = 0.002 8。 (2)终点温度 生产统计转炉终点钢水温度与终点[O]关系,如图2 所示。

图2 终点温度与[O]含量的关系 由图2可知,钢水中氧含量随温度升高而增加。因此降低出钢温度,可以减少钢水中氧含量。 (3)炉渣对终点氧含量的影响 转炉冶炼后期,炉渣中氧化铁的含量与钢水中氧含量有关联。氧化铁的含量与钢水中氧含量存在着相对平衡关系。一般地,炉渣中氧化铁的含量越高,炉渣氧化性就越强,钢中氧含量则相对较高,金属收得率就低。 (4)补吹操作 生产统计转炉吨钢氧耗量与终点[C]关系,如图3所示。 图3 氧耗量与终点[C]关系

如图3所示,终点w ( [C] = 0. 02% ~ 0. 10% ,吨钢氧耗量在42~ 582m3 / t 之间。说明终点[ C] 越低( 或补吹 , 吹入氧主要用来氧化铁, 使渣中FeO 大增 , 同时增加了终点[O]。补吹小于1min, 补充氧800 ~ 1 000 m3 , 渣中w ( ( FeO 升高5%~ 15% 。 (5)底吹 生产实践证明,底吹气体所产生的搅拌效果与CO分压下降的效果,对转炉中的冶金反应特性是有影响的。资料表明: 1)钢液中的溶解氧浓度、随着底吹气体流量增加而下降。 2)随着底吹的进行,碳、氧浓度都会下降。 3)CO分压对氧浓度和渣中的铁含量有重大影响。采用LOD法(惰性气体加氧气脱碳法时,钢中氧浓度与渣中铁含量的下降,主要是由于底吹惰性气体增强了搅拌强度。

转炉炼钢低氮控制实践

转炉炼钢低氮控制实践 2009-11-23 9:50:39 李安东、郑皓宇、徐文杰 (宝山钢铁股份有限公司不锈钢事业部炼钢厂) 摘要:宝钢不锈钢事业部炼钢厂引进宝钢分公司的转炉低氮控制技术,结合不锈钢分公司碳钢炼钢的自身特点,在重点品种IF钢的冶炼过程中,进行转炉低氮控制工艺转化,得出了可操作工艺参数,并推广应用到其它优质低氮钢,形成了规范的转炉低氮控制技术,为不锈钢事业部生产高等级的汽车面板钢作了充分的技术储备。 关键词:转炉冶炼,钢水脱氮 Study on Low-Nitrogen Controlling Technology Li Andong、Zhen Hao yu、Xu Wen Jie (Melting Shop of Baoshan Iron & Steel Co. Ltd. Stainless Steel Business Unit) Abstract: The melting shop of Baosteel Stainless Steel Branch introduced low- nitrogen controlling technology from Baosteel Branch. Combining with the smelting process characteristics of carbon steel, Baosteel Stainless steel Branch applied the technology to the converter in smelting process of IF steel to draw the operational process parameters. And the technology has also been applied to other high-quality low–nitrogen steel and become a standardized low-nitrogen converter controlling technology that is existing as the sufficient technical reserves for the production of high-grade steel panels of motor vehicles. Key words: smelting in converter, denitrigenation from steel 1 前言 钢水中氮的控制贯穿于铁水预处理-BOF-精炼-CC的全过程,基本的控制方法可分为两个方面,即脱氮+防止增氮[1,2]。从理论上讲,铁水预处理、转炉冶炼、RH真空精炼工序均可

氧气顶吹转炉炼钢

R.D.佩尔克等著,邵象华、楼盛赫等译校:《氧气顶吹转炉炼钢》,冶金工业出版社,北京,(上册)1980,(下册)1982。(R.D.Pehlke,ed., BOF Steelmaking,AIME,1974~1977.) 氧气顶吹转炉炼钢 责任编辑:苏方来源:成都钢铁网2008年06月20日 氧气顶吹转炉炼钢(oxygen top blown converter steelmaking) 由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。炉衬用镁砂或白云石等碱性耐火材料制作。所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。 简史空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。炼钢是氧化熔炼过程,空气是自然界氧的主要来源。然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde —Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二次世界大战开始后转到瑞士的冯?罗尔(V.Roll)公司继续进行研究。1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。1948年丢勒尔(R.Durrer)等在冯?罗尔(V onRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。这样就最后完成了转炉吹氧炼钢的实验室试验。从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯?罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。由于钢的质量很好而且炼钢工艺的效率很高,1949年末该公司决定在林茨投资建设世界第一个氧气顶吹转炉工厂。并命名该炼钢法为LD法。林茨的30tLD转炉工厂于1952年11月投产。翌年春季第2个30tLD转炉工厂在奥地利多纳维兹([)onawitz)建成投产。1950年由苏埃斯申请得到专利权。推动炼钢工业再次大变革的氧气顶吹转炉炼钢法登上了历史舞台。该法问世后,数十年内迅速取代了平炉炼钢而成为世界上最主要的炼钢方法。在北美,美国是平炉炼钢大国,有平炉熔池吹氧的经验。美国又是第二次世界大战的最大战胜国,工业基础雄厚。在得知转炉氧气炼钢的信息后,美国麦克劳斯(McLouth)公司和加拿大多法斯柯(DOFASCO)公司于1954年各迅速建成一个35t氧气顶吹转炉车间并投产。随后

浅析转炉炼钢终点控制技术应用

浅析转炉炼钢终点控制技术应用 发表时间:2019-07-25T10:10:30.283Z 来源:《科技新时代》2019年5期作者:盛雄 [导读] 通过生产优质钢材提高炼钢厂的市场竞争力。另外,也要注重做好技术创新,推动终点控制技术不断向智能化、精细化程度发展。曲靖鑫创新材料有限公司炼钢厂 655000 摘要:转炉炼钢是现阶段效率较高、应用广泛的一种炼钢技术。在冶炼过程中,终点控制是决定炼钢效果和冶炼周期的重要因素,加强终点控制也成为转炉炼钢技术应用中重点关注的技术要点。随着转炉炼钢技术的不断成熟,关于终点控制的技术措施也逐渐增多,例如最早使用的人工经验控制,以及近年来兴起的自动控制等。本文首先详细介绍了几种主流的转炉炼钢终点控制技术,随手结合企业实际应用情况,就该技术的未来发展趋势进行了简要分析。 关键词:转炉炼钢;终点控制;拉碳补吹法;自动化 引言:转炉炼钢在实践应用中,由于入炉原料的质量参差不齐,加上炉内高温环境下化学反应的复杂性,决定了终点控制的精确性容易受到影响。从转炉炼钢的工艺流程上来看,终点控制的实质就是对钢水中碳质量分数和温度的控制。我国转炉炼钢技术始于20世纪五六十年代,经过半个多世纪的发展,已经形成了系统化的终点控制技术体系。但是各种技术的基本原理、操作方法、技术成本等分别存在差异,这就需要炼钢厂结合自身情况选择恰当的终点控制技术,在保证钢材生产质量的基础上,也维护炼钢厂自身经济效益。 一、转炉炼钢终点控制的技术类型 1、人工经验控制 在转炉炼钢技术应用之初,人工经验控制是终点控制的主要方法。根据具体形式的不同,又可以细分为两种,其一是拉碳补吹法。依靠技术人员的工作经验,判断碳含量是否达到设计值,达到目标后停止吹氧,达到控制目的。这种终点控制方法适合在一些碳含量较高的钢铁冶炼中使用。其二是直吹增碳法。其优点是一次性完成吹炼,中间不需要多次补吹,这样就极大的提高了冶炼效率,并且所得钢制品中含渣量较低,钢材质量较好。 2、静态控制 静态终点控制模式下,技术人员需要先确定转炉炼钢所需要的各类材料,包括铁水、废钢,以及冶炼过程中吹氧速率等;然后还要确定吹炼钢种的目标。在明确了这些基本要求和完成准备事项后,开始进行冶炼。静态控制相比于上文中提及的人工经验控制,可以按照相关的标准提前进行计算,然后按照计算数据完成终点控制,在很大程度上减少了人工经验控制中存在的精度不准的问题。但是静态控制还存在一些缺陷,例如一旦开始冶炼操作,不能中途更改吹炼过程,终点控制命中率维持在75%-80%左右。 3、动态控制 (1)副枪动态终点控制。在快到达吹炼终点时,将副枪插入到熔池中,获取熔池温度和碳含量的检测值。结合检测结果不断改正静态模型的计算结果,在满足吹炼终点的供氧量和副原料的加入量时,保证转炉冶炼的稳定、合理的终点命中率,借助于计算机操作不断完成转炉冶炼的动态控制目标。副枪控制系统如下图1所示。 4、自动控制 相比于以往的静态或动态控制技术,在自动控制技术中引进了炉渣在线监测和碳化率动态测量等技术,一方面是为技术人员提供了更加直观的数据支持,可以借助于这些先进的工具仪器等,及时开展针对性的调控措施,保证了终点控制的效果,另一方面也能够进一步提高转炉炼钢的自动化程度,降低了炼钢过程中的成本投入。早期自动控制模式下的终点命中率维持在80%-85%之间,与动态控制相比优势并不明显。随着自动控制技术的不断成熟,目前的终点命中率已经能够稳定维持在90%以上,相比于以往的终点控制技术优势明显。二、转炉炼钢终点控制技术的实践应用 某炼钢厂2013年转炉炼钢终点控制双命中率最高可高达84%以上,补吹率9%左右。2015年时使用了静态控制技术,终点碳温双命中率已达到95.23%,当目标w(C)小于0.05%时,控制偏差为±0.01%,当目标w(C)大于0.05%时,控制偏差为±0.015%,吹炼终点温度控制为±12℃,平均补吹率仅为2.8%。到2016年时,已经全面采用了全自动控制炼钢技术,Δw(C)为±0.02%、Δt为±15℃的碳、温双命中率最低可达到90%, 三、转炉炼钢终点控制技术的发展趋势 1、进一步提高自动化控制水平 虽然转炉炼钢中使用了一些机械设备,提高了终点控制的自动化水平,但是在一些操作环节上,还是需要技术人员人工进行操作。例

相关主题
文本预览
相关文档 最新文档