当前位置:文档之家› 转炉炼钢自动化控制

转炉炼钢自动化控制

转炉炼钢自动化控制
转炉炼钢自动化控制

漫谈转炉炼钢自动化控制

中图分类号:tf4

摘要:本文属于综述性文章,主要谈了加强自动化转炉炼钢的

必要性、转炉炼钢的自动化工艺及实行方法,对从宏观上了解自动化转炉炼钢有一定的积极意义。

关键词:工艺流程、自动化技术、rbf神经网络

一、引言

我国属于发展中国家,在很多技术上相对落后,这其中就包括

钢铁行业。而钢铁属于国家战略性资源,对一个国家的发展起着重要的制约作用。我国目前的钢铁企业生产的钢板质量偏低,而成本

耗能还偏高,尤其缺乏高质量,低能耗的的精品钢和特种钢两种类

型的产品。因此,我国的钢铁企业必须尽快加大炼钢技术的改造力度,通过现代化的自动控制技术来提高钢铁企业的生产能力和产品质量,以期尽可能适应日益严峻的国际国内炼钢形势的发展,使得我国钢铁企业在竞争激烈的市场环境下,求得生存和发展。

二、转炉炼钢的自动化工艺流程及技术简介

自动化转炉炼钢主要是先对炼铁厂提供的铁水进行预处理, 然

后再对铁水一定的冶炼加工, 最后形成钢。转炉冶炼铁水成钢, 主要包含了这样一个过程, 首先进行氧化,去除杂质;然后加入一定

的石灰等来制造氧化性的炉渣,在此过程中, 还需要一定的热量来

升温,最后,还要加入脱氧剂和合金料来最终生成钢材料。具体来说,

转炉烟气放散点火安全操作规程

编号:SM-ZD-31743 转炉烟气放散点火安全操 作规程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

转炉烟气放散点火安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 1、煤气点火工必须经煤气安全知识培训,并考试合格后方可上岗。严禁非值班人员进行操作。 2、进入煤气区域工作,必须2人以上,带煤气作业应事先通知工段有关人员和煤气防护站,并佩戴空气呼吸器。 3、接班后,对区域煤气管网及设备设施进行全面检查,确保煤气管网阀门、法兰、仪表接头连接处检查确认无泄漏,固定式报警器工作正常,检查发现隐患应及时整改,对不能处理的问题向工段汇报,并采取临时性安全措施,确保运行安全可靠,并做好相关记录。 4、煤气点火工必须熟悉所属区域煤气管道、设施及设备。煤气管道阀门、设施及设备上须悬挂明显的标识牌、警示牌及看牌,保证各类示牌标识清楚、醒目。 5、对转炉煤气点火装置进行检修及检查人员应于岗位人员联系,岗位人员要及时进行煤气危险告知,并做好安全

转炉炼钢设备

1 概述 1.1氧气顶吹转炉炼钢特点 氧气顶吹转炉炼钢又称 LD 炼钢法,通过近几十年的发展,目前已完全取代了平炉炼钢,其之所以能够迅速发展的原因,主要在于与其它炼钢方法相比,它具有一系列的优越性,较为更突出的几点如下: 1.生产效率高 一座容量为80 吨的氧气顶吹转炉连续生产24 小时,钢产量可达到日产3000 — 4000 吨,而一座 100 吨的平炉一昼夜只能炼钢 300 — 400 吨钢,平均小时产量相差甚远,而且从冶炼周期上看,转炉比平炉、电炉的冶炼周期要短得多。 2.投资少,成本低 建氧气顶吹转炉所需的基本建设的单位投资,比同规模的平炉节约30% 左右,另外投产后的经营管理费用,转炉比平炉要节省,而且随着转炉煤气回收技术的广泛推广和应用,利用转炉余热锅炉产生蒸气及转炉煤气发电,使转炉逐步走向“负能”炼钢。 3.原料适应性强 氧气顶吹转炉对原料情况的要求,与空气转炉相比并不那么严格,可以和平炉、电弧炉一样熔炼各种成分的铁水。 4.冶炼的钢质量好,品种多 氧气顶吹转炉所冶炼的钢种不但包括全部平炉钢,而且还包括相当大的一部分电弧炉钢,其质量与平炉钢基本相同甚至更优,氧气顶吹转炉钢的深冲性能和延展性好,适宜轧制板、管、丝、带等钢材。 1 / 35

5.适于高度机械化和自动化生产 由于冶炼时间短,生产效率高,再加转炉容量不断扩大,为准确控制冶炼过程,保证获得合格钢水成分和出钢温度,必须进行自动控制和检测,实现生产过程自动化。另外,在这种要求下,也只有实现高度机械化和自动化,才能减轻工人的劳动强度,改善劳动条件。 1.2 转炉炼钢机械设备系统 氧气顶吹转炉炼钢法,是将高压纯氧[压力为0.5~1.5MPa ,纯度99.5% 以上,(我厂为99.99% )],借助氧枪从转炉顶部插入炉内向熔池吹氧,将铁水吹炼成钢。氧气顶吹转炉的主要设备有: 1.转炉本体系统: 包括转炉炉体及其支承系统——托圈、耳轴、耳轴轴承和支承座,以及倾动装置,其中倾动装置由电动机、一次减速机,二次减速机、扭矩缓冲平衡装置等组成。 2.氧枪及其升降、氧气装置及配套装置。 氧枪包括枪体、氧气软管及冷却水进出软管。 根据操作工艺要求氧枪必须随时升降,因此需要升降装置,为保证转炉连续生产,必须设有备用枪,即通过换枪装置,随时将备用枪移至工作位置,同时要求备用枪的氧气,进出水管路连接好。 3.散装料系统: 氧气顶吹转炉炼钢使用的原料有: (1)金属料——铁水、废铁、生铁块; (2)脱氧剂——锰铁、硅铁、硅锰、铝等; (3)造渣剂——石灰、萤石、白云石等;

氧气转炉炼钢工艺及设备

教学大纲 一说明 1、教学要求: 本教材根据氧气转炉炼钢生产操作的特点,力求理论联系实际,通俗易懂,使其具有先进性、实用性。 通过本书的学习,使学生掌握氧气转炉炼钢的一些基本知识。 2、教学内容的确定: 根据专业的需求,将全部讲解。 3、教学中应注意的问题: ⑴系统地、全面地、有重点地、难易适中地将本书的内容讲给学生; ⑵学习完每章节后,要通过习题练习、巩固和加强学生所学的内容。进行基础教育的同时,注重培养学生的素质,提高学生独立解决问题的能力; ⑶除了要通过作业了解学生对所学内容的掌握情况外,还要通过考试对学生进行考查与考核。 二教学内容 第一章氧气转炉炼钢用原材料 教学目标:通过本章学习,使学生掌握氧气转炉炼钢用金属材料、非金属材料。教学重点:氧气转炉炼钢用金属材料的性能、造渣材料、氧化剂、冷却剂、增碳剂的性能 教学难点:用金属材料、生产石灰常见的几种石灰煅烧窑 教学内容: 1.1 金属料 1.2非金属料 第二章氧气顶吹转炉炼钢工艺操作 教学目标:通过本章学习,使学生掌握吹炼一炉钢金属成分和炉渣成分的变化规律及吹炼过程的三个阶段、装入制度、供氧制度及主要参数和供 氧操作、氧气流股的运动规律、枪位对吹炼过程的影响、炉渣对炼 钢操作的影响、造渣方法、渣料加入量和加入时间的确定、炉渣的 形成、泡沫渣在炼钢过程中的作用、渣量计算、白云石造渣、转炉

炼钢温度控制及确定、转炉炼钢热量来源、冷却剂的种类及效应和 用量确定、物料平衡、热平衡、终点碳的控制方法和判断及温度判 断、脱氧方法及操作、影响合金吸收率的主要因素、铁合金加入量 计算、吹损与喷溅、操作事故与处理、开新炉前的准备工作及炉衬 烧结过程、烘炉法、出刚挡渣技术、某些钢种生产。熟悉钢与铁的 区别。 教学重点:吹炼一炉钢金属成分和炉渣成分的变化规律及锤炼过程的三个阶段、装入制度、喷嘴的类型和作用、氧气流股的运动规律、枪位对 吹炼过程的影响、供氧制度的主要参数和供氧操作、炉渣对炼钢操 作的影响、造渣方法、渣料加入量和加入时间的确定、成渣过程、 加速石灰熔化的途径、泡沫渣形成的基本因素、吹炼过程中泡沫渣 的控制、渣量计算、白云石造渣的目的、确定白云石的加入量、转 炉炼钢出钢温度的确定及过程温度和终点温度的控制、转炉炼钢热 量来源、冷却剂的种类及效应和用量确定、物料平衡、热平衡、终 点碳的控制方法和判断及温度判断、高拉补吹法、结晶定碳法、耗 氧量和供氧时间作参考、脱氧方法及操作、影响合金吸收率的主要 因素、铁合金加入量计算、吹损及其组成和喷溅及其控制与预防、 事故产生的原因和处理方法、炉衬烧结过程、烘炉法、出刚挡渣的 目的和方法、挡渣球法挡渣操作、碳素钢、16Mn、硬线钢、H08、 硅钢生产 教学难点:金属和炉渣的成分变化规律、喷嘴的类型与作用、流股的运动规律、供氧操作、渣料加入量和加入时间的确定、成渣过程、吹炼过程中 泡沫渣的控制、渣量计算、确定白云石的加入量、出钢温度确定、 过程和终点温度确定、冷却剂用量确定、热平衡和物料平衡计算、 终点碳和温度的判断、脱氧操作、铁合金加入量计算、吹损的组成、 常见事故的处理方法、挡渣球法挡渣操作、碳素钢、16Mn、硬线钢、 H08、硅钢生产 教学内容: 2.1一炉钢的吹炼过程 2.2装入制度 2.3供氧制度 2.4造渣制度 2.5温度制度 2.6终点控制 2.7脱氧合金化

世界氧气顶吹转炉炼钢技术发展史

世界氧气顶吹转炉炼钢技术发展史 氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。炉衬用镁砂或白云石等碱性耐火材料制作。所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。 简史 空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。炼钢是氧化熔炼过程,空气是自然界氧的主要来源。然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde—Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二

次世界大战开始后转到瑞士的冯?罗尔(V.Roll)公司继续进行研究。1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。1948年丢勒尔(R.Durrer)等在冯?罗尔(VonRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。这样就最后完成了转炉吹氧炼钢的实验室试验。从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯?罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。由于钢的质量很好而且炼钢工艺的

2020版转炉炼钢安全操作规程

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版转炉炼钢安全操作规程 Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

2020版转炉炼钢安全操作规程 (1)准备工作 转炉炼钢开炉前的准备工作非常重要,稍有忽视就可能酿成重大人身事故。吹炼时,发现烟罩漏水,应马上停吹,关闭中压水阀门,检修焊接,直至不漏水为止。 检查管道与阀门时,要有监护和检查二人同时进行,严禁吸烟,周围不得有明火,防止漏氧燃烧。在氧气管道周围,不准堆放易燃易爆和油污物。 炉盖上面焊有水箱,转炉倒炉时,钢水不能碰水冷炉口,以免引起事故。冶炼过程中如发现水冷炉口漏水,应立即停吹,派二人检查进水阀门并修复。 (2)冶炼过程的安全 ①兑铁水后吹第一炉钢时,温度要升高,吹炼时间要长,这样

可避免发生塌炉。尽管如此,新开炉子倒渣出钢时,周围人员还应让开,因为这时炉体尚不稳定,烧结不牢固,而炉内气流非常激烈,炉内渣子易喷出炉外,造成炉衬剥落,严重时可能塌炉。 ②装料前应将炉内残钢残渣倒掉。装料时先装废钢和铁矿石,后装适当温度的铁水。加入的废钢原料要仔细清理,不能把带炸药的废武器,盛有水、冰、雪的容器加入炉内。发现废旧炮弹不许乱拆乱动,应及时交有关部门处理。 ③在冶炼过程中,炉长和摇炉工要密切注意火焰的变化,当吹到终点火焰还不下降,周围有烟雾上升时,应提前检查。发现喷枪渗水时,应迅速调换喷枪,如果继续吹炼,喷头大量漏水,会造成严重的爆炸事故。 ④发生喷溅时,火星冲出氮(或蒸汽)封口,可将氧气皮管烧坏,造成设备事故,如果渣子不化而又采取高枪位的不正常操作,造成连续性的剧烈大喷溅,危害更大。还有一种是动炉倒渣大喷溅,爆炸威力大,往往会炸坏摇炉房的仪器设备、灼伤人员。出现这种大喷溅的原因是渣子氧化性过高、氧气截止阀失效,漏氧时间过长等,

炼钢(转炉)安全操作规程

炼钢(转炉)安全操作规程 1、严格执行厂、车间安全规程及各项安全管理制度。进入现场 前必须按规定穿戴各种劳保用品。 2、起动操作各种设备前,首先确认设备必须完好、安全装置齐 全、联锁系统灵敏,不准用潮湿的导电物体操作电气设备。 3、渣罐、钢包内有水潮湿不准使用,严禁向钢包或渣罐内扔潮 湿物品或废旧弃物品。 4、冶炼时严禁进入炉下工作,特殊情况进入时,必须采取可靠 的安全措施。 5、更换钢水车、渣罐车时,必须断电,并做到按规定使用吊具。 6、使用地轮(索引)拉钢水车时,地轮到钢水车钢丝绳三角区 内严禁站人,并指定专人指挥。 7、转炉兑铁、加废钢、拉碳摇炉时,所有人员要站在炉子侧面 安全位置,不准任何人从本炉座前方穿过。 8、不准使用已达报废标准的渣罐。 9、使用吊具时,首先检查吊具必须完好,并做到专属专用,不 准使用钢丝绳吊运红热金属,不准使用中碳钢以上及铸钢做别棍。 10、钢水车、渣罐车、过跨车、合金小车等车辆禁止乘人。

转炉炉长岗位安全操作规程 1、上岗前必须穿戴好劳保用品。 2、严禁封点炼钢。 3、凡有下列情况之一不准冶炼或停止冶炼: a)烟道罩群漏水成流或炉楼下有积水。 b)罩群、氧枪传动钢丝绳、保护绳磨损达到报废标准。 c)氧枪氧气胶管漏气,高压水胶管漏水,枪身漏水或喷头漏水。 d)转炉与氧枪罩群一次风机一文水电气联锁失灵。 e)氧枪孔、加料三角槽口氮封压力低于规定数值。 f)氧气调节阀失灵,氧气切断阀漏气。 g)冷却水或氧气测量系统有故障。 4、炉内有液态渣或强氧化渣时严禁兑铁。 5、拉碳提枪时,必须检查枪头、枪身及炉口无异常,确认无误 后方可指挥摇炉工摇炉,如有异常严禁动炉。 6、拉碳摇炉或因故提枪再次吹炼前,炉长负责喊开炉前人员, 以免发生喷溅伤人。 7、罩群、氧枪传动系统有人工作,不得兑铁。 8、脱氧合金化过程,若有异常,炉长要指挥周围人员躲避到安 全位置。 9、出完钢后炉长要检查炉衬侵蚀情况,防止漏钢冲刷水冷圈

转炉炼钢终点控制技术现状研究

转炉炼钢终点控制技术现状研究 摘要】在炼钢过程中,终点控制技术是一个相对重要的环节,该项工作的效率 会直接影响到转炉炼钢的整体效率。基于此,本文对转炉炼钢中的终点控制技术 进行了具体研究,以期从根本上把握终点的控制技术,充分发挥技术优势,在提 高技术专业化水准的同时,进一步提高转炉炼钢的生产效率,促使炼钢企业朝着 更好的方向发展。 【关键词】转炉炼钢;终点控制;技术应用 实施终点控制技术的作用在于控制炼钢时间,这是一项重要的操作程序,需 要在转炉炼钢后期进行,具体包括动态化控制、静态化控制、人工控制以及自动 化控制等四项技术。每种控制技术都有各自的优势,其所产生的应用效果也存在 差异。在今后的生产过程中,为了能够更好地利用该项技术,相关技术人员要根 据生产实际,并结合以往的实践经验,切实做好技术应用工作,本文就此展开论述。 一、终点控制技术的应用实践 (一)动态化控制技术 1、炉气动态分析终点控制 炉气动态分析终点控制主要是由根据炉口表的成分检测结果,计算钢铁熔池 脱碳的实际速率,该操作在吹炼的后期阶段进行,当确定了钢水的温度和成分后,方可实现转炉炼钢的终点动态化目标。该项技术通过连续性动作来提示钢水的实 际含碳量和温度,同时还能够利用动态化分析对控制系统加以校正,更加直观的 向工作人员展现钢水的 P、S 实际变化状况。就实际操作结果分析,笔者发现终点钢水的碳实际质量分数与其测量的精准度和命中率是成反比的。由此可见,炉气 动态分析终点技术在终点碳温的命中几率提升方面具有积极意义。 2、副枪动态分析终点控制 技术人员要在即将到达吹炼终点期时,将副枪插入熔池内,从而获取池内的 碳实际含量和相应的温度检测数值。根据最终检测结果,技术人员要对静态模型 进行客观分析,最终计算结果,并给予更正处理。此外,吹炼的终点需要加入足 量的副原料,当供氧量足够时,技术人员必须严格控制终点命中率,以此来保证 转炉冶炼的稳定性。在计算机技术的辅助作用下,得以实现高水平、高质量的转 炉冶炼动态化的控制目标。当钢中碳的质量分数较低时,技术人员要用结晶的定 碳技术去分析该项数据,获取到最精确的实时测量数据;而当该项数值处于较高 的分数时,技术人员是无法保证测量精准度的。因此副枪动态分析终点控制技术 多用于低、中型的碳钢生产企业。 (二)静态化控制技术 静态化控制技术的实际应用较为严格,需要技术人员把握好原材料的基础条 件和吹炼的钢种目标等因素,通过对各种材料的精准化分析,最终确定供氧量标准,其后方可进行下一步的操作。静态化控制技术对于吹炼操作期间的更改难度 提出了更高的要求,其终点命中率通常会受到多种客观因素的影响,因此在该项 技术的实际应用期间,技术人员需要结合以往的实践经验,牢牢控制终点控制标准,该种技术应用环境下的终点碳温实际命中几率大约为 80%。 (三)自动化控制技术 炉渣在线式检测专项技术是自动化控制技术中的典型,通过技术应用能够对 炉渣实际状态进行实时化的监控和探测,且在吹炼操作期间,该项技术还能够合

炼钢厂氧气转炉安全管理措施

炼钢厂氧气转炉安全管理措施 1设备与相关设施 1.1150t以下的转炉,最大出钢量应不超过公称容量的120%;200t以上的转炉,按定量法操作。 1.2转炉的炉容比应合理。 1.3转炉氧枪与副枪升降装置,应配备钢绳张力测定、钢绳断裂防坠、事故驱动等安全装置;各枪位停靠点,应与转炉倾动、氧气开闭、冷却水流量和温度等联锁;当氧气压力小于规定值、冷却水流量低于规定值、出水温度超过规定值、进出水流量差大于规定值时,氧枪应自动升起,停止吹氧。转炉氧枪供水,应设置电动或气动快速切断阀。 1.4氧气阀门站至氧枪软管接头的氧气管,应采用不锈钢管,并应在软管接头前设置长1.5m以上的钢管。氧气软管应采用不锈钢体,氧枪软管接头应有防脱落装置。 1.5转炉宜采用铸铁盘管水冷炉口;若采用钢板焊接水箱形式的水冷炉口,应加强经常性检查,以防止焊缝漏水酿成爆炸事故。 1.6转炉传动机构应有足够的强度,应能承受正常操作最大合成力矩;不大于150t的转炉,按全正力矩设计,靠自重回复零位;150t以上的转炉,可采用正负力矩,但必须确保两路供电;若采用直流电机,可考虑设置备用蓄电池组,以便断电时强制低速复位。 1.7从转炉工作平台至上层平台之间,应设置转炉围护结构。炉前后应设活动挡火门,以保护操作人员安全。 1.8烟道上的氧枪孔与加料口,应设可靠的氮封。转炉炉子跨炉口以上的各层平台,宜设煤气检测与报警装置;上述各层平台,人员不应长时间停留,以防煤气中毒;确需长时间停留,应与有关方面协调,并采取可靠的安全措施。 1.9采用“未燃法”或“半燃法”烟气净化系统设计的转炉,应符合GB6222的规定;转炉煤气回收系统的设备、风机房、煤气柜以及可能泄漏煤气的其他设备,应位于车间常年最小频率风向的上风侧。转炉煤气回收时,风机房属乙类生产厂房、二级危险场所,其设计应采取防火、防爆措施,配备消防设备、火警信号、通讯及通风设施;风机房正常通风换气每小时应不少于7次,事故通风换气每小时应不少于20次。 1.10转炉煤气回收,应设一氧化碳和氧含量连续测定和自动控制系统;回收煤气的氧含量不应超过2%;煤气的回收与放散,应采用自动切换阀,若煤气不能回收而向大气排放,烟囱上部应设点火装置。 1.11转炉煤气回收系统,应合理设置泄爆、放散、吹扫等设施。 1.12转炉余热锅与汽化冷却装置的设计、安装、运行和维护,应遵守国家有关锅炉压力容器的规定。 2生产操作 2.1炉前、炉后平台不应堆放障碍物。转炉炉帽、炉壳、溜渣板和炉下挡渣板、基础墙上的粘渣,应经常清理,确保其厚度不超过0.1m。 2.2废钢配料,应防止带入爆炸物、有毒物或密闭容器。废钢料高不应超过料槽上口。转炉留渣操作时,应采取措施防止喷渣。 2.3兑铁水用的起重机,吊运重罐铁水之前应验证制动器是否可靠;不应在兑铁水作业开始之前先挂上倾翻铁水罐的小钩;兑铁水时炉口不应上倾,人员应处于安全位置,以防铁水罐脱钩伤人。 2.4新炉、停炉进行维修后开炉及停吹8h后的转炉,开始生产前均应按新炉开炉的要求进行准备;应认真检验各系统设备与联锁装置、仪表、介质参数是否符合工作要求,出现异常应及时处理。若需烘炉,应严格执行烘炉操作规程。 2.5炉下钢水罐车及渣车轨道区域(包括漏钢坑),不应有水和堆积物。转炉生产期间需

氧气底吹转炉炼铅法

金属硫化物精矿不经焙烧或烧结焙烧直接生产出金属的熔炼方法称为直接熔炼。 对硫化铅精矿来说,这种粒度仅为几十微米的浮选精矿因其微粒小,比表面积大,化学反映和熔化过程都有可能很快进行,充分利用硫化矿粒子的化学活性和氧化热,采用高效、节能、少污染的直接熔炼流程处理是合理的。传统的烧结—鼓风炉流程将氧化——还原两过程分别在两台设备中进行,存在许多难以克服的弊端。随着能源、环境污染控制以及生产效率和生产成本对冶炼过程的要求越来越严格,传统炼铅法受到多方面的严峻挑战。具体说来,传统法有如下主要缺点: (1)随着选矿技术的进步,铅精矿品位一般可以达到60%,这样精矿给正常烧结带来许多困难,导致大量的熔剂、反粉或还有炉渣的加入,将烧结炉料的含量降至40%~50%。送往熔炼的是低品位的烧结块,致使每生产1t多炉渣,设备生产能力大大降低。 (2)1t PbS精矿氧化并造渣可放出2x106kJ以上的热量,这种能量在烧结作业中几乎完全损失掉,而在鼓风炉熔炼过程中又要另外消耗大量昂贵的冶金焦。 (3)铅精矿一般含硫15%~20%,处理1t精铅矿可生产0.5t硫酸,但烧结焙烧脱硫率只有70%左右,故硫的回收率往往低于70%,还有30%左右,还有30%左右的硫进入鼓风炉烟气,回收很困难,容易给环境造成污染。 (4)流程长,尤其是烧结及其返粉制备系统,含铅物料运转量大,粉尘多,大量散发的铅蒸汽、铅粉尘严重恶化了车间劳动卫生条件,容易造成劳动者铅中毒。 近30年来,冶金工作者力图通过PbS受控氧化即按反映式PbS+O 2=Pb+SO 2 的途径来实现硫化铅精矿的直接熔炼,以简化生厂流程,降低生产成本,利用氧化反应的热能以降低能耗,产出高浓度的SO 2 烟气用于制硫,减小对环境污染。但由于直接熔炼产生大量铅蒸汽、铅粉尘,且熔炼产物不是粗铅含硫高就是炉渣含铅高,致使许多直接熔炼方法都不很成功。 冶金工作者通过Pb-S—O系化学势图的研究,找到了获得成分稳定的金属铅的操作条件,但也明确指出,直接熔炼要么产出高硫铅,要么形成高铅渣;要

炼钢厂转炉车间各岗位安全操作规程标准范本

操作规程编号:LX-FS-A35689 炼钢厂转炉车间各岗位安全操作规 程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

炼钢厂转炉车间各岗位安全操作规 程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 通则 1.凡进入岗位的人员必须经过四级安全教育,考试合格后方能上岗。劳保用品穿戴齐全。班前、班中不许饮酒,班中不许打架、看书报、睡觉、脱岗、串岗、干私活,要精力集中,安全操作。 2.工作前要检查工具、机具、吊具,确保一切用具安全可靠。 3.各岗位操作人员,对本岗操作的按扭在确认正确后,方可操作。 4.严格执行“指挥天车手势规定”,并配用口哨

指挥,注意自身保护。 5.任何人不得在天车吊运的重物下站立、通过或工作。 6.挂物必须牢固,确认超过地面或设备等一定安全距离之后,方可指挥运行。 7.吊铁水包、废钢斗,必须检查两侧耳轴,确认挂好后,方能指挥运行。 8.在放铁水包时,地面一定要平坦,确认包腿是否完好,确认放好后,才能指挥脱钩走车。 9.严禁在废钢斗外部悬挂废钢等杂物。外挂物清理好后方可起吊、运行。 10.铁水包、钢水包的金属液面要低于包沿 300mm。 11.在高氧气含量区域不得抽烟或携带火种;在煤气区域人员不得停留穿行;必须在高氧气含量区域

转炉炼钢连铸精益生产实践

转炉炼钢连铸精益生产实践 随着炼钢工艺技术及信息化、智能化的不断发展,炼钢-连铸过程工艺流、时间流、物质流的系统协同优化,已成为炼钢企业生产过程管控的重点研究方向。为此,莱钢炼钢厂根据自身工艺装备水平和产品特点,围绕生产组织、质量控制、成本管控、设备点检、安全管理进行系统优化创新和管理升级,形成五位一体”的协同生产管控模式,并 通过实施各工序关键工艺精准控制,实现了优质、高效、低耗的精益冶炼模式,在产品质量、关键指标、成本控制等方面,取得了良好效果,精益生产水平不断提高。 1工艺装备 莱钢炼钢厂现有2座1880m3高炉、1座3200m3高炉,3座120t转炉、1座150t转炉,以及大H型钢生产线、1500mm热轧宽带生产线和4300mm宽厚板生产线,年产钢500万吨。炼钢工序主要工艺装备情况如表1所示。 炼钢厂主要工艺袈裔 主要生产品种包括:普通碳素结构钢、低合金高强度结构钢、优质碳素结构钢、船板钢、汽车大梁钢、耐磨钢、管线钢、压力容器钢等。 2工艺流程 莱钢炼钢厂冶炼钢种多,对应的产品规格与性能要求又存在较大差异,由图1可见, 现场工艺装备复杂,在生产组织过程中各工序间交叉作业频繁,行车作业率高,故工艺选择较为复杂,生产组织协同性差,造成生产成本高、能耗高,质量控制不稳定。

圈1嫌钢连铸生产流祁 3炼钢-连铸过程协同优化研究 针对炼钢-连铸生产过程控制,围绕生产组织、质量控制、成本管控、设备点检、安全管理进行系统优化创新和管理升级,形成五位一体”的协同生产管控模式,在产品 质量、关键指标、成本控制等方面取得了良好效果,精益生产水平不断提高。 3.1以生产时刻表”为主线,建立精益生产组织模型 按照不同钢种的工艺流程、各工序标准工艺时间以及炼钢-连铸协同配置要求,建 立专线化生产、生产时刻表和调度组织模型,实现了均衡、稳定、高效、低耗的精益生产组织模式。 1)炼钢生产时刻表运行系统 以炼钢、精炼、连铸各工序标准时间序为基准,建立像火车时刻表”一样的生产 时刻表”实现了生产过程的动态、精准控制。 2)专线化生产组织模型 根据合同订单计划,依托炼钢MES系统,运用当量周期、炉机匹配度等分析评价指标,对转炉、精炼及连铸产能、节奏、生产组织模式进行系统分析研究,建立专线化生产组织模型。 3.2以参数群控制为核心,建立质量识别系统 依托一级、二级控制系统,建立健全全流程工艺参数自动采集系统,对生产过程工艺参数进行自动采集识别。根据各工序工艺控制特点,制定各工序关键控制点控制标准及不合项扣分标准,根据每炉钢实际参数控制情况,对每炉铸坯质量进行综合打分判定。 通过建立从铁水到铸坯的全流程关键工艺参数标准模型,过程工艺参数自动采集,对工艺参数实时

氧气底吹转炉炼钢

通过转炉底部的氧气喷嘴,把氧气吹入炉内熔池进行炼钢的方法。 简史?? 氧气底吹转炉始于改造托马斯转炉(见托马斯法)。西欧富有高磷铁矿资源,用它炼出的生铁含磷高达1.6%~2.0%。以这种高磷铁水为原料的传统炼钢方法即托马斯法,也即碱性空气底吹转炉法,其副产品钢渣可作磷肥。对于高磷铁水,托马斯法过去一直是综合技术经济指标较好的一种炼钢方法。直至20世纪60年代,西欧还存在年产能力约1000万t钢的托马斯炉。但作为炼钢氧化剂的空气,其中氧气仅占1/5,其余4/5的氮气不仅吸收大量热量,并使钢中氮含量增加,引起低碳钢的脆性。为此人们一直试图用纯氧代替空气,以改进钢的质量和提高热效率。但采用氧气后,化学反应区的温度很高,底吹所用氧气喷嘴很快被烧坏。1965年加拿大空气液化公司为了抑制氧气炼钢产生的大量污染环境的褐色烟尘,试验在氧枪外层通气态或液态冷却剂,取得了预期效果,并同时解决了氧枪烧损快的问题。1967年联邦德国马克西米利安冶金厂(Maximilianshttte)引进了这项技术,以丙烷为氧喷嘴冷却剂,用于改造容量为24t的托马斯炉,首先试验成功氧气底吹转炉炼钢,取名OBM 法。1970年法国文代尔一西代尔公司(Wendel—Sidelor?? Co.)的隆巴(Rombas)厂以燃料油为氧喷嘴冷却剂,也成功地将24t托马斯炉改造成氧气底吹转炉,称为LWS法。随后用氧气底吹氧枪改造的托马斯炉在西欧得到迅速推广,炉容量大多为25~70t,用于高磷铁水炼钢,脱磷仍在后吹期完成,副产品钢渣作磷肥。1971年美国钢铁公司(U.S.Steel? Corp.)引进COBM法,为了解决经济有效地吹炼低磷生铁和设备大型化问题,在该公司炼钢实验室的30t试验炉上作了系列的中间试验,增加了底部吹氧同时喷吹石灰粉的系统,吹炼低磷普通铁水可在脱碳同时完成脱磷,称为Q—BOP法。随后,在菲尔菲德(Fairfield)厂和盖里(Gary)厂分别建设了两座200tQ—BOP炉和3座235tQ—BOP炉。前者取代原有平炉,后者取代正在建设的氧气顶吹转炉。从而实现了氧气底吹转炉的大型化,并扩大了应用范围。到20世纪70年代末氧气底吹转炉年产钢能力总计约3500万t。在中国,1973年钢铁研究总院在300kg 氧气底吹试验转炉上进行了底吹氧气和石灰粉的炼钢试验。随后,该院与北京钢铁设计研究总院及有关单位合作,在唐山钢厂、首都钢铁公司、济南第二钢厂及马鞍山钢铁公司先后完成了5t氧气底吹转炉炼钢的工业性试验。同时还进行了铁水提铌、提钒的试验。后由于顶底复吹转炉的出现和发展而停止。 工艺特点?? 氧气底吹转炉所用炉衬耐火材料、原材料及基本工艺和氧气顶吹转炉相同或相似。主要金属炉料是铁水和约10%~25%的废钢。供氧压力约为0.6~1.0MPa(6~10atm)。每炉吹炼时间(吹氧时间)一般为15~20min。每炉冶炼周期(本炉出钢到下炉出钢时间)一般为30~40min。氧耗量为50~60m3/t。主要工艺特点是从转炉底部供氧。(见图1)装有氧喷嘴的转炉炉底可以拆卸、更换。氧喷嘴由同心的双层套管组成。内层为铜管或不锈钢无缝管,外层用碳素钢无缝管。内层通氧气,并可同时喷吹石灰粉。两层套管之间的间隙通冷却剂。冷却剂通常为气态或液态的碳氢化合物,如天然气、丙烷或燃料油等。依靠碳氢化合物裂解吸热,并在氧流周围形成保护气膜,以及高速气流带走热量,以降低氧喷嘴及其附近反应区的温度,达到保护氧气喷嘴、减缓烧损的目的。为了使熔池搅拌均匀,反应界面大,吹炼平稳,并避免氧喷嘴个数少、直径过大、氧流比较集中而导致氧气穿透熔池,因此采用多支氧喷嘴,分散供氧。每支氧喷嘴的内径尺寸不超过熔池深度的1/35。这个数据适用于吹氧压力约为0.5~1MPa的中、小型转炉。例如:容量为30t的转炉,熔池平均深度为700mm,据此每支氧喷嘴最大内径为20mm;氧气压力为0.8MPa;氧气含石灰粉为1~2kg/m3,则氧气流量约为130m3/h?cm2;耗氧量为60m3/t;吹炼时间最多为20min。因此可以算出:需要供氧流量为5400m3/h,所需氧喷嘴内管总横截面约为42cm2,所需氧喷嘴数为14个。大型氧气底吹转炉的氧喷嘴直径与熔池深度之比可以大于上述数据,一般不超过熔池深度的1/15。例如200~240t氧气底吹转炉所用氧喷嘴数可采用10~16个。氧喷嘴之间以及氧喷嘴与炉壁之间要有适当间距,使熔池搅拌均匀和反应平稳,并减轻对炉衬耐火材料的侵蚀。氧喷

转炉炉长安全操作规程示范文本

转炉炉长安全操作规程示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

转炉炉长安全操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、熟知炉前所有工种的安全操作规程,上岗前穿戴好劳 动保护用品. 2、接班后详细检查所有设备的安全运行情况.特别是氧 气、氮气、高压水及各部冷却水,有问题立即通知有关人员 检查修理. 3、新开炉、补炉第一炉倒渣和出钢时,炉口正面一律不 准站人或行走,炉前指挥要果断.必须待炉子停稳后,炉内反应 平稳方可取样、测温. 4、当班炉长要经常检查托圈,防止发生重大事故. 5、每炉钢水出完溅渣后,必须将炉内残渣倒净,严禁在 无安全措施的情况下留渣操作. 6、转炉炉龄进入补炉期后,应经常检查炉衬损坏状况,

防止漏炉事故的发生. 7、吹炼过程必须严格执行工艺规程,严禁低于 0.65MPa炼钢或擅自调大氧压,吹炼过程发现不正常火焰、烟气和声音,应马上采取措施提枪、停氧,通知相关人员处理. 8、样勺拨渣必须用干木板,渣子粘稠时严禁用力过大,不准对人,以免烫伤. 9、煤气区严禁逗留,炉前以上平台必须两人携报警仪. 10、设备漏水,炉坑积水,严禁炼钢,炉内有水严禁动炉,待水分蒸发完后方可缓慢向后动炉,确认炉内无积水时应由炉长、厂安全员及当班调度三方共同进行并采取措施. 11、检修设备时严禁在操作台附近休息,挡火门道轨必须保持畅通,严禁积渣以防掉道,严禁顶、撞.以防损坏挡火门及电缆等设备. 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

氧气顶吹转炉炼钢

R.D.佩尔克等著,邵象华、楼盛赫等译校:《氧气顶吹转炉炼钢》,冶金工业出版社,北京,(上册)1980,(下册)1982。(R.D.Pehlke,ed., BOF Steelmaking,AIME,1974~1977.) 氧气顶吹转炉炼钢 责任编辑:苏方来源:成都钢铁网2008年06月20日 氧气顶吹转炉炼钢(oxygen top blown converter steelmaking) 由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。炉衬用镁砂或白云石等碱性耐火材料制作。所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。 简史空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。炼钢是氧化熔炼过程,空气是自然界氧的主要来源。然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde —Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二次世界大战开始后转到瑞士的冯?罗尔(V.Roll)公司继续进行研究。1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。1948年丢勒尔(R.Durrer)等在冯?罗尔(V onRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。这样就最后完成了转炉吹氧炼钢的实验室试验。从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯?罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。由于钢的质量很好而且炼钢工艺的效率很高,1949年末该公司决定在林茨投资建设世界第一个氧气顶吹转炉工厂。并命名该炼钢法为LD法。林茨的30tLD转炉工厂于1952年11月投产。翌年春季第2个30tLD转炉工厂在奥地利多纳维兹([)onawitz)建成投产。1950年由苏埃斯申请得到专利权。推动炼钢工业再次大变革的氧气顶吹转炉炼钢法登上了历史舞台。该法问世后,数十年内迅速取代了平炉炼钢而成为世界上最主要的炼钢方法。在北美,美国是平炉炼钢大国,有平炉熔池吹氧的经验。美国又是第二次世界大战的最大战胜国,工业基础雄厚。在得知转炉氧气炼钢的信息后,美国麦克劳斯(McLouth)公司和加拿大多法斯柯(DOFASCO)公司于1954年各迅速建成一个35t氧气顶吹转炉车间并投产。随后

浅论底吹氧枪

浅论底吹氧枪 高长春袁培新陈汉荣 摘要:本文较系统的论述有色金属氧气底吹熔炼氧枪基本原理,介绍氧枪设计计算方法,提出延长氧枪使用寿命的技术措施。 关键词:氧气底吹熔炼,氧枪结构、材质、气力学参数,氧枪蚀损机理。 有色金属氧气底吹熔炼在国内外已有二十多年历史。近几年国内氧气底吹炼铅工艺发展迅速,预计到2010年用该工艺生产粗铅将超过100万吨/年,占全国总产量的40%;氧气底吹炼铜工艺也在起步,发展前景看好。氧枪是氧气底吹熔炼工艺中的核心技术,这种技术已比较成熟,但氧枪使用寿命仍然是关键问题。本文围绕延长氧枪使用寿命问题,就氧枪基本原理,主要技术参数计算方法等方面作粗浅分析论述,以期起到抛砖引玉的作用。 1、氧枪和底吹熔池运动 氧气底吹熔炼熔池的运动是喷入氧气和其他气体的结果。气体射流由喷嘴喷出后,沿射流的纵轴向熔池面伸展,这时射流四周的熔池沿射流束的径向流来。射流束的流速愈大,熔池流向射流束的速度亦愈大。射流带动熔池向上运动,熔池衰减射流的能量,减缓射流的运动,互相运动的同时发生物理化学反应,射流则逐渐扩大。但主射流仍保持着“气柱”或“气舌”的形状,直到达到一定高度后,方在主射流的顶部发生气—液交混,而形成气泡带向熔池面伸展。气体到达熔池面时便逸出,熔池则再向下流动形成回流,形成熔池熔液不断循环流动。这个不断循环流动的过程,便是氧气和其他气体不断地把能量传送给熔池的过程;这个不断循环流动的过程,造成底吹熔炼有别于顶吹或侧吹熔炼过程的反应特性和流动特性,使熔池得到充分搅拌,具有更为优越的传质、传热功能,喷入氧气得到极高的利用率。水力学模型实验和底吹熔炼生产实践发现,喷咀喷出气体的压力和喷枪结构选择不当,会出现严重的“气泡后座”现象、严重的喷溅现象、严重的熔池振荡现象,甚至气流射穿熔池。 底吹气体传送给熔池的能量,有气体的动量、冲量、功能和膨胀功。动量、

安全管理炼钢安全规程

炼钢安全规程自2005-3-1 起执行 AQ2001—2004 目次 前言 1范围 2规范性引用文件 3术语和定义 4安全管理 5厂(车间)位置的选择与布置 5.1厂(车间)位置的选择 5.2厂(车间)的布置 6厂房及其内部建、构筑物 6.1厂房 6.2建、构筑物 7原材料 7.1散状材料 7.2废钢 7.3铁水贮运和预处理设施 8炼钢相关设备 8.1铁水罐、钢水罐、中间罐、渣罐 8.2铁水罐、钢水罐、中间罐烘烤器及其他烧嘴 8.3地面车辆 8.4起重设备 8.5外部运输设备 8.6其他设备 9氧气转炉 9.1设备与相关设施 9.2生产操作 10电炉 10.1设备与相关设施 10.2生产操作 11炉外精炼 11.1设备与相关设施 11.2生产操作 12钢水烧注 12.1钢包准备 12.2模铸 12.3连铸 12.4钢锭(坯)处理 13动力供应与管线 13.1供电与电气设备 13.2动力管线

13.3给排水 13.4氧气 13.5乙炔 13.6燃油管道及煤气管道 14炉渣 15修炉 15.1拆炉 15.2修炉作业施工区要求 15.3转炉修炉 15.4电炉修炉 15.5其他 前言 本标准是依据国家有关法律法规的要求,在充分考虑炼钢生产工艺的特点(除存在通常的机械、电气、运输、起重等方面的危险因素外,还存在易燃易爆和有毒有害气体、高温热源、金属液体、炉渣、尘毒、放射源等方面的危险和有害因素)的基础上编制而成。 本标准对炼钢安全和平问题做出了规定。 本标准由国家安全生产监督管理局提出并归口。 本标准起草单位:武汉安全环保研究院、北京钢铁设计研究总院、首钢总公司。 本标准主要起草人:张喆君、李晓飞、宋华德、万成略、张六零、陈克欣、王红汉、冯伟、刘洪军、聂岸、周豪、邵建荣。 炼钢安全规程 1范围 本标准规定了炼钢安全生产的技术要求, 本标准适用于炼钢厂的设计、设备制造、施工安装、生产和设备检修。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB4053.1固定式钢直梯安全技术条件 GB4053.2固定式钢斜梯安全技术条件 GB4053.3固定式工业防护栏杆安全技术条件 GB4053.4固定式工业钢平台 GB4387工业企业厂内铁路、道路运输安全规程 GB4792放射卫生防护基本标准 GB5082起重吊运指挥信号 GB5786道路交通标志和标线 GB6067起重机械安全规程 GB6222工业企业煤气安全规程 GB6389工业企业铁路道口安全标准 GB6722爆破安全规程 GB7321工业管路的基本识别色和识别符号

相关主题
文本预览
相关文档 最新文档