液体混合装置PLC控制系统讲解学习
- 格式:doc
- 大小:10.16 MB
- 文档页数:49
液体混合PLC控制系统设计液体混合是一种广泛应用的工业制程。
为了实现可靠和高效的控制,现代工业中常常采用PLC(可编程逻辑控制器)控制系统。
本文将介绍PLC控制液体混合的系统设计。
一、系统功能需求液体混合的系统功能需求通常包括:液体流量计量、液体掺杂比例控制、液体混合搅拌等。
在系统设计过程中,应考虑该制程的特殊性需求,例如液体成分、流速以及搅拌程度等。
二、PLC选择PLC控制系统是液体混合制程中最常用的自动化控制器,因为它拥有很高的控制精度和可靠性。
在选择PLC时,应考虑其I/O点数、处理器性能、扩展性、通信口数量和支持的编程软件等因素。
三、系统功能模块1.流量计量模块。
通常采用电磁流量计或者重力流量计,用于测量液体的质量流量,与PLC通讯以获取液体流量数据。
2.比例控制模块。
通常采用调节阀或者脉宽调制控制方式,用于控制液体的掺杂比例,比例控制事件可根据PLC内存程序进行设定。
3.搅拌控制模块。
通常采用调速电机,用于控制搅拌桨的转速,PLC控制搅拌桨的转速等参数。
四、编程设计针对系统功能模块,需要进行编程设计。
PLC编程可以采用多种编程方式,如Ladder Diagram(LD)、Function Block Diagram(FBD)、Structured Text(ST)、Instruction List(IL)等。
其中Ladder Diagram是最常使用的一种方式,是一种类似于电路图的编程格式。
在设计过程中需要定时存储数据,数据库可以自行搭建或者直接采用PLC内部的存储器。
五、系统控制策略在液体混合制程中,系统的控制策略应尽量保证其稳定性和精准度。
系统控制策略通常包括以下几种方式:1.滞后控制。
在处理液体混合制程时,只有等到液体流动到特定位置时才开始进行搅拌操作,这使得混合不是非常均匀。
2.脉冲控制。
通过控制调节阀或者脉宽调制的方式,设置掺杂比例,可以较精确的控制液体混合。
3.前馈控制。
在搅拌过程中,通过加入一定的预测信息来实现搅拌效果的改善。
两种液体的混合装置PLC控制系统设计设有两种液体A和B在容器按照一定比例进行混合搅拌,装置结构如图10-1所示。
其中SL1、SL2、SL3为液面传感器,当液面淹没时分别输出信号。
YV1、YV2、YV3为电磁阀,M为搅拌用电动机。
图10-1 两种液体混合装置示意图1.控制要求(1)初始状态此时各阀门关闭,容器是空的。
YV1=YV2=YV3=OFFSL1=SL2=SL3=OFFM=OFF(2)启动操作合上起动开关,开始下列操作:①YVl=ON,液体A流入容器,当液面到达SL3时,YV1=OFF, YV2=ON;②液体B流入,液面达到SL1时,YV2=OFF,M=ON,开始搅拌(设时间为16 s)。
在搅拌期间,为了搅拌的均匀,缩短搅拌时间,要求:正、反转搅拌;③混合液体搅拌均匀后,M=OFF,YV3=ON,放出混合液体。
④当液体下降到SL2时,SL2从ON变为OFF,再过20 s后容器放空,关闭YV3。
(YV3=OFF)完成一个操作周期;⑤只要没断开开关,则自动进入下一操作周期。
(3)停止操作当断开起停开关,待当前混合操作周期结束后,才停止操作,使系统停止于初始状态。
(4)拖动情况搅拌机由一台三相异步电动机拖动,要求电动机可正、反转,直接起动,自由停机。
2.设计要求(1)完成控制要求中的控制过程。
(2)搅拌液体时,要求:正、反搅拌交替进行。
(3)在发生突发事件后(如突然停电)整个控制系统能继续突发事件前工作状态工作,也能通过手动使系统回到原始(循环工作前)状态。
(4)作出I/O分配表、PLC的I/O接线图。
设计流程图、梯形图、指令表、调试操作板布置图。
(5)编制设计使用说明书。
3.设计过程(1) I/O分配表(见表10 -1)在了解了系统工艺要求和控制要求后,首先要做I/O分配,把已知的输入信号和输出信号分配给PLC的指定I/O端子。
表10-1 I/O分配表(2) PLC的I/O接线图(见图10 -2)图10-2 PLC的I/O接线图(3)设计梯形图程序根据控制要求,选择用顺序控制设计两种液体混合装置的系统控制,其步骤如下:①A液体流入(对应的Y11=ON),当SL3液面中位传感器动作(X3=ON),使KV1停止工作( Y11=OFF)。
目录1实训目的 (1)2实训内容 (1)3实训设备 (1)4实训原理 (1)4.1控制过程 (1)4.2实训顺序功能图 (2)4.3 I/O分配表 (2)4.4实训PLC外部接线图 (3)4.5实训梯形图 (3)4.6实训程序图 (5)5系统调试 (6)5.1硬件调试 (6)5.2软件调试 (7)5.3MGCS软件组态过程 (7)5.3.1设计画面流程 (7)5.4连接PLC设备 (9)5.5报警设置 (12)6 实训总结 (14)液体混合搅拌机的PLC控制系统1实训目的通过本次学习,培养学生独立思考动手的能力;同学之间团队合作的能力;通过一个搅拌机控制系统的组态过程,学会如何应用MCGS组态软件与PLC完成一个工程。
2实训内容应用MCGS组态软件建立一个比较简单的搅拌机控制系统的动态画面。
通过实训我们已经绘制过水位控制动画图形,我们将利用MCGS软件中提供的各种动画属性,使图形动起来并与 PLC程序连接起来。
3实训设备装有通用版MCGS组态软件6.2版的电脑一台,西门子S7—200(CPU226)系列一台,稿纸,笔等相关工具。
4实训原理4.1控制过程(1)按下启动按钮I0.0,电磁阀A打开,开始注入液体A,对应灯亮;按下按钮I0.2,表示到达中液位电磁阀B打开,开始注入液体B,对应灯亮;(2)按下按钮I0.1,表示到达高液位,搅拌机打开,开始搅拌,对应灯亮;(3)按下按钮I0.3,表示到达低液位,电磁阀C打开,开始放出液体,对应灯亮,一定时间后进行循环。
4.2实训顺序功能图图4-1顺序功能图4.3 I/O分配表4.4实训PLC 外部接线图图4-2 PLC 外部接线图4.5实训梯形图根据控制原理图,以指示灯代替阀门打开液体搅拌器的操作过程如下:SBMLI0.3Q0.4Q0.3 Q0.2Q 0.0Q0.1 启动按钮Q0.5 S7—200(CPU226)Q0.6L1 L2 L3 L4 L5 L6 L7I H L+ — DC24DC24AC220VST停止按钮 I0.44.6实训程序图5系统调试5.1硬件调试(1)开启电源:打开实验台电源,编程器与PLC连接(2)输入程序:通过计算机梯形图正确输入PLC中。
液体混合装置控制plc实验报告液体混合装置控制PLC实验报告一、实验目的本实验旨在通过液体混合装置控制PLC实验,学习PLC控制系统的基本原理和应用,了解液体混合装置的工作原理及其控制方法,并能够独立完成液体混合装置的PLC程序设计和调试。
二、实验原理1. 液体混合装置的工作原理液体混合装置是一种常见的工业设备,它主要由搅拌器、进料管道、出料管道、计量泵等组成。
在工作时,将需要混合的物质分别加入到不同的容器中,通过计量泵将各个容器中的物质按照一定比例送入搅拌器中进行混合。
最终得到所需的混合物。
2. PLC控制系统的基本原理PLC是可编程逻辑控制器(Programmable Logic Controller)的简称,它是一种广泛应用于工业自动化领域中数字电子计算机系统。
PLC 可以根据用户需求编写程序,在特定条件下对各种设备进行精确控制。
其具有高可靠性、高稳定性和强抗干扰能力等特点。
三、实验器材1. 液体混合装置2. PLC控制器3. 计量泵4. 电缆及连接器5. 电源四、实验步骤1. 连接液体混合装置和PLC控制器,按照电路图连接计量泵和电源。
2. 打开PLC编程软件,编写液体混合装置的PLC程序。
3. 将编写好的PLC程序下载到PLC控制器中。
4. 启动液体混合装置,观察其工作状态,检查是否正常运行。
5. 调整计量泵的流量,验证液体混合比例是否正确。
五、实验结果分析在本次实验中,成功地应用了PLC控制系统对液体混合装置进行了精确控制。
通过调整计量泵的流量,得到了所需的混合物,并验证了其比例正确。
六、实验总结本次实验通过液体混合装置控制PLC实验的设计与操作,使学生们更加深入地理解了PLC系统的基本原理和应用,并且能够独立完成液体混合装置的PLC程序设计和调试。
同时也让学生们更加熟悉工业自动化领域中的数字电子计算机系统,为今后的工作和学习打下坚实的基础。
plc课程设计混合液体一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理和功能,掌握其在混合液体控制系统中的应用。
2. 学生能描述混合液体控制系统的工艺流程,了解各种传感器的工作原理及其在系统中的作用。
3. 学生掌握相关编程语言,能够编写简单的PLC程序,实现混合液体比例控制。
技能目标:1. 学生能够运用所学知识,分析混合液体控制系统的需求,设计并搭建简单的PLC控制系统。
2. 学生能够独立编写和调试PLC程序,实现混合液体的比例控制,具备实际操作能力。
3. 学生能够通过团队协作,解决混合液体控制过程中遇到的问题,提高沟通与协作能力。
情感态度价值观目标:1. 学生对PLC技术产生兴趣,培养探究精神和创新意识,认识到自动化技术在工业生产中的重要性。
2. 学生在学习过程中,能够尊重事实,严谨求实,养成良好的学习习惯。
3. 学生通过课程学习,增强环保意识,认识到合理利用资源、保护环境的重要性。
课程性质:本课程为实践性较强的课程,结合理论知识和实际操作,旨在培养学生的动手能力和实际应用能力。
学生特点:学生具备一定的物理、化学基础知识,对PLC技术有一定了解,但实践经验不足。
教学要求:注重理论与实践相结合,充分调动学生的主观能动性,引导学生通过实际操作,掌握PLC技术在混合液体控制中的应用。
在教学过程中,注重培养学生的团队协作能力和创新能力。
二、教学内容本课程教学内容主要包括以下三个方面:1. PLC基础知识:- PLC的基本原理与结构- PLC的工作原理与性能特点- PLC编程语言及其应用2. 混合液体控制系统:- 混合液体控制系统的工艺流程及要求- 常用传感器(如流量计、液位传感器等)的工作原理与应用- 控制算法在混合液体控制中的应用3. 实践操作:- PLC编程软件的使用与操作方法- 搭建简单的混合液体控制系统- 编写和调试PLC程序,实现混合液体比例控制教学内容安排与进度:第一课时:PLC基础知识学习,介绍PLC的基本原理、结构和工作原理。
1.液体混合装置PLC控制系统设计一、题目控制要求:液体混合装置示意图如图1所示。
初始状态,电磁阀Y1、Y2、Y3以及搅拌电机M 和加热电炉H状态均为OFF,液位传感器L1、L2、L3状态均为OFF。
按下起动按钮SB1,开始注入液体A,当液面高度达到L2时,停止注入液体A,开始注入液体B,当液面上升到L1时,停止注入液体,开始搅拌10S,10S后继续搅拌,同时加热5S,5S后停止搅拌,继续加热8S。
8S后停止加热,同时放出混合液体C,当液面降至L3时,继续放2S,2S后停止放出液体,同时重新注入液体A,开始下一次混合。
按下停止按钮SB2,在完成当前的混合任务后,返回初始状态。
搅拌电机采用三相异步电机,单向运转.图1 液体混合装置示意图二、设计要求1.进行I/O地址分配;2.画出主电路和程序流程图;3.编写控制程序并调试.2。
总体方案论证本设计要求完成两种溶液混合装置的自动控制,目前在自动化控制领域常用的控制方式主要有:继电器—接触器控制系统、可编程序控制器控制、总线式工业控制机控制、分布式计算机控制系统、单片机控制。
对于两种溶液混合装置的自动控制系统初步选定采用继电器-接触器控制和可编程序控制器控制。
可编程序控制器与继电器—接触器控制系统的区别:继电器-接触器控制系统虽有较好的抗干扰能力,但使用了大量的机械触点,使得设备连线复杂,且触点时开时闭时容易受电弧的损害,寿命短,系统可靠性差.可编程序控制器的梯形图与传统的电气原理图非常相似,主要原因是其大致上沿用了继电器控制的电路元件和符号和术语,仅个别之处有些不同,同时信号的输入1输出形式及控制功能基本.上也相同.但是可编程序控制器与继电器—接触器控制系统又有根本的不同之处,主要表现在以下几个方面。
1.控制逻辑继电器控制逻辑采用硬接线逻辑, 并利用继电器机械触点的串联或并联及时间继电器等组合成控制逻辑,接线多而复杂、体积大、功耗大、故障率高,一旦系统构成后,想改变或增加功能都很困难。
多种液体自动混合装置的PLC控制
如图所示为三种液体混合装置,SQ1、SQ2、SQ3和SQ4为液面传感器,液面淹没时接通,液体A、B、C与混合液阀由电磁阀YV1、YV2、YV3、YV4控制,M 为搅匀电动机,其控制要求如下:
1.初始状态
装置投入运行时,液体A、B、C阀门关闭,混合液阀门打开20s将容器放空后关闭。
2.起动操作
按下启动按钮SB1,装置开始按下列给定规律运转:
①液体A阀门打开,液体A流入容器。
当液面达到SQ3时,关闭液体A阀门,打
开液体B阀门。
②当液面达到SQ2时,关闭液体B阀门,打开液体C阀门。
③当液面达到SQ1时,关闭液体C阀门,搅匀电动机开始搅拌。
④搅匀电动机工作1min后停止搅动,混合液体阀门打开,开始放出混合液体。
⑤当液面下降到SQ4时,SQ4由接通变断开,再过20s后,容器放空,混合液阀
门关闭,开始下一周期。
3.停止操作
按下停止按钮SB2后,要将当前的混合操作处理完毕后,才停止操作(停在初始状态)
PLC的I/O配置、PLC的I/O接线、顺序功能图和梯形图1、PLC的I/O配置
输入设备
输入节点输入设备
输出节点
代号功能代号功能
SB1 启动按钮I0.0 YV1 液体A电磁阀Q0.0 SB2 停止按钮I0.1 YV2 液体B电磁阀Q0.1 SQ1 高液位传感器I0.2 YV3 液体C电磁阀Q0.2 SQ2 中液位传感器I0.3 YV4 放液电磁阀Q0.3 SQ3 低液位传感器I0.4 KM 搅匀电动机接触器Q0.4 SQ4 超低液位传感器I0.5
2、PLC为CPU226,I/O接线
3、顺序功能图
4、梯形图。
液体混合装置P L C控制系统电气与自动化工程学院实训评分表课程名称: PLC控制技术实训实训题目:液体混合装置PLC控制系统班级:学号:姓名:指导老师:年月日常熟理工学院电气与自动化工程学院《PLC控制技术实训》题目:液体混合装置PLC控制系统姓名:\学号:班级:指导教师:起止日期:目录《PLC控制技术》实训任务书 0一、基础实训项目一:变频器对电机的运行控制 0二、基础实训项目二:模拟量采集与数据处理的综合应用 (1)三、综合型自主实训项目:液体混合装置PLC控制系统 (2)一.基础实训项目一 (4)1.1任务1 变频器的面板操作与运行 (4)1.1.1 I/O接线 (4)1.1.2 I/O接线图 (5)1.1.3 参数设置 (5)1.2任务2 变频器的外部运行操作 (6)1.2.1.I/O接线 (6)1.2.2变频器外部运行操作接线图 (7)1.2.3 I/O图 (7)1.2.4 梯形图程序 (8)1.2.5 参数设置 (8)1.2.6 变频器运行操作 (9)1.3任务3 变频器的模拟信号操作控制 (9)1.3.1 I/O接线 (9)1.3.2变频器模拟信号控制接线图 (10)1.3.3 I/O接线图 (10)1.3.4 梯形图程序 (11)1.3.5 参数设置 (11)模拟信号操作控制参数 (11)1.3.6 变频器运行操作 (12)二.基础实训项目二 (13)2.1模拟量采集与数据处理的综合应用 (13)2.1.1 IO分配 (13)2.1.2 接线图 (14)2.1.3 梯形图程序 (15)3.1.4工作流程 (15)2.1.5调试结果 (16)2.2模拟量输出通道控制点动执行器 (16)2.2.1接线图 (16)2.2.2 流程图 (17)2.2.3 组态王显示 (17)2.2.4 调试步骤与结果 (18)三.综合型自主实训项目 (19)3.1具体要求 (19)3.2控制要求 (19)3.3 I/O接线 (21)3.4 I/O接线图 (22)3.5流程图 (23)3.6 PLC编程 (24)3.6.1 复位环节 (25)3.6.2 手动环节 (26)3.6.3 启动环节 (27)3.6.4 自动程序 (28)3.6.5 停止环节 (32)3.7调试步骤也结果 (32)3.7.1开始 (32)3.7.2手动 (32)3.7.3自动 (34)我按各步骤排列 (34)3.8组态王 (37)3.8.1组态王的建立 (37)3.8.2手动模式图 (39)3.8.3 自动模式图 (40)四.收获、体会 (41)五.参考文献 (42)《PLC控制技术》实训任务书题目:液体混合装置PLC控制系统(一)实训学生需要完成2个基础实训项目和1个综合型自主实训项目的训练。
一、基础实训项目一:变频器对电机的运行控制一)实训目的1、进一步巩固掌握PLC基本指令功能的及其运用方法;2、根据实训设备,熟练掌握PLC的外围I/O设备接线方法;3、掌握异步电动机变频调速原理,熟悉变频器的用法。
二)实训设备PLC主机单元模块、电位器、MM440(或MM420)变频器、个人计算机 PC、PC/PPI 编程电缆。
三)工艺控制要求使用变频器实现异步电动机的可逆调速控制,即可以电动机可正反向运行、调速和点动功能。
参考电气原理图见教材p85,速度控制有两种方式:(1)由外接的电位器控制,(2)由PLC的模拟量输出通道控制。
四)实训步骤1、进行PLC的I/O地址分配,并画出变频器对电机控制的PLC控制系统的接线图。
2、设计由PLC 控制的梯形图程序。
3、输入自编程序,上机调试、运行直至符合动作要求。
二、基础实训项目二:模拟量采集与数据处理的综合应用一)实训目的1、掌握PLC中模拟量输入、输出的基本工作原理;2、掌握数据处理指令的运用方法;3、熟悉组态王与PLC的连接使用。
二)实训设备PLC主机单元模块、电位器、万用表、个人计算机 PC、PC/PPI 编程电缆。
三)实训项目原理与要求1、用扩展模块中的电位器模拟温度测量变送器,假设当温度是0℃时,对应电位器输出0V电压,假设当温度是100℃时,对应电位器输出电压10V。
用CPU 224XP的模拟量输入通道采集电位器电压,进行标度变换,将转换后的温度值存储在变量存储器中,并在组态界面上显示出具体温度。
2、用PLC模拟量输出通道控制电动执行器,执行器开度设置为0%时,输出电压为0V,执行器开度为100%时,输出电压10V。
执行器开度控制量的多少采用组态王软件输入,观察模拟量输出的数值,并用万用表测量输出电压值。
四)实训项目的步骤1、根据项目要求拟定I/O地址分配表,画出外部接线图,并进行接线图线路连接。
2、设计梯形图程序,调试并记录数据。
三、综合型自主实训项目:液体混合装置PLC控制系统一)实训项目工艺要求:本课题要求设计一个自动售货机的PLC控制系统,具体要求是:1)在初始状态时,容器是空的,各阀门均关闭,低、中、高液位传感器为开关量,分别按动三个按钮来模拟液位情况。
初始时所有传感器为OFF状态。
当液面淹没时接通并保持闭合状态,相对应的指示灯H、I、J点亮。
2)系统有手动和自动两种工作方式。
当进入手动方式时,手动指示灯点亮,液体A阀门、液体B阀门、混料泵M、报警灯等均可以通过按动组各自的测试按钮进行点动调试。
3)进入自动方式时,自动指示灯点亮,按下启动按钮,系统进入工作状态,系统电源指示灯点亮。
5S后开始工作,液体A阀门X1先打开,液体A流入容器,液位开始升高,当中液位传感器报警后,A阀门X1关闭,打开液体B阀门X2,液体B流入容器;当高液位传感器报警后,关B阀门,混料泵电机M得电;搅拌20S后,混料泵关闭,出料泵开,混合液流出容器;低液位传感器报警后,出料泵继续开10S,液体排空,此时报警灯按亮2S、灭1S的规律闪烁5次,一个循环结束。
在此过程中,若没有按动停止按钮,则A阀门再次打开,开始新一轮的循环。
任何时候按下停止按钮,在当前工作周期结束后,才停止操作,电源指示灯熄灭。
二)目的通过本次实训使学生掌握:1)Step7-Micro/Win32编程软件的使用方法和梯形图、SFC图编程语言的运用;2)实际程序的设计及实现方法;3)程序的调试和运行操作技术。
从而提高学生对PLC控制系统的设计和调试能力。
三)内容与要求1、通过基本简单实验熟悉与本设计相关的实验台模块;2、液体混合装置PLC控制系统设计;3、硬件接线图、程序清单;4、采用状态转移图SFC图或经验设计法进行设计;5、设计组态王上位机监控画面,对工作过程进行显示。
四、实训报告要求报告应采用统一的报告纸书写,应包括评分表、封面、目录、正文、收获、参考文献(并按此顺序装订)。
报告中提供如下内容:1、目录2、正文(1)实训任务书;(2)实训内容,三个任务分别写a、每个实训任务的总体设计方案(应有PLC的选型及依据)b、I/O分配表,PLC外部接线图,程序中使用的元件及功能表;c、程序控制的SFC图、梯形图或指令表清单,注释说明;d、调试、运行及其结果;3、收获、体会4、参考文献(注意实训报告原则上手写,允许打印,但雷同者的零分处理)五、实训进度安排六、实训考核办法本实训满分为100分,其中实训平时表现(含2个基础实训项目完成情况)30%、综合型实训项目答辩50%,实训报告20%。
一.基础实训项目一1.1任务1 变频器的面板操作与运行1.1.1 I/O接线无多余的接线,只需要给变频器加上AC220V电源,检查电路正确无误后,合上主电源开关QS即可。
1.1.2 I/O接线图1.1.3 参数设置(1)设定P0010=30和P0970=1,按下P键,开始复位,复位过程大约3min,这样就可保证变频器的参数回复到工厂默认值。
(2)设置电动机参数,为了使电动机与变频器相匹配,需要设置电动机参数。
电动机参数设定完成后,设P0010=0,变频器当前处于准备状态,可正常运行。
(3)设置面板操作控制参数参数号出厂值设置值说明P0003 1 1 设用户访问级为标准级P0010 0 0 正确地进行运行命令的初始化P0004 0 7 命令和数字I/OP0700 2 1 由键盘输入设定值(选择命令源)P0003 1 1 设用户访问级为标准级P0004 0 10 设定值通道和斜坡函数发生器P1000 2 1 由键盘(电动电位计)输入设定值面板基本操作控制参数1.2任务2 变频器的外部运行操作1.2.1.I/O接线1.2.2变频器外部运行操作接线图外部运行操作接线图1.2.3 I/O图1.2.4 梯形图程序1.2.5 参数设置接通断路器QS,在变频器在通电的情况下,完成相关参数设置,具体设置见表。
参数号出厂值设置值说明P0003 1 1 设用户访问级为标准级P0004 0 7 命令和数字I/OP0700 2 2 命令源选择“由端子排输入”P0003 1 2 设用户访问级为扩展级P0004 0 7 命令和数字I/O*P0701 1 1 ON接通正转,OFF停止*P0702 1 2 ON接通反转,OFF停止*P0703 9 10 正向点动*P0704 9 11 反向点动P0003 1 1 设用户访问级为标准级P0004 0 10 设定值通道和斜坡函数发生器P1000 2 1 由键盘(电动电位计)输入设定值*P1080 0 0 电动机运行的最低频率(Hz)*P1082 50 50 电动机运行的最高频率(Hz)*P1120 10 5 斜坡上升时间(s)*P1121 10 5 斜坡下降时间(s)P0003 1 2 设用户访问级为扩展级P0004 0 10 设定值通道和斜坡函数发生器*P1040 5 20 设定键盘控制的频率值*P1058 5 10 正向点动频率(Hz)*P1059 5 10 反向点动频率(Hz)*P1060 10 5 点动斜坡上升时间(s)*P1061 10 5 点动斜坡下降时间(s)变频器参数设置1.2.6 变频器运行操作(1)变频器启动:在变频器的前操作面板上按运行键,变频器将驱动电动机升速,并运行在由P1040所设定的20Hz频率对应的560r∕min的转速上。
(2)正反转及加减速运行:电动机的转速(运行频率)及旋转方向可直接通过按前操作面板上的键∕减少键(▲/▼)来改变。
(3)点动运行:按下变频器前操作面板上的点动键,则变频器驱动电动机升速,并运行在由P1058所设置的正向点动10Hz频率值上。
当松开变频器前错做面板上的点动键,则变频器将驱动电动机降速至零。
这时,如果按下一变频器前操作面板上的换向键,在重复上述的点动运行操作,电动机可在变频器的驱动下反向点动运行。
(4)电动机停车:在变频器的前操作面板上按停止键,则变频器将驱动电动机降速至零。