第一章 第四节用计算器求锐角的三角函数值
- 格式:ppt
- 大小:5.84 MB
- 文档页数:13
28.1.4锐角三角函数用计算器求锐角三角函数值和锐角【教学目标】1. 会使用科学计算器求锐角的三角函数值.2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小.3. 熟练运用计算器解决锐角三角函数中的问题.【教学重难点】教学重点:会使用科学计算器求锐角的三角函数值,会根据锐角的三角函数值,借助科学计算器求锐角的大小.教学难点:熟练运用计算器解决锐角三角函数中的问题.【课时安排】 1课时【教学过程】一、导入环节(一)复习导入新课填写下表:锐角a/度数30°45°60°sin acos atan a通过前面的学习,我们知道当锐角A 是30°、45°、60°等特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角A 不是这些特殊角,怎样得到它的锐角三角函数值呢?二、先学环节(一)出示自学指导1.用计算器求sin18°的值;2.用计算器求tan30°36′ 的值;解:第一步:按计算器sin键;方法①第二步:输入角度值18;第一步:按计算器 tan键屏幕显示结果sin18°= 0.309 016 994第二步:输入角度值30.6 (因为30°36′ = 30.6°)注意:不同计算器操作的步骤可能不同哦!屏幕显示答案:0.591 398 351方法②:第一步:按计算器 tan键第二步:输入角度值30, (使用 DM’S 键)输入分值36屏幕显示答案:0.591 398 351(二)自学检测反馈1.用计算器求下列各式的值(精确到0.0001):(1) sin47°;(2) sin12°30′;(3) cos25°18′;(4) sin18°+cos55°-tan59°.2. 已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数 (结果精确到0.1°):(1) sin A=0.7,sin B=0.01;(2) cos A=0.15,cos B=0.8;(3) tan A=2.4,tan B=0.5.三、后教环节合作探究一、通过计算 (可用计算器),比较下列各对数的大小,并提出你的猜想:① sin30°____2sin15°cos15°;② sin36°____2sin18°cos18°;③ sin45°____2sin22.5°cos22.5°;④ sin60°____2sin30°cos30°;⑤ sin80°____2sin40°cos40°.猜想:已知0°<α<45°,则sin2α___2sinαcosα.合作探究二、利用计算器求值,并提出你的猜想:sin20°= ,cos20°= ,sin220°= , cos220°= ;sin35°= ,cos35°= ,sin235°= ,cos235°= ;猜想:(1)已知0°<α<90°,则 sin2α + cos2α = .(2) 如图,在 Rt△ABC中,∠C=90°,请验证你在 (1)中的结论.质疑问难:四、训练环节1.用计算器求sin24°37′18″的值,以下按键顺序正确的是 ( )A. sin,24,DM’S,37 ,DM’S,18,DM’S,=B. 24,DM’S,37 DM’S,18,DM’S,sin,=C. 2ndF,sin,24,DM’S,18,DM’S,=D. sin,24,DM’S,37,DM’S,18 DM’S,2ndF,=2.下列式子中,不成立的是 ( )A.sin35°= cos55°B.sin30°+ sin45°= sin75°C.cos30°= sin60°D.sin260°+ cos260°=13.利用计算器求值:(1) sin40°≈ (精确到0.0001);(2) sin15°30′≈ (精确到 0.0001);(3) 若sinα = 0.5225,则α≈ (精确到0.1°);(4) 若sinα = 0.8090,则α≈ (精确到0.1°).4. 已知:sin232°+ cos2α =1,则锐角α = .5. 用计算器比较大小:20sin87°___tan87°.课堂总结教师总结:已知锐角角度求函数值计算器求函数已知函数值求锐角角度【板书设计】28.1.4 用计算器求锐角三角函数值和角度1.已知锐角角度求函数值2.已知函数值求锐角角度【教学反思】学生在这堂课回答问题比较积极,绝大部分学生都能算出正确答案,而且兴趣都很高,课上已经没有学生再说与学习无关的内容,听课都挺认真,只有几个学生由于网速等原因没有上课,也已经要求去看回放,课下问题的学生比较多,都是单发私信,辅导时间都是一整天,中午都不敢休息。
用计算器求锐角三角函数值教学目标学会计算器求任意角的三角函数值。
教学重难点重点:用计算器求任意角的三角函数值。
难点:实际运用。
教学过程拿出计算器,熟悉计算器的用法。
下面我们介绍如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角.(1)求已知锐角的三角函数值.1、求sin63゜52′41″的值.(精确到0.0001)解先用如下方法将角度单位状态设定为“度”:显示再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.8979例3求cot70゜45′的值.(精确到0.0001)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.349 215 633.所以cot70゜45′≈0.3492.(2)由锐角三角函数值求锐角例4已知tan x=0.7410,求锐角x.(精确到1′)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x ≈36゜32′.例5 已知cot x =0.1950,求锐角x .(精确到1′)分析 根据tan x =xcot 1,可以求出tan x 的值,然后根据例4的方法就可以求出锐角x 的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a 的三角函数值,使用计算器求锐角a .(精确到1′)(1)sin a =0.2476; (2)cos a =0.4174;(3)tan a =0.1890; (4)cot a =1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。
同一锐角的正切值与余切值互为倒数。
在生活中运用计算器一定要注意计算器说明书的保管与使用。
方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
用计算器求锐角三角函数值一、内容和内容解析通过以前的学习学生已经知道当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢这一过渡体现了从特殊到一般的数学思想,今天的学习为学生在实践中用数学提供了广阔的空间,对培养学生的动手操作能力有积极的促进作用。
基于上述分析我将本节课的教学重点设定为:会用计算器求锐角三角函数值和由锐角三角函数值求锐角。
二、目标和目标解析1.让学生熟识计算器一些功能键的使用.2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角。
3.让学生通过独立思考,自主探究和合作交流进一步体会函数的数学内涵,激发学生学习兴趣与求知欲,获得知识,体验成功,享受学习乐趣。
三、教学问题诊断分析难点:正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理.四、教学支持条件分析多媒体课件、计算器五、教学方法分析用计算器求锐角的三角函数值时,可分小组合作学习,让每一组学生在相互帮助下学习,然后进行交流。
六、教学过程分析(一)复习旧知、引入新课问题1.引例升国旗时,小明站在操场上离国旗20m处行注目礼。
当国旗升至顶端时,小明看国旗视线的仰角为42°,若小明双眼离地面1.60m,你能帮助小明求出旗杆AB的高度吗问题2.通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢我们可以用计算器来求锐角的三角函数值。
教师活动1:出示引例。
教师活动2:启发学生思考,引入新课题。
学生活动1:观察并思考教师的预设问题,寻找解决方案。
学生活动2:明确探究方向。
教师应重点关注:学生的思维是否活跃,兴趣是否高涨。
设计意图:通过引例的设置激发学生的探究欲望和学习热情。
(二)探索新知、分类应用问题3.用计算器求一般锐角的三角函数值(1)锐角恰是整数度数时,求sin18°的值。
28.1锐角三角函数第4课时用计算器求锐角三角函数值及锐角1.初步掌握用计算器求三角函数值的方法;(重点)2.熟练运用计算器求三角函数值解决实际问题.(难点)一、情境导入教师讲解:通过上面几节课的学习我们知道,当锐角∠A是30°、45°或60°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角∠A不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.二、合作探究探究点一:用计算器求锐角三角函数值及锐角【类型一】角度,用计算器求函数值用计算器求以下各式的值(精确到0.0001):(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)sin18°+cos55°-tan59°.解析:熟练使用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.解:根据题意用计算器求出:(1)sin47°≈;(2)sin12°30′≈;(3)cos25°18′≈;(4)sin18°+cos55°-tan59°≈-0.7817.方法总结:解决此类问题的关键是熟练使用计算器,使用计算器时要注意按键顺序.变式训练:见?学练优?本课时练习“课堂达标训练〞第4题【类型二】三角函数值,用计算器求锐角的度数以下锐角三角函数值,用计算器求锐角∠A,∠B°):(1)sin A,sin B=0.01;(2)cos A,cos B=0.8;(3)tan A,tan B=0.5.解析:由三角函数值求角的度数时,用到sin,cos,tan键的第二功能键,要注意按键的顺序.解:(1)sin A,得∠A≈°;sin B∠B≈°;(2)cos A,得∠A≈°;cos B,得∠B≈°;(3)由tan A,得∠A≈°;由tan B,得∠B≈°.方法总结:解决此类问题的关键是熟练使用计算器,在使用计算器时要注意按键顺序.变式训练:见?学练优?本课时练习“课堂达标训练〞第7题【类型三】利用计算器验证结论(1)通过计算(可用计算器),比拟以下各对数的大小,并提出你的猜测:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________°°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜测:0°<α<45°,那么sin2α________2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请根据提示,利用面积方法验证结论.解析:(1)利用计算器分别计算①至⑤各式中左边与右边,比拟大小;(2)通过计算△ABC 的面积来验证.解:(1)通过计算可知:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°;sin2α=2sinαcosα.(2)∵S△ABC=12AB·sin2α·AC=12sin2α,S△ABC=12×2AB sinα·AC cosα=sinα·cosα,∴sin2α=2sinαcosα.方法总结:此题主要运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.变式训练:见?学练优?本课时练习“课后稳固提升〞第6题【类型四】用计算器比拟三角函数值的大小用计算器比拟大小:20sin87°________tan87°.解析:20sin87°≈20×,tan87°≈,∵,∴20sin87°>tan87°.方法总结:利用计算器求值时,要注意计算器的按键顺序.变式训练:见?学练优?本课时练习“课堂达标训练〞第8题探究点二:用计算器求三角函数值解决实际问题如图,从A地到B地的公路需经过C地,图中AC=20km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?解析:(1)作CH⊥AB于H.在Rt△ACH中根据CH=AC·sin∠CAB求出CH的长,由AH =AC·cos∠CAB求出AH的长,同理可求出BH的长,根据AB=AH+BH可求得AB的长;(2)在Rt△BCH中,由BC=CHsin∠CBA可求出BC的长,由AC+BC-AB即可得出结论.解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈20×=8.4km,AH=AC·cos∠CAB=AC·cos25°≈20×km.在Rt△BCH中,BH=CHtan∠CBA≈错误!km,∴AB=AH+BH km.故改直的公路AB km;(2)在Rt△BCH中,BC=CHsin∠CBA=CHsin37°≈错误!=14km,那么AC+BC-AB km.km.方法总结:根据题意作出辅助线,构造出直角三角形是解答此类问题的关键.变式训练:见?学练优?本课时练习“课后稳固提升〞第4题三、板书设计1.角度,用计算器求函数值;2.三角函数值,用计算器求锐角的度数;3.用计算器求三角函数值解决实际问题.备课时尽可能站在学生的角度思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折.舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,真正提高课堂教学效率,提高成绩.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
28.1.4 用计算器求锐角三角函数值和根据三角函数值求锐角一、教学目标1.让学生熟识计算器一些功能键的使用2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角二、教学重点、难点重点:运用计算器处理三角函数中的值或角的问题难点:知道值求角的处理三、教学过程(一)复习引入通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值.(二)实践探索1.用计算器求锐角的正弦、余弦、正切值利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)sin37º24′ sin37°23′ cos21º28′cos38°12′tan52° tan36°20′tan75°17′2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.例如:sinA=0.9816.∠A;cosA=0.8607,∠A;tanA=0.1890,∠A=;tanA=56.78,∠A.典型例题1.若把ΔABC中锐角A的两边AB、AC分别缩小为原来的,已知其中∠C = 90º,则锐角A的正弦,则sinA的变化情况为( )A.nsinA B.sinA C. D.保持原值不变答案:D说明:因为当一个锐角大小不变时,其正弦值是固定的,与∠A的两边大小无关,所以正确答案为D.2.已知ΔABC中,∠C = 90º,∠A、∠B、∠C所对的边分别是a、b、c、且c = 3b,则cosA = ( )A. B. C. D.答案:C说明:因为cosA =,而c = 3b,所以cosA =,答案为C.3.a、b、c是ΔABC的三边,a、b、c满足等式(2b)2= 4(c+a)(c−a),且有5a−3c = 0,求sinA+sinB的值.分析:用正弦的定义把正弦换为边的比,再由所给的边与边的关系即可求值.解:由(2b)2 = 4(c+a)(c−a)得b2 = c2−a2,∴c2 = a2+b2,∴ΔABC是直角三角形,且∠C = 90º;由5a−3c = 0,得=,即sinA =设a = 3k,则c = 5k,∴b == 4k,∴sinB ===∴sinA+sinB =+=.4.如图,∠POQ = 90º,边长为2 cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC = 30º;分别求点A、D到OP的距离.分析:由正方形的性质可证ΔABE≌ΔBCO≌ΔCDG,再由∠OBC = 30º,即可求出OC、CG、AE的长.解:过点A、D分别作AE⊥OP、DF⊥OP,DG⊥OG,垂足分别为E、F、G.在正方形ABCD中,∠ABC =∠BCD = 90º∵∠OBC = 30º,∴∠ABE =∠BCO = 60º同理可求∠CDG = 60º,又AB = BC = CD = 2 cm,∴RtΔABE≌RtΔBCO≌RtΔCDG∴CG = AE = AB•sin∠ABE = 2•=(cm)OC = BC•sin∠OBC = 2•= 1(cm)∴DF = OG = GC+OC = (+1)(cm)即点A到OP的距离为cm,点D到OP的距离为(+1)cm.。
用计算器求锐角的三角函数值【教学目标】(一)教学知识点。
1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数的意义。
2.能够用计算器进行有关三角函数值的计算。
3.能够运用计算器辅助解决含三角函数值计算的实际问题。
(二)能力训练要求。
1.借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力。
2.发现实际问题中的边角关系,提高学生有条理地思考和表达的能力。
(三)情感与价值观要求。
1.积极参与数学活动,体会解决问题后的快乐。
2.形成实事求是的态度。
【教学重点】1.用计算器由已知锐角求三角函数值。
2.能够用计算器辅助解决含三角函数值计算的实际问题。
【教学难点】用计算器辅助解决含三角函数值计算的实际问题。
【教学方法】探索——引导。
【教学准备】一台学生用计算器。
【课时安排】2课时【教学过程】【第一课时】同学们可用自己的计算器按上述按键顺序sin16°,cos42°,tan85°,sin72°38′25″,看显示的结果是否和表中显示的结果相同。
(教学时应注意不同的计算器按键方式可能不同,可引导学生利用自己所使用的计算器探索计算三角函数值的具体步骤,也可以鼓励同学们互相交流用计算器计算三角函数值的方法。
)师:很好,同学们都能用自己的计算器计算出三角函数值。
大家可能注意到用计算器求三角函数值时,结果一般有10个数位。
我们的教材中有一个约定,如无特别说明,计算结果一般精确到万分位。
所以sin16°≈0.2756,cos42°≈0.7431,tan85°≈11.4301,si n72°38′25″≈0.9545。
下面就请同学们利用计算器求出本节刚开始提出的问题。
生:用计算器求得BC=200sin16°≈55.13(米)。
师:下面请同学们用计算器计算下列各式的值。
(1)sin56°;(2)sin15°49′;(3)cos20.72°;(4)tan39°;(5)tan44°59′59″;(6)sin35°+cos61°+tan76°。
用计算器求锐角三角函数值【教学目标】学会计算器求任意角的三角函数值。
【教学重难点】重点:用计算器求任意角的三角函数值。
难点:实际运用。
【教学过程】一、拿出计算器,熟悉计算器的用法。
下面我们介绍如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角。
(1)求已知锐角的三角函数值。
例1求sin63゜52′41″的值。
(精确到0.0001)解:先用如下方法将角度单位状态设定为“度”:显示再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.8979例2求cot70゜45′的值。
(精确到0.0001)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.349 215 633.所以cot70゜45′≈0.3492.(2)由锐角三角函数值求锐角例3已知tan x=0.7410,求锐角x。
(精确到1′)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77。
再按键:显示结果为36゜32′18.4。
所以,x ≈36゜32′。
例4 已知cot x =0.1950,求锐角x 。
(精确到1′)分析:根据tan x =xcot 1,可以求出tan x 的值,然后根据例4的方法就可以求出锐角x 的值。
二、课堂练习1. 使用计算器求下列三角函数值。
(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜。
2. 已知锐角a 的三角函数值,使用计算器求锐角A .(精确到1′)(1)sin a =0.2476; (2)cos a =0.4174;(3)tan a =0.1890; (4)cot a =1.3773.三、学习小结(1)内容总结不同计算器操作不同,按键定义也不一样。
同一锐角的正切值与余切值互为倒数。
在生活中运用计算器一定要注意计算器说明书的保管与使用。
《用计算器求锐角三角函数值及锐角》教案教案:用计算器求锐角三角函数值及锐角一、教学目标:1.知识目标:了解计算器如何求解锐角三角函数值,并能运用计算器求解给定锐角的三角函数值。
2.技能目标:掌握计算器的基本操作,能够运用计算器求解任意给定锐角的三角函数值。
3.情感目标:激发学生对数学学习的兴趣,提高计算器在数学学习中的应用能力。
二、教学重点和难点1.教学重点:计算器的基本操作,利用计算器求解锐角三角函数值。
2.教学难点:掌握计算器的基本操作,善于灵活运用计算器求解任意给定锐角的三角函数值。
三、教学过程1.预习活动引导学生回顾三角函数的概念和性质,并让学生解释三角函数值的含义和计算方法。
2.导入新课通过实例引出课题,如:已知三角函数值,如何求解对应的角度?引导学生思考,并提醒学生可以通过计算器来求解。
3.播放教学视频播放教学视频,介绍如何操作计算器求解锐角三角函数值。
视频中应包括以下内容:(1)计算器的基本操作介绍,包括开机、关机、调整屏幕亮度等。
(2)计算器上三角函数按钮的位置和功能介绍。
(3)如何输入角度值。
(4)如何输出三角函数值。
4.教师示范和学生实践教师示范如何使用计算器求解锐角三角函数值,并解释操作过程中的注意事项和常见问题。
5.小组合作探究将学生分为小组,让每个小组成员在计算器上模拟操作,并互相交流、讨论,解决操作中遇到的问题。
6.指导讨论让学生将自己的操作过程和结果分享给全班,并根据学生的情况进行讨论和指导。
7.拓展练习出示一些锐角三角函数值,让学生独立使用计算器求解对应的角度,并核对答案。
8.归纳总结让学生归纳总结如何使用计算器求解锐角三角函数值的方法和技巧。
9.巩固作业让学生完成一些相关的计算器操作题,以巩固所学知识。
四、教学反思本节课以计算器求解锐角三角函数值为主题,通过播放教学视频和小组合作探究等多种教学方法,提高学生的计算器操作能力,使他们在解题时能够善于利用计算器。
在教学过程中,为了加强学生的互动和思维能力,教师还进行了指导讨论和归纳总结,以保证学生的学习效果。