用计算器求三角函数值
- 格式:ppt
- 大小:462.50 KB
- 文档页数:4
利用计算器求三角函数值计算器是一种被广泛使用的工具,可以用来进行各种数学运算,包括求三角函数值。
三角函数是数学中的一类特殊函数,描述了角度和弧度之间的关系。
常用的三角函数包括正弦函数、余弦函数、正切函数等。
下面将介绍如何使用计算器来求解三角函数值。
首先,需要明确角度的单位。
三角函数值可以用角度制和弧度制表示。
在计算器中设置角度的单位很简单,通常有RAD和DEG两个选项。
RAD表示弧度制,DEG表示角度制。
根据题目给出的角度单位,选择合适的单位。
接下来,按照计算器上的相应按键,输入要求的角度值。
在大多数计算器上,可以直接输入角度值,然后按下对应的三角函数按键,就可以得到结果。
例如,要求40度的正弦函数值,可以按下40,然后按下sin按键,计算器会立即显示结果。
如果要求的角度是弧度制,可以按照上述步骤进行操作,只需要在输入时注意单位的切换。
通常,计算器会默认使用角度制,需要手动切换到弧度制。
这可以通过按下MODE或SETUP等按键,然后选择RAD选项来完成。
在一些计算器上,可能还提供了反三角函数的求解功能。
反三角函数指的是以三角函数的值为输入,求解对应的角度的函数。
通常,反三角函数使用arcsin、arccos、arctan等符号表示。
这些按键通常位于正弦、余弦、正切等三角函数按键的上方。
例如,要求正弦函数值为0.5的角度,可以按下0.5,然后按下arcsin按键,计算器会显示结果。
需要注意的是,计算器上的按键位置和名称可能因不同的品牌和型号而有所不同。
因此,在使用计算器求解三角函数值时,可以查看计算器的说明书或者使用调试模式来确定正确的按键和操作方法。
总之,使用计算器求解三角函数值是一种简单而方便的方法。
只需按照指定的操作顺序输入角度值或三角函数的值,并按下相应的按键,就可以得到结果。
在进行计算时,要注意角度单位的选择,以及根据需要切换角度制或弧度制。
2.用计算器求锐角三角函数值教学目标学会计算器求任意角的三角函数值。
教学重难点重点:用计算器求任意角的三角函数值。
难点:实际运用。
教学过程拿出计算器,熟悉计算器的用法。
下面我们介绍如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角.(1)求已知锐角的三角函数值.1、求sin63゜52′41″的值.(精确到0.0001)解先用如下方法将角度单位状态设定为“度”:显示再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.8979例3求cot70゜45′的值.(精确到0.0001)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.349 215 633.所以cot70゜45′≈0.3492.(2)由锐角三角函数值求锐角例4已知tan x=0.7410,求锐角x.(精确到1′)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x ≈36゜32′.例5 已知cot x =0.1950,求锐角x .(精确到1′)分析 根据tan x =xcot 1,可以求出tan x 的值,然后根据例4的方法就可以求出锐角x 的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a 的三角函数值,使用计算器求锐角a .(精确到1′)(1)sin a =0.2476; (2)cos a =0.4174;(3)tan a =0.1890; (4)cot a =1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。
同一锐角的正切值与余切值互为倒数。
在生活中运用计算器一定要注意计算器说明书的保管与使用。
方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
计算三角函数值的几种常用方法1.利用三角函数表:在图书馆或互联网上可以找到三角函数表。
这种方法适用于特定角度的计算,我们只需查表即可得到相应的三角函数值。
2.利用特殊角的三角函数值:我们可以记住一些特殊角的三角函数值,如30°、45°和60°的正弦、余弦和正切值,然后通过相关三角函数的性质进行换算。
3.使用双曲函数:双曲函数是三角函数的扩展形式,与三角函数相似,但其定义域为实数集。
双曲函数的计算方法与三角函数相似,可以利用双曲函数表或计算器进行计算。
4.使用幂级数展开:三角函数可以用幂级数展开为无穷级数。
例如,正弦函数可以展开为其泰勒级数:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...通过对幂级数进行截断,我们可以得到近似的计算结果。
5.利用图形法:我们可以借助于单位圆,利用三角函数的几何意义进行计算。
通过在单位圆上确定角度对应的三角函数值,我们可以得到近似结果。
6.使用计算器或电脑软件:计算器和电脑软件中都内置了三角函数的计算功能,只需输入角度或弧度,即可得到相应的三角函数值。
这是最常见和方便的计算方法。
除了上述方法,还有一些数值计算方法,如牛顿迭代法、二分法等,可以通过数值逼近的方式计算三角函数的值。
这些方法通常在专业数学计算中使用,对于一般的数学问题来说,不需要深入了解这些方法。
总结起来,计算三角函数值有多种方法可供选择,我们可以根据具体情况选择最为方便和适用的方法。
无论使用哪种方法,都需要注意计算精度和误差控制,特别是对于实际应用中的科学计算和工程问题。
鲁教版数学九年级上册2.3《用计算器求锐角的三角函数值》说课稿一. 教材分析鲁教版数学九年级上册2.3《用计算器求锐角的三角函数值》这一节主要让学生掌握用计算器求解锐角三角函数值的方法。
在之前的学习中,学生已经掌握了三角函数的定义和基本性质,本节课则是将这些理论知识运用到实际计算中,进一步巩固学生对三角函数的理解。
本节课的内容主要包括两个部分:一是用计算器求解锐角的正弦、余弦和正切值;二是运用求得的三角函数值,解决一些实际问题。
通过这两部分的学习,学生能够熟练地使用计算器求解三角函数值,提高他们的动手能力和实际应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角函数的概念和性质有一定的了解。
然而,由于计算器的使用在数学课堂上并不常见,学生可能在操作上存在一定的困难。
因此,在教学过程中,教师需要引导学生正确使用计算器,并注意观察和分析计算结果。
此外,学生在学习三角函数时,往往只注重理论的掌握,而忽视了实际应用。
因此,教师在教学过程中要注重培养学生的实际应用能力,让学生明白学习三角函数的意义和价值。
三. 说教学目标1.知识与技能目标:学生会使用计算器求解锐角的正弦、余弦和正切值,并能运用这些值解决一些实际问题。
2.过程与方法目标:学生通过独立操作计算器,培养动手能力和观察分析能力。
3.情感态度与价值观目标:学生能够认识到学习三角函数的实际意义,提高学习兴趣和积极性。
四. 说教学重难点1.教学重点:学生会用计算器求解锐角的三角函数值,并能解决实际问题。
2.教学难点:学生正确使用计算器,观察和分析计算结果。
五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法、讨论法等。
2.教学手段:黑板、粉笔、计算器、投影仪等。
六. 说教学过程1.导入新课:通过一个实际问题,引出本节课的内容,激发学生的学习兴趣。
2.知识讲解:讲解如何使用计算器求解三角函数值,并进行演示。
3.学生练习:学生独立使用计算器求解三角函数值,教师巡回指导。
中考数学利用计算器求三角函数值复习引入教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60?°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A?不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.探究新知(一)已知角度求函数值教师讲解:例如求sin 18°,利用计算器的齟键,并输入角度值18,得到结果sin 18°=0.309016994.又如求tan30° 36?利用區?键,并输入角的度、分值,就可以得到答案0.591398351 .利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同.因为30° 36' =30.6。
,所以也可以利用[tan键,并输入角度值30.6,?同样得到答案0.591398351 .(二)已知函数值,求锐角教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018 ;用计算器求锐角A可以按照下面方法操作:依次按键2ndf 罰,然后输入函数值0.5018,得到/ A=30.11915867° (如果锐角 A 精确到1 °,则结果为30°).还可以利用2ndf| |°'”键进一步得到/ A=30 ° 07' 08.97〃(如果锐角A?精确到1 ',则结果为30° 8',精确到1 〃的结果为30° 7' 9〃).使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.教师提出:怎样验算求出的/ A=30 ° 7' 9〃是否正确?让学生思考后回答,?然后教师总结:可以再用计算器求30° 7' 9〃的正弦值,如果它等于0.5018,?则我们原先的计算结果就是正确的.随堂练习课本第84页练习第1、2题.课时总结已知角度求正弦值用Sinl键;已知正弦值求小于90°的锐角用2ndf Sn键,?对于余弦与正切也有相类似的求法.教后反思第4课时作业设计课本练习做课本第85页习题28. 1复习巩固第4题,第5题.双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量)一、选择题.1.如图1, Rt△ ABC 中,/ C=90 ° , D 为BC 上一点,/ DAC=30 ° , BD=2 , AB=2 3 ,则AC?的长是().A . -3 B. 2、、2C. 3D. 32A 、B 两点,若由A 看B 的仰角为a,则由 B 看A 的俯角为().5.如图4,从山顶A 望地面C 、D 两点,测得它们的俯角分别是 45。
卡西欧计算器解三角函数方程
在解三角函数方程时,使用卡西欧计算器可以大大简化计算过程。
以下是使用卡西欧计算器解三角函数方程的步骤:
1. 将三角函数方程转化为角度方程。
2. 打开卡西欧计算器,并选择角度模式。
3. 输入角度方程,并用“=”键表示等于。
4. 点击计算器上的“SOLVE”按钮,即可得到方程的解。
如果方程有多个解,可以使用计算器上的“滚动”键查看。
需要注意的是,使用计算器求解三角函数方程时,应当先对方程进行化简,以确保所求解是唯一解。
同时,也应当熟练掌握三角函数的基本性质和公式,以便在使用计算器时更加高效、准确地解题。
- 1 -。