用计算器求锐角三角函数值-P
- 格式:pdf
- 大小:266.02 KB
- 文档页数:8
利用计算器求三角函数值计算器是一种被广泛使用的工具,可以用来进行各种数学运算,包括求三角函数值。
三角函数是数学中的一类特殊函数,描述了角度和弧度之间的关系。
常用的三角函数包括正弦函数、余弦函数、正切函数等。
下面将介绍如何使用计算器来求解三角函数值。
首先,需要明确角度的单位。
三角函数值可以用角度制和弧度制表示。
在计算器中设置角度的单位很简单,通常有RAD和DEG两个选项。
RAD表示弧度制,DEG表示角度制。
根据题目给出的角度单位,选择合适的单位。
接下来,按照计算器上的相应按键,输入要求的角度值。
在大多数计算器上,可以直接输入角度值,然后按下对应的三角函数按键,就可以得到结果。
例如,要求40度的正弦函数值,可以按下40,然后按下sin按键,计算器会立即显示结果。
如果要求的角度是弧度制,可以按照上述步骤进行操作,只需要在输入时注意单位的切换。
通常,计算器会默认使用角度制,需要手动切换到弧度制。
这可以通过按下MODE或SETUP等按键,然后选择RAD选项来完成。
在一些计算器上,可能还提供了反三角函数的求解功能。
反三角函数指的是以三角函数的值为输入,求解对应的角度的函数。
通常,反三角函数使用arcsin、arccos、arctan等符号表示。
这些按键通常位于正弦、余弦、正切等三角函数按键的上方。
例如,要求正弦函数值为0.5的角度,可以按下0.5,然后按下arcsin按键,计算器会显示结果。
需要注意的是,计算器上的按键位置和名称可能因不同的品牌和型号而有所不同。
因此,在使用计算器求解三角函数值时,可以查看计算器的说明书或者使用调试模式来确定正确的按键和操作方法。
总之,使用计算器求解三角函数值是一种简单而方便的方法。
只需按照指定的操作顺序输入角度值或三角函数的值,并按下相应的按键,就可以得到结果。
在进行计算时,要注意角度单位的选择,以及根据需要切换角度制或弧度制。
利用计算器求三角函数值三角函数是解决三角形问题的重要工具,计算器是快速计算和求解数学问题的工具,将两者结合起来使用可以更加方便地求取三角函数值。
常见的三角函数包括正弦函数、余弦函数和正切函数,它们分别表示三角形的边与角之间的关系。
首先是正弦函数,用符号sin表示,计算器上通常有sin按钮。
正弦函数的定义是对于任何角θ(弧度)都有sin(θ) =opposite/hypotenuse,即sin(θ)等于角θ的对边长度除以斜边长度。
利用计算器可以直接输入角度值,按下sin按钮就可以得到对应的正弦值。
接下来是余弦函数,用符号cos表示,计算器上通常有cos按钮。
余弦函数的定义是对于任何角θ(弧度)都有cos(θ) =adjacent/hypotenuse,即cos(θ)等于角θ的邻边长度除以斜边长度。
同样可以利用计算器输入角度值,按下cos按钮得到对应的余弦值。
最后是正切函数,用符号tan表示,计算器上通常有tan按钮。
正切函数的定义是对于任何角θ(弧度)都有tan(θ) = opposite/adjacent,即tan(θ)等于角θ的对边长度除以邻边长度。
同样可以利用计算器输入角度值,按下tan按钮得到对应的正切值。
除了计算特定角度的三角函数值,计算器还可以进行三角函数的反函数运算,即给定三角函数值求解对应的角度。
以求解sinθ=0.5为例,输入0.5并按下反正弦按钮,计算器显示结果为30°。
综上所述,计算器在求解三角函数值和角度方面非常方便实用,通过输入角度或三角函数值并按下对应按钮即可得到结果。
但需要注意,在使用计算器计算三角函数值时需要确保切换为正确的角度模式,通常有弧度和角度两种模式可选,并根据具体需要选择合适的模式进行计算。
中考数学利用计算器求三角函数值复习引入教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60?°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A?不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.探究新知(一)已知角度求函数值教师讲解:例如求sin 18°,利用计算器的齟键,并输入角度值18,得到结果sin 18°=0.309016994.又如求tan30° 36?利用區?键,并输入角的度、分值,就可以得到答案0.591398351 .利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同.因为30° 36' =30.6。
,所以也可以利用[tan键,并输入角度值30.6,?同样得到答案0.591398351 .(二)已知函数值,求锐角教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018 ;用计算器求锐角A可以按照下面方法操作:依次按键2ndf 罰,然后输入函数值0.5018,得到/ A=30.11915867° (如果锐角 A 精确到1 °,则结果为30°).还可以利用2ndf| |°'”键进一步得到/ A=30 ° 07' 08.97〃(如果锐角A?精确到1 ',则结果为30° 8',精确到1 〃的结果为30° 7' 9〃).使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.教师提出:怎样验算求出的/ A=30 ° 7' 9〃是否正确?让学生思考后回答,?然后教师总结:可以再用计算器求30° 7' 9〃的正弦值,如果它等于0.5018,?则我们原先的计算结果就是正确的.随堂练习课本第84页练习第1、2题.课时总结已知角度求正弦值用Sinl键;已知正弦值求小于90°的锐角用2ndf Sn键,?对于余弦与正切也有相类似的求法.教后反思第4课时作业设计课本练习做课本第85页习题28. 1复习巩固第4题,第5题.双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量)一、选择题.1.如图1, Rt△ ABC 中,/ C=90 ° , D 为BC 上一点,/ DAC=30 ° , BD=2 , AB=2 3 ,则AC?的长是().A . -3 B. 2、、2C. 3D. 32A 、B 两点,若由A 看B 的仰角为a,则由 B 看A 的俯角为().5.如图4,从山顶A 望地面C 、D 两点,测得它们的俯角分别是 45。
用计算器求锐角三角函数值1.复习回顾,引出新知课前热身(参见励耘精品系列丛书《课时导航》华师大版八年级(下)P52“课前热身”)上面两个题目在做的过程中我们都运用了前一堂课所熟记的特殊角度的三角函数值直接进行解题的,那么下面请同学们来看一下下列题目,你打算怎么解决。
(1)计算sin36°30′= ;cos32°20′= ;tan70°25′= ;cot13°13′= 。
(2)若sinα=0.8526,那么α的值为多少?还可以用昨天的方法勾画三角形,然后进行测量计算,但比较麻烦,所以今天我们来借助计算器进行运算。
2.探索交流,概括方法下面我们介绍如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角.(1)求已知锐角的三角函数值.例1求sin63゜52′41″的值.(精确到0.0001)解先用如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.8979例3 求cot70゜45′的值.(精确到0.0001)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.349 215 633.所以cot70゜45′≈0.3492.(1)由锐角三角函数值求锐角例4 已知tan x=0.7410,求锐角x.(精确到1′)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5已知cot x=0.1950,求锐角x.(精确到1′)分析根据,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.3.巩固应用,拓展研究(1)使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.(2)已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)1)sin a=0.2476; 2)cos a=0.4174;3)tan a=0.1890; 4)cot a=1.3773.4.练习巩固,促进迁移(1)用计算器求下式的值.(精确到0.0001)sin81゜32′17″+cos38゜43′47″.(2)已知cot A=3.1748,利用计算器求锐角A.(精确到1′)(3)如图所示,在四边形ABCD中,AB=3,CD=1,∠A=60゜,∠B=∠D=90゜,求四边形ABCD 的面积。
《用计算器求锐角三角函数值及锐角》教案教案:用计算器求锐角三角函数值及锐角一、教学目标:1.知识目标:了解计算器如何求解锐角三角函数值,并能运用计算器求解给定锐角的三角函数值。
2.技能目标:掌握计算器的基本操作,能够运用计算器求解任意给定锐角的三角函数值。
3.情感目标:激发学生对数学学习的兴趣,提高计算器在数学学习中的应用能力。
二、教学重点和难点1.教学重点:计算器的基本操作,利用计算器求解锐角三角函数值。
2.教学难点:掌握计算器的基本操作,善于灵活运用计算器求解任意给定锐角的三角函数值。
三、教学过程1.预习活动引导学生回顾三角函数的概念和性质,并让学生解释三角函数值的含义和计算方法。
2.导入新课通过实例引出课题,如:已知三角函数值,如何求解对应的角度?引导学生思考,并提醒学生可以通过计算器来求解。
3.播放教学视频播放教学视频,介绍如何操作计算器求解锐角三角函数值。
视频中应包括以下内容:(1)计算器的基本操作介绍,包括开机、关机、调整屏幕亮度等。
(2)计算器上三角函数按钮的位置和功能介绍。
(3)如何输入角度值。
(4)如何输出三角函数值。
4.教师示范和学生实践教师示范如何使用计算器求解锐角三角函数值,并解释操作过程中的注意事项和常见问题。
5.小组合作探究将学生分为小组,让每个小组成员在计算器上模拟操作,并互相交流、讨论,解决操作中遇到的问题。
6.指导讨论让学生将自己的操作过程和结果分享给全班,并根据学生的情况进行讨论和指导。
7.拓展练习出示一些锐角三角函数值,让学生独立使用计算器求解对应的角度,并核对答案。
8.归纳总结让学生归纳总结如何使用计算器求解锐角三角函数值的方法和技巧。
9.巩固作业让学生完成一些相关的计算器操作题,以巩固所学知识。
四、教学反思本节课以计算器求解锐角三角函数值为主题,通过播放教学视频和小组合作探究等多种教学方法,提高学生的计算器操作能力,使他们在解题时能够善于利用计算器。
在教学过程中,为了加强学生的互动和思维能力,教师还进行了指导讨论和归纳总结,以保证学生的学习效果。
281第4课时用计算器求锐角三角函数值及锐角锐角三角函数指的是在单位圆上,对应锐角的正弦、余弦、正切和余切的值。
本文将介绍如何使用计算器来计算锐角三角函数的值和锐角。
首先,我们需要明确什么是锐角。
锐角是指角度小于90度的角。
在单位圆上,锐角位于第一象限,即角度范围为0到90度。
计算器通常有一个三角函数按钮,可以通过这个按钮来计算锐角的三角函数值。
首先,将计算器置于角度模式(degree mode)或弧度模式(radian mode),具体选择哪种模式取决于你要计算的是角度还是弧度。
在本文中,我们选择角度模式。
然后,按下相应的三角函数按钮,例如sin、cos、tan或cot。
以计算sin 30°为例,首先确认计算器处于角度模式。
然后,按下sin按钮,输入30,最后按下等于(=)按钮。
计算器将显示0.5,这是sin 30°的值。
同样地,我们可以使用计算器来计算cos 45°、tan 60°和cot 75°的值。
具体的计算步骤如下:1. 计算cos 45°:按下cos按钮,输入45,最后按下等于(=)按钮。
计算器将显示0.707,这是cos 45°的值。
2. 计算tan 60°:按下tan按钮,输入60,最后按下等于(=)按钮。
计算器将显示1.732,这是tan 60°的值。
3. 计算cot 75°:首先按下tan按钮,输入75,最后按下等于(=)按钮。
计算器将显示0.267、由于cot 75°是tan 75°的倒数,我们可以通过计算1除以tan 75°来获得cot 75°的值。
1除以0.267约等于3.743,即cot 75°的值。
通过这种方式,我们可以使用计算器轻松地计算任意锐角的三角函数的值。
接下来,我们将讨论如何通过三角函数的值来确定锐角。
通常情况下,我们使用反函数(反三角函数)来计算锐角。