江苏省江阴一中圆周运动单元测试题(Word版 含解析)
- 格式:doc
- 大小:734.00 KB
- 文档页数:16
一、第六章 圆周运动易错题培优(难)1.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin 54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。
由以上的分析可知,开始时AB 是拉力不为0,当转速在54g l ≤ω≤53gl时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于54gl后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于53gl后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l时,绳子AB 的拉力都是0,故D 正确。
一、第六章 圆周运动易错题培优(难)1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )A .A 、B 两个物体同时达到最大静摩擦力 B .B 、C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时2122C mg m r μω= ,计算得出:112.5/20.4grad s rμω=== ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C可得:22222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2grμω=当15/0.2grad s rμω>== 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC2.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
一、第六章 圆周运动易错题培优(难)1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。
则下列说法正确的是( )A .当ω=2rad/s 时,T 3+1)NB .当ω=2rad/s 时,T =4NC .当ω=4rad/s 时,T =16ND .当ω=4rad/s 时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】当小球对圆锥面恰好没有压力时,设角速度为0ω,则有cos T mg θ=20sin sin T m l θωθ=解得0532rad/s 3ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则cos sin T N mg θθ+=2sin cos sin T N m l θθωθ-=代入数据整理得(531)N T =A 正确,B 错误;CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则cos T mg α= 2sin sin T m l αωα=解得16N T =,o 5arccos 458α=>CD 正确。
故选ACD 。
2.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin =54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。
一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。
一、第六章 圆周运动易错题培优(难)1.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin 54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。
由以上的分析可知,开始时AB 是拉力不为0,当转速在54g l ≤ω≤53gl时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于54gl后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于53gl后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l时,绳子AB 的拉力都是0,故D 正确。
一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )A .此时绳子张力为T =3mg μB .此时圆盘的角速度为ω2grμC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有22T mg mr μω+=以A 为研究对象,有2T mg mr μω-=联立可得3T mg μ=2grμω=故AB 正确;D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC.3.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比是1:1:2B .角速度之比是1:2:2C .向心加速度之比是4:2:1D .转动周期之比是1:2:2 【答案】CD 【解析】 【分析】 【详解】A .同缘传动时,边缘点的线速度相等v A =v B ①同轴转动时,各点的角速度相等ωB =ωC ②根据v =ωr ③由②③联立代入数据,可得B C 2v v =④由①④联立可得v A :v B :v C =2:2:1A 错误;B .由①③联立代入数据,可得A B :2:1ωω=⑤再由②⑤联立可得A B C ::2:1:1ωωω=⑥B 错误; D .由于2T πω=⑦由⑥⑦联立可得A B C ::1:2:2T T T =D 正确; C .根据2a r ω= ⑧由⑥⑧联立代入数据得A B C ::4:2:1a a a =C 正确。
一、第六章 圆周运动易错题培优(难)1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )A .A 、B 两个物体同时达到最大静摩擦力 B .B 、C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时2122C mg m r μω= ,计算得出:112.5/20.4grad s rμω=== ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C可得:22222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2grμω=当15/0.2grad s rμω>== 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC2.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。
一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比是1:1:2B .角速度之比是1:2:2C .向心加速度之比是4:2:1D .转动周期之比是1:2:2 【答案】CD 【解析】 【分析】 【详解】A .同缘传动时,边缘点的线速度相等v A =v B ①同轴转动时,各点的角速度相等ωB =ωC ②根据v =ωr ③由②③联立代入数据,可得B C 2v v =④由①④联立可得v A :v B :v C =2:2:1A 错误;B .由①③联立代入数据,可得A B :2:1ωω=⑤再由②⑤联立可得A B C ::2:1:1ωωω=⑥B 错误; D .由于2T πω=⑦由⑥⑦联立可得A B C ::1:2:2T T T =D 正确; C .根据2a r ω= ⑧由⑥⑧联立代入数据得A B C ::4:2:1a a a =C 正确。
一、第六章 圆周运动易错题培优(难)1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。
则下列说法正确的是( )A .当ω=2rad/s 时,T 3+1)NB .当ω=2rad/s 时,T =4NC .当ω=4rad/s 时,T =16ND .当ω=4rad/s 时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】当小球对圆锥面恰好没有压力时,设角速度为0ω,则有cos T mg θ=20sin sin T m l θωθ=解得0532rad/s 3ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则cos sin T N mg θθ+=2sin cos sin T N m l θθωθ-=代入数据整理得(531)N T =A 正确,B 错误;CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则cos T mg α= 2sin sin T m l αωα=解得16N T =,o 5arccos 458α=>CD 正确。
故选ACD 。
2.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin =54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。
一、第六章 圆周运动易错题培优(难)1.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .滑块对轨道的压力为2v mg m R+B .受到的摩擦力为2v m RμC .受到的摩擦力为μmgD .受到的合力方向斜向左上方【答案】AD 【解析】 【分析】 【详解】A .根据牛顿第二定律2N v F mg m R-=根据牛顿第三定律可知对轨道的压力大小2NN v F F mg m R'==+ A 正确;BC .物块受到的摩擦力2N ()v f F mg m Rμμ==+BC 错误;D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
故选AD 。
2.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )A .当23KgLω>时,A 、B 相对于转盘会滑动B ω<C .ω在ω<<B 所受摩擦力变大D .ωω<A 所受摩擦力不变 【答案】AB 【解析】 【分析】 【详解】A .当A 所受的摩擦力达到最大静摩擦力时,A 、B 相对于转盘会滑动,对A 有21Kmg T m L ω-=对B 有212Kmg T m L ω+=⋅解得1ω=当ω>时,A 、B 相对于转盘会滑动,故A 正确; B .当B 达到最大静摩擦力时,绳子开始出现弹力222Kmg m L ω=⋅解得2ω=ω<<B 正确;C .当ω在0ω<<B 所受的摩擦力变大;当ω=时,B 受到的摩擦力达到最大;当ωω<<B 所受摩擦力不变,故C 错误;D .当ω在0ω<<范围内增大时,A 所受摩擦力一直增大,故D 错误。
一、第六章 圆周运动易错题培优(难)1.如图所示,叠放在水平转台上的物体 A 、B 及物体 C 能随转台一起以角速度 ω 匀速转动,A ,B ,C 的质量分别为 3m ,2m ,m ,A 与 B 、B 和 C 与转台间的动摩擦因数都为 μ ,A 和B 、C 离转台中心的距离分别为 r 、1.5r 。
设最大静摩擦力等于 滑动摩擦力,下列说法正确的是(重力加速度为 g )( )A .B 对 A 的摩擦力一定为 3μmg B .B 对 A 的摩擦力一定为 3m ω2rC .转台的角速度需要满足grμωD .转台的角速度需要满足23grμω 【答案】BD 【解析】 【分析】 【详解】AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有()()233f m r m g ωμ=故A 错误,B 正确;CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有()()233m r m g ωμ对AB 整体有()()23232m m r m m g ωμ++对物体C 有()21.52m r mg ωμ解得grμω故C 错误, D 正确。
故选BD 。
2.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .滑块对轨道的压力为2v mg m R+B .受到的摩擦力为2v m RμC .受到的摩擦力为μmgD .受到的合力方向斜向左上方【答案】AD 【解析】 【分析】 【详解】A .根据牛顿第二定律2N v F mg m R-=根据牛顿第三定律可知对轨道的压力大小2NN v F F mg m R'==+ A 正确;BC .物块受到的摩擦力2N ()v f F mg m Rμμ==+BC 错误;D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
一、第六章 圆周运动易错题培优(难) 1.如图所示,在水平圆盘上放有质量分别为m、m、2m的可视为质点的三个物体A、B、C,圆盘可绕垂直圆盘的中心轴OO转动.三个物体与圆盘的动摩擦因数均为0.1,最
大静摩擦力认为等于滑动摩擦力.三个物体与轴O共线且OA=OB=BC=r=0.2 m,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g=10 m/s2,则对于这个过程,下列说法正确的是( )
A.A、B两个物体同时达到最大静摩擦力
B.B、C两个物体的静摩擦力先增大后不变
C.当5/rads时整体会发生滑动
D.当2/5/radsrads时,在增大的过程中B、C间的拉力不断增大
【答案】BC 【解析】 ABC、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2Fmr可知,因为C的半径最大,质量最大,故C所需要的向心力增加最快,最先达到最大静摩擦力,此时
2122Cmgmr
,计算得出:112.5/20.4gradsr ,当C的摩擦力达到最大静
摩擦力之后,BC开始提供拉力,B的摩擦力增大,达最大静摩擦力后,AB之间绳开始有力的作用,随着角速度增大,A的摩擦力将减小到零然后反向增大,当A与B的摩擦力也达到最大时,且BC的拉力大于AB整体的摩擦力时物体将会出现相对滑动,此时A与B还受到绳的拉力,对C
可得:22222Tmgmr ,对AB整体可得:2Tmg ,计算得出:2gr ,当15/0.2gradsr 时整体会发生滑动,故A错误,BC正确;
D、当2.5rad/s5rad/s?时,在增大的过程中B、C间的拉力逐渐增大,故D错
误; 故选BC
2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k的弹簧,弹簧的一端固定于轴O上,另一端连接质量为m的小物块A(可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g,物块A始终与圆盘一起转动。则( ) A.当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心
一、第六章 圆周运动易错题培优(难)1.如图甲所示,半径为R 、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A 时,小球受到的弹力F 与其过A 点速度平方(即v 2)的关系如图乙所示。
设细管内径略大于小球直径,则下列说法正确的是( )A .当地的重力加速度大小为R bB .该小球的质量为a bR C .当v 2=2b 时,小球在圆管的最高点受到的弹力大小为a D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向上 【答案】BC 【解析】 【分析】 【详解】AB .在最高点,根据牛顿第二定律2mv mg F R-= 整理得2mv F mg R=- 由乙图斜率、截距可知a mg =, m a R b=整理得a m Rb =,b g R= A 错误,B 正确;C .由乙图的对称性可知,当v 2=2b 时F a =-即小球在圆管的最高点受到的弹力大小为a ,方向竖直向下,C 正确; D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向下,D 错误。
故选BC 。
2.如图所示,水平转台上有一个质量为m 的小物块,用长为L 的轻细绳将物块连接在通过转台中心的转轴上,细绳与竖直转轴的夹角为θ,系统静止时细绳绷直但张力为零.物块与转台间动摩擦因数为μ(<tan μθ),设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,在物块离开转台前( )A .物块对转台的压力大小等于物块的重力B .转台加速转动的过程中物块受转台的静摩擦力方向始终指向转轴C .绳中刚出现拉力时,sin gL μθD cos gL θ【答案】CD 【解析】 【详解】A .当转台达到一定转速后,物块竖直方向受到绳的拉力,重力和支持力,故A 错误;B .转台加速转动的过程中,物块做非匀速圆周运动,故摩擦力不指向圆心,B 错误;C .当绳中刚好要出现拉力时,2sin μmg m ωL θ=故sin gL μωθ=C 正确;D .当物块和转台之间摩擦力为0时,物块开始离开转台,故2tan sin mg m L θωθ=cos gL θ,故D 正确;故选CD 。
一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,可视为质点的、质量为m 的小球,在半径为R 的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )A .小球能够到达最高点时的最小速度为0B gRC 5gR 为6mgD .如果小球在最高点时的速度大小为gR ,则此时小球对管道的外壁的作用力为3mg 【答案】ACD 【解析】 【分析】 【详解】A .圆形管道内壁能支撑小球,小球能够通过最高点时的最小速度为0,选项A 正确,B 错误;C .设最低点时管道对小球的弹力大小为F ,方向竖直向上。
一、第六章 圆周运动易错题培优(难)1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )A .A 、B 两个物体同时达到最大静摩擦力 B .B 、C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动D .当2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时2122C mg m r μω= ,计算得出:112.5/20.4grad s rμω=== ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C可得:22222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2grμω=,当15/0.2grad s rμω>== 时整体会发生滑动,故A 错误,BC 正确; D 、当 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC2.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .滑块对轨道的压力为2v mg m R+B .受到的摩擦力为2v m RμC .受到的摩擦力为μmgD .受到的合力方向斜向左上方【答案】AD 【解析】 【分析】 【详解】A .根据牛顿第二定律2N v F mg m R-=根据牛顿第三定律可知对轨道的压力大小2NN v F F mg m R'==+ A 正确;BC .物块受到的摩擦力2N ()v f F mg m Rμμ==+BC 错误;D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
一、第六章 圆周运动易错题培优(难)1.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin 54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。
由以上的分析可知,开始时AB 是拉力不为0,当转速在54g l ≤ω≤53gl时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于54gl后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于53gl后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l时,绳子AB 的拉力都是0,故D 正确。
一、第六章 圆周运动易错题培优(难) 1.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A、B、C,质量分别为m、2m、3m,A叠放在B上,C、B离圆心O距离分别为2r、3r。C、B之间用细线相连,圆盘
静止时细线刚好伸直无张力。已知C、B与圆盘间动摩擦因数为,A、B间摩擦因数为3,设最大静摩擦力等于滑动摩擦力,重力加速度为g,现让圆盘从静止缓慢加速,则
( )
A.当23gr时,A、B即将开始滑动
B.当2gr时,细线张力
32mg
C.当gr时,C受到圆盘的摩擦力为0 D.当25gr时剪断细线,C将做离心运动
【答案】BC 【解析】 【详解】 A. 当A开始滑动时有:
2033Afmgmr
解得:
0gr
=
当23ggrr时,AB未发生相对滑动,选项A错误; B. 当2ggrr时,以AB为整体,根据2Fmr向=可知
29332Fmrmg向=
B与转盘之间的最大静摩擦力为: 23Bmfmmgmg() 所以有: BmFf向
此时细线有张力,设细线的拉力为T, 对AB有: 2333mgTmr
对C有: 232CfTmr
解得 32mgT,32Cmgf
选项B正确; C. 当gr时,
AB需要的向心力为:
2339ABBmFmrmgTf==
解得此时细线的拉力96BmTmgfmg= C需要的向心力为:
2326CFmrmg==
C受到细线的拉力恰好等于需要的向心力,所以圆盘对C的摩擦力一定等于0,选项C正
确;
D. 当25gr时,对C有:
212325CfTmrmg
剪断细线,则 1235CCmfmgfmg
所以C与转盘之间的静摩擦力大于需要的向心力,则C仍然做匀速圆周运动。选项D错误。 故选BC。
2.如图所示,叠放在水平转台上的物体 A、B 及物体 C 能随转台一起以角速度 匀速转动,A,B,C 的质量分别为 3m,2m,m,A 与 B、B 和 C 与转台间的动摩擦因数都为 ,A 和B、C 离转台中心的距离分别为 r、1.5r。设最大静摩擦力等于 滑动摩擦力,下列说法正确的是(重力加速度为 g )( ) A.B 对 A 的摩擦力一定为 3mg B.B 对 A 的摩擦力一定为 3m2r
一、第六章 圆周运动易错题培优(难)1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )A .A 、B 两个物体同时达到最大静摩擦力 B .B 、C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时2122C mg m r μω= ,计算得出:112.5/20.4grad s rμω=== ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C可得:22222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2grμω=当15/0.2grad s rμω>== 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。
一、第六章 圆周运动易错题培优(难)1.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .滑块对轨道的压力为2v mg m R+B .受到的摩擦力为2v m RμC .受到的摩擦力为μmgD .受到的合力方向斜向左上方【答案】AD 【解析】 【分析】 【详解】A .根据牛顿第二定律2N v F mg m R-=根据牛顿第三定律可知对轨道的压力大小2NN v F F mg m R'==+ A 正确;BC .物块受到的摩擦力2N ()v f F mg m Rμμ==+BC 错误;D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
故选AD 。
2.如图所示,一个竖直放置半径为R 的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是( )A .小球在最高点时速度v gRB.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力【答案】BD【解析】【分析】【详解】A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误;<,轨道对小球的作用力方向向上,有B.在最高点时,若v gR2v-=mg N mR可知速度越大,管壁对球的作用力越小;>,轨道对小球的作用力方向向下,有若v gR2v+=N mg mR可知速度越大,管壁对球的弹力越大。
选项B正确;C.当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C错误;D.当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D正确。
一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。
若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )A .1rad/sB .3rad/sC .4rad/sD .9rad/s【答案】BC 【解析】 【分析】 【详解】根据题意可知,斜面体的倾角满足3tan 0.54θμ=>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时11cos sin N f mg θθ+= 2111sin cos N f m r θθω-=又因为滑动摩擦力满足11f N μ=联立解得1522rad/s 11ω=当转动角速度变大,木块恰要向上滑动时22cos sin N f mg θθ=+2222sin cos N f m r θθω+=又因为滑动摩擦力满足22f N μ=联立解得252rad/s ω=综上所述,圆盘转动的角速度满足522rad/s 2rad/s 52rad/s 7rad/s 11ω≈≤≤≈ 故AD 错误,BC 正确。
故选BC 。
3.水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动,如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )A .小球到达c gRB .小球在c 点将向下做自由落体运动C .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点需要时间为2R g【答案】ACD 【解析】 【分析】 【详解】小球恰好通过最高点C,根据重力提供向心力,有: 2v mg m R= 解得:v gR =A 正确;小球离开C 点后做平抛运动,即水平方向做匀速运动,0bd s v t = 竖直方向做自由落体运动,2122R gt =解得:2R t g=;2bd s R = 故B 错误;CD 正确;故选ACD4.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R , 小球半径为r ,则下列说法中正确的是( )A .小球通过最高点时的最小速度min v Rg =B .小球通过最高点时的最小速度min 0v =C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 【答案】BC 【解析】 【详解】AB.因是在圆形管道内做圆周运动,所以在最高点时,内壁可以给小球沿半径向外的支持力,所以小球通过最高点时的最小速度可以为零.所以选项A 错误,B 正确;C.小球在水平线ab 以下的管道中运动时,竖直向下的重力沿半径方向的分力沿半径方向向外,小球的向心力是沿半径向圆心的,小球与外壁一定会相互挤压,所以小球一定会受到外壁的作用力,内壁管壁对小球一定无作用力,所以选项C 正确;D.小球在水平线ab 以上的管道中运动时,当速度较小时,重力沿半径方向上的分力大于或等于小球做圆周运动需要的向心力,此时小球与外壁不存在相互挤压,外侧管壁对小球没有作用力,选项D 错误.5.如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。
设本题中的最大静摩擦力等于滑动摩擦力。
以下说法正确的是( )A .B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2rC 3grμD .转台的角速度可能等于grμ 【答案】BC 【解析】 【分析】 【详解】AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有2(3)(3)f m r m g ωμ=故A 错误,B 正确;CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有2(3)(3)m r m g ωμ对AB 整体有()()23232m m r m m g ωμ+≤+对物体C 有()21.5m r mg ωμ≤解得23grμω≤故C 正确,D 错误。
故选BC 。
6.如图所示,足够大的水平圆台中央固定一光滑竖直细杆,原长为L 的轻质弹簧套在竖直杆上,质量均为m 的光滑小球A 、B 用长为L 的轻杆及光滑铰链相连,小球A 穿过竖直杆置于弹簧上。
让小球B 以不同的角速度ω绕竖直杆匀速转动,当转动的角速度为ω0时,小球B 刚好离开台面。
弹簧始终在弹性限度内,劲度系数为k ,重力加速度为g ,则A .小球均静止时,弹簧的长度为L -mgkB .角速度ω=ω0时,小球A 对弹簧的压力为mgC .角速度ω02kgkL mg-D .角速度从ω0继续增大的过程中,小球A 对弹簧的压力不变【答案】ACD 【解析】 【详解】A .若两球静止时,均受力平衡,对B 球分析可知杆的弹力为零,B N mg =;设弹簧的压缩量为x ,再对A 球分析可得:1mg kx =,故弹簧的长度为:11mgL L x L k=-=-, 故A 项正确;BC .当转动的角速度为ω0时,小球B 刚好离开台面,即0BN '=,设杆与转盘的夹角为θ,由牛顿第二定律可知:20cos tan mg m L ωθθ=⋅⋅ sin F mg θ⋅=杆而对A 球依然处于平衡,有:2sin k F mg F kx θ+==杆而由几何关系:1sin L x Lθ-=联立四式解得:2k F mg =,0ω=则弹簧对A 球的弹力为2mg ,由牛顿第三定律可知A 球队弹簧的压力为2mg ,故B 错误,C 正确;D .当角速度从ω0继续增大,B 球将飘起来,杆与水平方向的夹角θ变小,对A 与B 的系统,在竖直方向始终处于平衡,有:2k F mg mg mg =+=则弹簧对A 球的弹力是2mg ,由牛顿第三定律可知A 球队弹簧的压力依然为2mg ,故D 正确; 故选ACD 。
7.如图,在竖直平面内固定半径为r 的光滑半圆轨道,小球以水平速度v 0从轨道外侧面的A 点出发沿圆轨道运动,至B 点时脱离轨道,最终落在水平面上的C 点,不计空气阻力、下列说法正确的是( )A .从A 到B 过程,小球沿圆切线方向加速度逐渐增大 B .从A 到B 过程,小球的向心力逐渐增大C .从B 到C 过程,小球做变加速曲线运动D .若从A 点静止下滑,小球能沿圆轨道滑到地面 【答案】AB 【解析】 【分析】 【详解】设重力mg 与半径的夹角为θ,对圆弧上的小球受力分析,如图所示A .建立沿径向和切向的直角坐标系,沿切向由牛顿第二定律有sin t mg ma θ=因夹角θ逐渐增大,sin θ增大,则小球沿圆切线方向加速度逐渐增大,故A 正确;B .从A 到B 过程小球加速运动,线速度逐渐增大,由向心力2n v F m r=可知,小球的向心力逐渐增大,故B 正确;C .从B 到C 过程已离开圆弧,在空中只受重力,则加速度恒为g ,做匀变速曲线运动(斜下抛运动),故C 错误;D .若从A 点静止下滑,当下滑到某一位置时斜面的支持力等于零,此时小球会离开圆弧做斜下抛运动而不会沿圆轨道滑到地面,故D 错误。
故选AB 。
8.如图所示,b 球在水平面内做半径为R 的匀速圆周运动,BC 为圆周运动的直径,竖直平台与b 球运动轨迹相切于B 点且高度为R 。
当b 球运动到切点B 时,将a 球从切点正上方的A 点水平抛出,重力加速度大小为g ,从a 球水平抛出开始计时,为使b 球在运动一周的时间内与a 球相遇(a 球与水平面接触后不反弹),则下列说法正确的是( )A.a球在C点与b球相遇时,a球的运动时间最短B.a球在C点与b球相遇时,a球的初始速度最小C.若a球在C点与b球相遇,则a2gRD.若a球在C点与b球相遇,则b 2R g【答案】C 【解析】【分析】【详解】A.平抛时间只取决于竖直高度,高度R不变,时间均为2Rtg=A错误。
BC.平抛的初速度为xvt=时间相等,在C点相遇时,水平位移最大max 2x R=则初始速度最大为:max 22 Rv gRt==故B错误,C正确。
D.在C点相遇时,b球运动半个周期,故b球做匀速圆周运动的周期为222b RT tg==故D错误。
故选C。
9.如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。
现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点。
则杆对球的作用力是()①a处为拉力,b处为拉力②a处为拉力,b处为推力③a处为推力,b处为拉力④a处为推力,b处为推力A .①③B .②③C .①②D .②④【答案】C 【解析】 【分析】 【详解】a 处圆心在上方,合力提供向心力向上,故需有向上的拉力大于向下的重力;b 处合力向下,重力也向下,受力如图:根据牛顿第二定律有21v F mg m R=当F 1<0,杆对球有推力,向上; 当F 1>0,杆对球有拉力,向下; 当F 1=0,杆对球无作用力。