人教-数学-五年级-下册-第四单元-分数的意义和性质-知识点
- 格式:doc
- 大小:69.50 KB
- 文档页数:3
第四单元分数的意义和性质第1课时分数的产生和分数的意义第2课时分数与除法第3课时真分数和假分数第4课时假分数化成整数或带分数教学内容:义务教育教科书《数学》(人教版)五年级下册《分数的意义和性质》教材P54例3,“做一做”及P55-56第4-7题。
教学目标:1.使学生经历探索把假分数化为整数或带分数的过程,掌握把假分数成整数或带分数的方法。
2.培养学生的观察、分析和概括能力,应用把假分数转化为整数或带分数的方法解决问题。
3.提高学生自主探索、合作交流的能力,激发学生的学习兴趣。
教学重难点:掌握假分数化成整数或带分数的方法。
教学过程:一、复习揭题:师导入并揭题:同学们,上节课我们认识了真分数和假分数的知识。
你还记得什么分数能写成带分数的形式吗?(假分数)有时根据需要将假分数化为整数或带分数。
今天我们就来研究如何把假分数化为整数或带分数。
(板书课题)设计意图:通过谈话,沟通新旧知识间的联系,为接下来的新学习做好准备。
二、合作探究,明白算理。
1.教学例3.过渡:同学们,接下来,我们就一起来探究假分数化成整数或带分数的方法。
(1)探究假分数化成整数的方法。
①用多媒体课件出示题目:把、化成整数。
②让学生以小组为单位,自主探究假分数化成整数的方法。
先让学生小组内交流互动,再反馈,学生的想法有很多种,如:a.从分数的意义得出结论:里面有3个。
就是1,因此=1;里面有8个,4个是1,8个就是2,因此=2。
b.借助圆片涂色,直观得到=1,=2的结论。
c.根据分数与除法的关系,因为33=3÷3,而3÷3=1,因此33=1;48=8÷4,而8÷4=2,因此48=2。
只要学生的想法合理,教师都应予以肯定。
③师生小结。
教师让学生先相互交流,再引导学生小结出假分数化成整数的方法。
小结:当假分数的分子是分母的倍数时,这个假分数可以化成整数。
用分子除以分母,所得的商就是这个假分数所化成的整数。
人教版数学五下第4章《分数的意义和性质》(分数与除法的关系)教案一. 教材分析人教版数学五年级下册第四章《分数的意义和性质》主要讲述了分数与除法的关系。
这一章的内容是学生进一步理解分数概念,掌握分数的运算方法,以及理解分数在实际生活中的应用。
通过本章的学习,学生将能够理解分数的意义,掌握分数的加减乘除运算,以及分数与除法的关系。
二. 学情分析五年级的学生已经掌握了分数的基本概念和简单的运算方法,但是对于分数与除法的关系可能还不太理解。
因此,在教学过程中,我将以学生已有的知识为基础,引导学生通过探究活动,理解分数与除法的关系,提高他们的数学思维能力。
三. 教学目标1.理解分数的意义和性质,掌握分数的加减乘除运算方法。
2.理解分数与除法的关系,能够运用分数解决实际问题。
3.培养学生的数学思维能力,提高他们的数学素养。
四. 教学重难点1.分数的意义和性质的理解。
2.分数与除法的关系的把握。
五. 教学方法采用问题驱动法、探究学习法、小组合作学习法等,引导学生主动参与,积极思考,通过探究活动,理解分数的意义和性质,掌握分数的运算方法,以及理解分数与除法的关系。
六. 教学准备1.PPT课件2.教学用具(如分数模型、卡片等)七. 教学过程导入(5分钟)我会通过一个实际问题引入分数的概念:“如果把一个苹果平均分成5份,你吃了2份,那么你吃了这个苹果的几分之几?”让学生思考并回答,引出分数的概念。
呈现(10分钟)我会用PPT课件呈现分数的意义和性质,以及分数与除法的关系。
通过分数模型的展示,让学生直观地理解分数的意义和性质。
同时,我会讲解分数与除法的关系,让学生明白分数就是除法的一种表现形式。
操练(10分钟)我会让学生进行一些分数的运算练习,如分数的加减乘除。
通过这些练习,让学生进一步理解和掌握分数的运算方法。
巩固(10分钟)我会用一些实际问题,让学生运用分数的知识解决。
如:“一个篮子里有5个苹果,小明拿走了3个,小明拿走了篮子里苹果的几分之几?”通过这些问题,让学生巩固分数的知识。
《分数的意义和性质》知识点归纳知识点一、分数的意义1、一个物体、一些物体或一个计量单位都可以看作一个整体。
一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。
2、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
3、把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
例如9的分数单位是1。
知识点二、分数与除法的关系1、两个数相除可以用分数的形式表示,其中被除数是这个分数的分子,除数是这个分数的分母,分数线相当于除号。
同理,一个分数也可以看成两个数相除的形式。
式子表示:被除数÷除数=被除数除数(除数≠0)字母表示:a÷b=ab(b≠0)2、由于0不能为除数,因此0也不能为分母。
3、分数常见的列式计算问题:①把数a平均分成b份,求每份是多少。
②求一个数a是(占)另一个数b的几分之几。
③求一个数a是另一个数b的几倍。
以上问题的计算方法是一样的,都是求a÷b等于多少。
知识点三、真分数和假分数1、分子比分母小的分数叫做真分数。
真分数小于1 。
2、分子比分母大,或者分子相等分母的分数,叫做假分数。
假分数大于或等于1 。
温馨提示:11、22、33… 这些数是假分数。
3、由不为0的整数和真分数合成的数叫做带分数,带分数是假分数的另一种形式。
4、带分数的读法:先读整数部分,再读“又”字,最后读分数部分。
读作:二又三分之一。
例、2135、带分数的写法:先写整数部分,再写分数部分,整数部分的中间位置要与分数部分的分数线对齐。
例、五又六分之一写作:51。
66、带分数大于1 。
7、假分数化为整数或带分数的方法:①用假分数的分子除以分母,能整除的话,商就是所求的整数。
②用假分数的分子除以分母,不能整除的话,商就是带分数的整数部分,余数就是分数部分的分子,分母不变。
8、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
知识点四、公因数1、如果一个整数同时是几个整数的因数,则这个整数叫做它们的公因数。
第4单元 分数的意义与性质 单元总复习【本章主要内容】一、分数的意义:单位“1”的理解,分数与除法的关系 二、真分数和假分数 三、分数的基本性质 四、最大公因数与约分 五、最小公倍数与通分 六、分数与小数的互化 七、综合运用【知识归纳及题型练习】1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如54 的分数单位是51。
4、分数与除法 A÷B=B A (B≠0,除数不能为0,分母也不能够为0) 例如: 4÷5= 54【练习1】涂涂涂涂涂涂涂涂涂涂涂涂涂涂涂涂【解析过程】【练习2】(2018--2019禅城区期末统考) 把m 9的铁丝平均截成8段,3段占全长的)()(,每段长_______m 【解析过程】5、真分数和假分数、带分数①、真分数:分子比分母小的分数叫真分数。
真分数<1。
②、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≥1 ③、带分数:带分数由整数和真分数组成的分数。
带分数>1.读作几又几分之几。
4、真分数<1≤假分数 真分数<1<带分数 6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:510=10÷5=2 521=21÷5=4 51(2)整数化为假分数,用整数乘以分母得分子 如:2=48)( 2×4=8 (8作分子) (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:551=526)( 5×5+1=26(4)1等于任何分子和分母相同的分数。
如:1=22 = 33 = 44 = 55 =… = 100100=…【练习3】617是一个_______分数,它的分数单位是______,它有_______个这样的分数单位,再添上__________个这样的分数单位是最小的合数。
《分数的意义和性质》教学目标:1、理解分数的意义和单位“1”的含义;2、理解分数与除法的关系,会用分数表示除法的商;3、掌握求一个数是另一个数的几分之几的问题的解题方法。
4、掌握把假分数化成整数或带分数的方法;教学重、难点:1、掌握求一个数是另一个数的几分之几的问题的解题方法。
2、掌握把假分数化成整数或带分数的方法;3、分数的意义和性质;4、约分的方法。
教学内容:一、分数的意义知识点1:单位“1”的含义和分数的意义1、单位“1”的含义把一张长方形纸片平均分成四分,每一份都是这张长方形纸片的(),把一盘面包平均分成三份,每一份都是这盘面包的()。
这里的一个物体或一些物体,都可以看做一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”。
2、明确分数的意义把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。
若干份是指:3、分数各部分所表示的意义,如,4是(),表示();“-”是(),表示();1是(),表示()。
知识点2:分数单位的意义分数单位的意义:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
注意:1、分母不同的分数,它们的分数单位()。
2、一个分数的分母越小,分数单位(),分母越大,分数单位()。
【例题讲解】例1、(1)是把单位“ 1”平均分成()份,表示这样()份的数。
(2)把5米长的绳子平均分成2份,这里单位“1”是 ( ),每份是5米的( )(3)千米是把()平均分成()份,取了这样的()份。
例2、练习:1.判断。
(1)把单位“1”分成几份,表示这样一份或几份的数叫做分数( )。
(2)1 和单位“1”相等( )。
(3)把全班48人平均分成3组,每组人数是全班的三分之一 ( )。
(4)把单位“1”平均分成8份,取其中的5份,就是八分之五()。
2. 在括号里填上适当的分数。
400千克=()吨 75厘米=()米 15分=()时50平方分米=()平方米 30时=()日3.把一根5米铁丝平均截成8段,每段占全长的(),3段占全长的(),每段长()米。
虹桥一小四学年数学学科第四单元知识梳理及线上学习质量评价建议一、单元梳理(一)单元主题:本单元以“分数的意义和性质”为主题。
主要内容有:分数的意义、真分数和假分数、分数的基本性质、约分、通分以及分数和小数的互化。
分数知识是小学数学教学的重要内容,通过本单元的教学,使学生对分数的意义由感性认识上升到理性认识,概括分数的意义,理解与分数有关的基本概念,掌握必要的约分、通分以及分数和小数互化等技能,为以后系统学习四则运算等知识打下必要基础。
本单元是在学生已经掌握了小数知识并初步接触了分数知识的情况下进行学习的,是进一步学习分数相关知识的基础。
(二)本单元的教学目标是:1.知道分数是怎么产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质会比较分数的大小。
4.理解公因数与最大公因数、公倍数与最小公倍数、能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分,并能应用所学知识解决简单的实际问题。
5.会进行分数与小数的互化。
(三)各节的内容编排体系及内在联系如下所表示:分数的产生分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。
分数与除法:分子(被除数),分母(除数),分数值(商)。
真分数真分数小于1真分数与假分数假分数假分数大于1或等于1带分数(整数部分和真分数)假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)分数的基本性质:分数的分子、分母同时扩大或缩小相同分数的基本性质的倍数,分数的大小不变。
通分、通分子:化成分母不同,大小不变的分数(通分)最大公因数约分求最大公因数 (短除法)最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数通分求最小公倍数 (短除法)分数比大小(通分、同分子、化成小数、仿通分)通分及其方法小数化分数:小数化成分母是10、100...的分数再化简分数和小数的互化分数化小数:分子除以分母,除不尽的取近似值(四)教学重点:1.理解分数的意义。
人教版数学五下第4章《分数的意义和性质》复习分数的意义和性质一、本章学习目标:1.复习并掌握分数的意义和性质。
2.学会运用分数的基本运算法则。
二、课前准备:1.复习上节课相关内容。
2.准备教学所需的教辅资料和学生练习册。
三、教学内容及重难点分析:1.分数的基本概念:–分数的定义;–分子、分母的含义;–分数的大小比较。
2.分数的意义和性质:–分数的表示方法;–分数与小数的关系;–分数的约分与通分。
四、教学重点与难点:•重点:掌握分数的意义及性质,能灵活运用分数进行简单的计算。
•难点:理解分数与小数的关系,掌握分数的约分与通分方法。
五、教学过程安排:1.复习导入(5分钟):–复习上节课内容,帮助学生回顾分数的基本概念。
2.新知讲解(15分钟):–讲解分数的意义和性质,重点介绍分数的表示方法和分数与小数的关系。
3.分组讨论(10分钟):–学生分组讨论练习题,互相合作解决问题。
4.练习巩固(15分钟):–布置练习题,巩固学生对分数概念的掌握和运用能力。
5.课堂小结(5分钟):–对本节课内容进行总结,强调学习重点和难点。
六、课后作业安排:1.完成课堂练习册上的相关题目。
2.思考如何用分数解决实际生活中的问题。
七、板书设计:•分数的基本概念•分数的意义和性质•分数与小数的关系•分数的约分与通分方法八、教学反思:本节课教学内容主要是对分数的意义和性质进行复习,通过讲解和练习,学生掌握了分数的基本概念和运用方法。
在教学过程中,需要注意引导学生主动思考和互动合作,提高他们的学习兴趣和能力。
以上是本章教学计划的大致安排,希望能够帮助学生更好地理解和掌握分数的概念。
教师应根据实际情况调整教学步骤和方式,确保教学内容的质量和效果。
第四单元分数的意义和性质
一、分数的产生和意义
1、单位“1”表示:一个物体、一个计量单位或是一些物体都可以看成一个整体。
这个整体可以用自然数1来表示,我们通常把它叫做单位“1”
2、把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
3、把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
4、分数与除法的关系:除法中的被除数相当于分数的分子,除数相当于分母。
分数后不带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
求每份占总数的几分之几(没有单位,表示的是一种关系),就用一份数÷总分数。
求每份是总数的几分之几千克(带单位),就用具体的总量÷总份数=每份的个数(带单位)。
5、分数大小的比较:分母相同的两个分数,分子大的分数较大。
分子相同的两个分数,分母小的分数较大。
异分母分数,先化成同分母分数,再进行比较。
二、真分数和假分数:
分子比分母小的分数叫做真分数。
真分数比1小。
分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
把假分数化成整数或带分数:用分子÷分母。
能整除的,所得的商就是整数;不能整除的,所得的商就是带分数的整数部分,余数是就是分数部分的分子,分母不变。
三、分数的基本性质——分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变。
四、约分——把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(方法就是分子和分母同时除以它们的公因数。
)分子和分母只有公因数1的分数叫做最简分数
最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最
大公因数。
两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。
互质数:公因数只有1的两个数叫做互质数。
两个数互质的特殊判断方法:
①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般
情况下这两个数也都是互质数。
求最大公因数的方法:
①倍数关系:最大公因数就是较小数。
②互质关系:最大公因数就是1
③一般关系:从大到小看较小数的因数是否是较大数的因数。
五、通分——把异分母分数化成和原来分数相等的同分母的分数,叫做通分。
方法:先求出原来几个分母的最小公倍数,再根据分数的基本性质把各个分数化成用这个最小公倍数作公分母的分数。
求最小公倍数的方法:
①倍数关系:最小公倍数就是较大数。
②互质关系:最小公倍数就是它们的乘积。
③一般关系:大数翻倍(从小到大看较大数的倍数是否是较小数的倍数)。
六、分数和小数的互化。
小数化成分数:原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。
分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留两位小数。
)
判断分数是否能化成有限小数的方法:①判断分数是否是最简分数;如果不是最简分数,先把它化成最简分数;②把分数的分母分解质因数: 如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
七、牢记:。