高等代数(北大版第三版)习题答案II
- 格式:doc
- 大小:6.56 MB
- 文档页数:101
高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。
2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。
第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。
第六章 线性空间1.设,N M ⊂证明:,MN M MN N ==。
证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M ∈α即证M NM ∈。
又因,M N M ⊂ 故M N M =。
再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。
但,N M N ⊂所以MN N =。
2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。
证 ),(L N M x ∈∀则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。
反之,若)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x NL ∈,得),(L N M x ∈故),()()(L N M L M N M ⊂于是)()()(L M N M L N M =。
若x M NL M N L ∈∈∈(),则x ,x 。
在前一情形X x M N ∈, X ML ∈且,x MN ∈因而()(M L )。
,,N L x M N X M L M N M M N MN ∈∈∈∈∈⊂在后一情形,x ,x 因而且,即X (M N )(M L )所以()(M L )(N L )故 (L )=()(M L )即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。
第10章 双线性函数与辛空间1.V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,f是V上一个线性函数,已知f(ε1+ε3)=1,f(ε2-2ε3)=-1,f(ε1+ε2)=-3,求f(x1ε1+x2ε2+x3ε3).解:先计算出f(ε1)=4,f(ε2)=-7,f(ε3)=-3,就得到f(x1ε1+x2ε2+x3ε3)=4x1-7x2-3x3.2.V及ε1,ε2,ε3同上题,试找出一个线性函数f,使f(ε1+ε3)=f(ε1-2ε3)=0,f(ε1+ε2)=1.解:可算出f(ε1)=f(ε3)=0,f(ε2)=1,就得到f(x1ε1+x2ε2+x3ε3)=x2.3.设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,a1=ε1-ε3,a2=ε1+ε2+ε3,a3=ε2+ε3.试证a1,a2,a3是V的一组基并求它的对偶基(用f1,f2,f3表出).解:可利用定理3.计算由于右端的矩阵的行列式≠0,故a1,a2,a3是V的一组基.设g1,g2,g3是a1,a2,a3的对偶基,则即g1=f2-f3,g2=f1-f2+f3,g3=-f1+2f2-f3.4.设V是一个线性空间,f1,f2,…,f n是V*中非零向量,试证,存在a∈V,使f(a)≠0,i=1,2, (5)证明:每个f i(a)=0作为V上向量的方程,其全体解向量构成V的一个子空间V,且都不等于V.由第六章补充题第5题的结论及解答后面的注,必有a∈V,a∈,i=1,2,…,s.所以a满足f i(a)≠0,i=1,2,V…,s.5.设a1,a2,…,a s是线性空间V中非零向量,证明有f∈V*使f(a i)≠0,i=1,2,…,s.证明:由于a i**∈(V*)*,a i**(f)=f(a i),f∈V*,a i**是(V*)*上的非零向量.由第四题必有f∈V*使f(a i)=a i**(f)≠0.6.V=P[x]3,对p(x)=c0+c1x+c2x2∈V定义试证f1,f2,f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x)使f1,f2,f3是它的对偶基.证明:易证f1,f2,f3都是V=P[x]3上线性函数.令p1(x)=c0+c1x+c2x2使得f1(p1(x))=1,f2(p1(x))=f3(p1(x))=0,即有解出得同样可算出满足由于p1(x),p2(x),p3(x)是V的一组基,而f1,f2,f3是它的对偶基.7.设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V 上一个函数α*:α*(β)=(α,β).(1)证明α*是V上线性函数;(2)证明V到V*的映射:α→α*是V到V*的一个同构映射.(在这个同构下,欧氏空间可看成自身的对偶空间)证明:(1)易证α*是V上线性函数,即α*∈v*.(2)现在令映射φ为下面逐步证明φ是线性空间的同构.①φ是单射.即证明当φ(α)=φ(β)时有α=β.对γ∈V,(φ(α))(γ)=α*(γ)=(α,γ),(φ(β))(γ)=(β,γ).故(α,γ)=(β,γ),∨γ∈V.这样(α,α)=(β,α),(α,β)=(β,β).于是(α-β,α-β)=(α,α)-(α,β)-(β,α)-(β,β)=0,即有α-β=0,因此α=β.②φ是满射.取ε1,ε2,…,εn 是V 的一组标准正交基,令f 1,f 2,…,f n 是它们的对偶基,对f =l 1f 1+…+l n f n ∈V*,令a =l 1ε1+l 2ε2+…+l n εn 则对所有εi ,∀故对所有εi ,有φ(α)(εi )=f (εi ),即φ(α)=f .③φ是线性映射.对α,β,γ∈V,k∈R,∀ φ(α+β)(γ)=(α+β,γ)=(α,γ)+(β,γ)=φ(α)(γ)+φ(β)(γ)=[φ(α)+φ(β)](γ).故φ(α+β)=φ(α)+φ(β).又φ(kα)(γ)=(kα,γ)=k (α,γ)=kφ(α)(γ)=(kφ(α))(γ),故φ(kα)=kφ(α).以上证明了φ是线性空间V 到V *的同构.8.设A 是P 上n 维线性空间V 的一个线性变换.(1)证明:对V 上的线性函数f ,fA 仍是V 上线性函数;(2)定义V *到自身的映射A *为f→fA证明A *是V *上的线性变换(3)设ε1,ε2,…,εn 是V 的一组基,f 1,f 2,…,f n 是它的对偶基,并设A 在ε1,ε2,…,εn 下的矩阵为A .证明:A *在f 1,f 2,…,f n 下的矩阵为A'.(因此A *称作A 的转置映射)证明:(1)α,β∈V,k∈P,有∀∀f A (α+β)=f (A (α+β))=f (A α+A β)=f A α+f A β,f A (kα)=f (A (kα))=f (k A α)=kf A α.故f A 是V 上线性函数.(2)由定义A *f =f A ,对f ,g∈V *,k∈P,α∈V 有∀A *(f +g )(α)=[(f +g )A ](α)=(f +g )(A (α))=f A (α)+g A (α)=(f A +g A )(α)=(A *f +A *g )(α)故A *(f +g )=A *(f )+A *(g ).又(A *(kf ))(α)=(kf )A (α)=kf (A (α))=k (A *f )(α),故A *(kf )=k (A *f ).以上证明了A *是V *上的线性变换.(3)由A (ε1,ε2,…,εn )=(ε1,ε2,…,εn )A ,f i A (ε1,ε2,…,εn )=(f i (ε1),…,f i (εn ))A =(a i1,a i2,…,a in ),于是即有。
高等代数(北大*第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ΛΛ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y ===Λ21,1,021=====++n p p y y y Λ则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21Λ=使()0111000<--=----+++='p n AX X s sΛΛ, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ΛΛ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y ===Λ21,1,021=====++n p p y y y Λ则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21Λ=使()0111000<--=----+++='p n AX X s sΛΛ, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X , 因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
14.证明:二次型()n x x x f ,,,21Λ是半正定的充分必要条件是它的正惯性指数与秩相等。
证 必要性。
采用反证法。
若正惯性指数≠p 秩r ,则r p <。
即()n x x x f ,,,21Λ22122221r p p y y y y y ---+++=+ΛΛ,若令021====p y y y Λ,11===+r p y y Λ,则可得非零解()n x x x ,,,21Λ使()0,,,21<n x x x f Λ。
这与所给条件()n x x x f ,,,21Λ0≥矛盾,故r p =。
充分性。
由r p =,知()n x x x f ,,,21Λ22221p y y y +++=Λ,故有()0,,,21≥n x x x f Λ,即证二次型半正定。
15.证明:2112⎪⎭⎫ ⎝⎛-∑∑==n i i ni i x x n 是半正定的。
证 2112⎪⎭⎫ ⎝⎛-∑∑==n i i ni i x x n()-+++=22221n x x x n Λ()n n n n n x x x x x x x x x x x x x12321212222122222-+++++++++++ΛΛΛΛ()1-=n ()-+++22221n x x x Λ(+++++ΛΛ32121222x x x x x x nn n n x x x x 1222-++Λ)()()()2121233121222121222n n n n x x x x x x x x x x x x +-+++-++-=--Λ()21∑≤<≤-=nj i j ix x。
可见:1) 当n x x x ,,,21Λ不全相等时 ()n x x x f ,,,21Λ()021>-=∑≤<≤nj i j ix x 。
2) 当n x x x ===Λ21时 ()n x x x f ,,,21Λ()021=-=∑≤<≤nj i j ix x。
故原二次型()n x x x f ,,,21Λ是半正定的。
16.设()AX X x x x f n '=,,,21Λ是一实二次型,若有实n 维向量21,X X 使 01>'AX X , 022<'AX X 。
证明:必存在实n 维向量00≠X 使000='AX X 。
设A 的秩为r ,作非退化线性替换CY X =将原二次型化为标准型2222211r r y d y d y d AX X +++='Λ, 其中r d 为1或-1。
由已知,必存在两个向量21,X X 使011>'AX X 和 022<'AX X , 故标准型中的系数r d d ,,1Λ不可能全为1,也不可能全为-1。
不妨设有p 个1,q 个-1, 且r q p =+,即221221q p p p y y y y AX X ++---++='ΛΛ,这时p 与q 存在三种可能:q p =, q p >, q p < 下面仅讨论q p >的情形,其他类似可证。
令11===q y y Λ, 01===+p q y y Λ, 11===++q p p y y Λ, 则由CY Z =可求得非零向量0X 使022122100=---++='++q p p p y y y y AX X ΛΛ, 即证。
17.A 是一个实矩阵,证明:()()A rank A A rank ='。
证 由于()()A A rank A rank '=的充分条件是0=AX 与0='AX A 为同解方程组,故只要证明0=AX 与0='AX A 同解即可。
事实上00='⇒=AX A AX 0=''⇒AX A X ()()0='⇒AX AX 0=⇒AX ,即证0=AX 与0='AX A 同解,故()()A rank A A rank ='。
注 该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。
一、 补充题参考解答1. 用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果: 1)112212221+--++++n n n n n x x x x x x x x Λ; 2)n n x x x x x x 13221-+++Λ; 3)jnj i ini ixx x∑∑≤<≤=+112;4)()21∑=-ni ix x ,其中nx x x x n+++=Λ21。
解 1)作非退化线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=-=-=+=+=+=--+++-n nn n n n n n n n n n yy x y y x y y x y y x yy x y y x 212122121111222211ΛΛΛΛΛΛΛΛΛΛΛΛΛ,即TY X =,则原二次型的标准形为222122122221n n n n y y y y y y f ----+++=-+ΛΛ,且替换矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=10010110111101101001ON NOT , 使⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--='1111OO AT T , 其中⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=21212121N N A 。
2)若23211x x x y ++=, 23212x x x y +-=,则()()21212221y y y y y y -+=-3221x x x x +=, 于是当n 为奇数时,作变换⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=+++++n n i i i i i i i ix y x x x y x x x y 2221121 ()2,,5,3,1-=n i Λ,则21222423222113221----++-+-=+++n n n n y y y y y y x x x x x x ΛΛ,且当14+=k n 时,得非退化替换矩阵为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=1011000111111100000111111111ΛΛΛΛΛΛΛΛΛΛΛΛT , 当34+=k n 时,得非退化替换矩阵为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=1011000111111100000111111111ΛΛΛΛΛΛΛΛΛΛΛΛT , 故当n 为奇数时,都有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---='0111111O AT T 。
当n 为偶数时,作非退化线性替换⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+=+-=++=---+++++222211121121n n n n n n i i i i i i i ix x y x x y x x x y x x x y ()3,,5,3,1-=n i Λ,则2212423222113221n n n n y y y y y y x x x x x x -++-+-=+++--ΛΛ,于是当k n 4=时,得非退化替换矩阵为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=111100111111000011111111ΛΛΛΛΛΛΛΛΛΛΛT , 于是当24+=k n 时,得非退化替换矩阵为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=111100111111000011111111ΛΛΛΛΛΛΛΛΛΛΛT , 故当n 为偶数时,都有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---='111111O AT T 。
3) 由配方法可得+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=∑∑==232221314321nj j n j j x x x x f ()22121112n n n x nn x n x n n ++⎪⎭⎫ ⎝⎛+⋅-+-Λ,于是可令⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=+=+=+=--==∑∑n n nn n nj jn j jx y x n x y x x y x x y 1312111322211ΛΛΛΛΛΛΛ,则非退化的线性替换为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=-=-----=-----=----n n nn n nn n n y x y n y x yn y n y y x y ny n y y y x 111131111312111132213211ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,且原二次型的标准形为()2212221211243n n y nn y n n y y f ++-+++=-Λ, 相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------------=100011000111100111311011131211ΛΛΛΛΛΛΛΛΛΛΛn n n n n n n T , 又因为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1212121211212121211212121211ΛΛΛΛΛΛΛΛΛA , 所以()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+-='n n n n AT T 10001200000640000043000001ΛΛΛΛΛΛΛΛΛΛΛ。