epdm薄膜橡胶包覆材料的粘-超弹本构模型研究
- 格式:docx
- 大小:39.30 KB
- 文档页数:3
第三章非线性粘弹流体的本构方程1.本构方程概念本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。
两种。
唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。
以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。
分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。
采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。
为此首先提出能够描述大分子链运动的正确模型是问题关键。
根据研究对象不同,象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。
目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。
同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。
从形式上分,速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。
积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。
积分又分为单重积分或多重积分。
判断一个本构方程的优劣主要考察:1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。
2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。
3)有承前启后的功能。
例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。
基于ABAQUS的橡胶材料粘弹性特性仿真王永冠1,黄友剑1,卜继玲21.株洲时代新材科技股份有限公司技术中心,株洲,412007.2.西南交通大学机械工程学院,成都,610031摘要:本文通过一个橡胶关节产品的径向载荷作用下材料及产品力学性能的变化为例,研究橡胶材料的粘弹性对其及产品性能的影响。
分析过程充分说明Abaqus是研究橡胶粘弹性能的强有力的有限元分析工具。
关键词:橡胶材料,ABAQUS,粘弹性,滞回曲线1 引言自然界有两类众所周知的材料:弹性固体和粘性流体。
弹性固体具有确定的构形,在静载作用下发生的变形与时间无关;粘性流体没有确定的形状,在外力作用下形变随时间而发展。
而有一些材料常同时具有弹性和粘性两种不同机理的变形,综合体现弹性固体和粘性流体的特性,材料的这种性质称为粘弹性。
这类材料受力后的变形过程是一个延迟过程。
因此,这类材料的应力不仅与当时的应变有关,而且与应变的全部变化过程有关,材料应力应变意义对应的关系已不存在,应以应变关系与时间有关,这类材料称为粘弹性材料[1]。
2 材料粘弹性力学行为物质粘弹性的宏观表象描述,着重于物质的力学行为与时间、频率和温度的相关性。
本节简要阐述物质的粘弹性性能:准静态条件下物体的应力应变随时间而变化的基本现象,即蠕变和应力松弛;谐变作用时粘弹性性能的频率相关性;粘弹性行为的温度依赖性。
本文通过一个橡胶关节产品径向加载下的计算,且考虑橡胶材料的粘弹性属性,来全面系统地研究橡胶产品的各项力学性能。
有限元模型及材料属性定义见图1所示。
图1 橡胶关节的有限元模型及材料属性定义考虑橡胶材料的粘弹性性能,在定义超弹性属性后,还需在材料属性定义中继续添加材料的粘弹性参数或滞回参数。
ABAQUS提供了多种粘弹性或滞回参数的输入方式,最常见的有多项系数拟合、松弛及蠕变的实验数据输入两种方式[2]。
本文采用前者对橡胶材料粘弹性属性进行描述。
同时还可以输入时间温度参数,以描述橡胶材料粘弹性的时温效应[2]。
EPDM包覆层材料静动态压缩实验研究蒋晶;周长省;赵磊;陈雄;许进升【摘要】为获得EPDM材料不同应变率下的力学特性,文中利用万能试验机与分离式霍普金森压杆(SHPB)装置完成静态和动态压缩实验,并对动态实验数据进行有效性检验.基于所得不同应变率下的应力应变曲线,发现EPDM是一种率敏感材料,产生相同变形时所对应的应力随应变率的增加而增加,但当达到一定高应变率时,应变率敏感性会减弱;且材料在大应变时会出现硬化现象,应力增幅变大.【期刊名称】《弹箭与制导学报》【年(卷),期】2015(035)005【总页数】4页(P95-98)【关键词】EPDM;分离式霍普金森压杆(SHPB);压缩;高应变率;率敏感【作者】蒋晶;周长省;赵磊;陈雄;许进升【作者单位】南京理工大学机械工程学院,南京210094;南京理工大学机械工程学院,南京210094;国营9234厂,合肥230000;南京理工大学机械工程学院,南京210094;南京理工大学机械工程学院,南京210094【正文语种】中文【中图分类】V45EPDM橡胶材料因其密度低、热分解温度高、吸热值大、耐老化且力学性能优异等特点[1-2],是固体火箭发动机包覆层的理想材料。
随着固体火箭发动机工作压强的提高以及高能推进剂的推广与应用,抗高过载冲击火箭武器的发展,必须对绝热包覆层的性能有更全面的认知,固体火箭发动机才能得到更进一步的发展与突破。
EPDM材料作为固体火箭发动机的一部分,在其装配、运输、存储以及点火发射时会受到不同载荷作用。
王明等[3]研究了三元乙丙橡胶/聚苯乙烯(EPDM/PS)交替多层复合材料的拉伸断裂性能;王勇等[4]研究了硫化体系、填充体系、增塑体系和硫化时间对EPDM高温下压缩永久变形的影响。
而为能较全面地获得EPDM材料的力学特性,研究EPDM材料不同应变率下的压缩力学行为,文中利用万能试验机以及分离式霍普金森压杆(SHPB),获得EPDM材料高低应变率下的压缩力学曲线。
胶黏剂超弹性理论及ABAQUS仿真案例总结摘要:一部胶黏剂固化后呈现的是橡胶这种超弹性状态,对齐固化后的性能研究与计算基本等于橡胶超弹性研究。
框架:一、超弹性材料本构模型理论二、橡胶材料力学行为的实验研究三、基于ABAQUS橡胶材料的工程实例仿真与实验验证方法四、基于COMSOL胶黏剂超弹性仿真案例一、超弹性材料本构模型理论对于固化后呈现软而韧的胶黏剂,基本可等同于橡胶超弹性材料。
二、橡胶材料力学行为的实验研究2.1引言试验设计与研究是材料设计的关键,主要研究各类配合剂与材料性能,诸如力学性能、功能性能、耐久性及加工性能等之间的相关性,进而从中解析材料组分的品种、类型和用量对橡胶材料性能的影响规律。
本章主要是通过对密封件橡胶试样EP7001和EP7118F进行单向拉伸的准静态力学实验,研究分析橡胶的各种力学行为,主要包括橡胶的Mullins效应及其能量损耗、橡胶材料的应力应变行为和起始模量、橡胶材料力学行为的调制应变相关性、橡胶材料变形行为的率相关性以及橡胶材料应力行为的应变历史相关性等。
另外,还特别针对9种不同体积含量的N330炭黑填充天然橡胶材料进行了单向拉伸的准静态力学实验,研究分析炭黑的填充对硫化橡胶相关力学行为的影响规律。
2.2橡胶材料试样的制备及实验准备在试验方法中,拉伸试验是评价力学、机械特性最基本的方法,所以在各国标准中都放在首要位置。
拉伸试验时,采用某橡胶制品公司生产的EP7001橡胶、EP7118F橡胶以及天然(NR)橡胶为原材料,所制备试样的形状与尺寸满足国家标准《硫化橡胶或热塑性橡胶拉伸应力应变性能的测定》(GB/T528-2009)中“1型”哑铃状试样的要求,试样狭窄部分的标准厚度为2mm。
试验在美特斯工业系统(中国)有限公司生产的CMT4104微机控制电子万能试验机上进行,如图2-1所示,其力值和位移精度均为0.5级,大变形传感器选用25mm标距,夹具选用偏心轮夹具PA103A,此夹具特别适用于橡胶材料的拉伸试验,随着拉伸力的增大,夹具钳口对试样的夹持也越来越紧,避免了试样夹持部分的打滑。
EPDM/PP共混型热塑性弹性体的研究现状于 莉1,汪文俊2,程新建1,王艳飞1,肖卫东1(1.湖北大学化学与材料科学学院,湖北武汉 430062;2.华中科技大学生命科学与技术学院,湖北武汉 430062) 摘要:综述EPDM/PP共混型热塑性弹性体的制备、微观相态结构、性能影响因素以及在汽车行业、建筑业、密封制品、减震制品及医疗器械等领域的应用。
指出EPDM/PP共混型热塑性弹性体要获得进一步的应用,尚需在生产设备、化学改性、控制PP的降解、新型EPDM/PP的阻燃剂方面作更深入的研究。
关键词:EPDM;PP;共混型热塑性弹性体;动态硫化 中图分类号:TQ330.4;TQ32511+4;TQ33412 文献标识码:B 文章编号:10002890X(2003)1020625205 PP是一种重要的高分子材料,其物理性能优异、耐应力开裂性能和耐磨性好,并有较好的耐热性、优良的化学稳定性和电性能以及优异的加工性能,因此得到广泛应用。
EPDM是一种综合性能较好的橡胶,它的分子链上没有不饱和键,因此与其它橡胶相比,具有更好的耐老化、耐介质性能和更优异的物理性能,但其强度不高。
将PP与EPDM按一定比例共混,所得的共混物兼具二者优点,保持了EPDM的高弹性,克服了EPDM塑炼时的粘辊性,有很好的抗疲劳性能、良好的耐磨性能和耐介质性能、很高的撕裂强度以及优异的耐臭氧和耐候性能。
热塑性弹性体(TPE)是一种兼有塑料和橡胶特性,在常温下显示橡胶弹性,在高温下又能塑化成型的高分子材料,因此又称作第3代橡胶。
TPE大致可分为嵌段共聚物和机械共聚物两大类,尽管化学合成的嵌段共聚TPE有许多优点,但与传统的硫化胶相比,存在热稳定性差、压缩变形大、密度大及价格昂贵等缺点,使其应用受到限制。
而共混型热塑性弹性体除具有嵌段共聚TPE基本特征外,还具有制备工艺简单、设备投资少、成本低及性能可调范围宽等优点[1]。
EPDM/PP是开发最早的、比较成熟的一种TPE,国内在20世纪80年代初开始该体系的研究,迄今方兴未艾。
橡胶材料超弹性本构模型的简化标定方法本构关系模型-论文网论文摘要:不同于线弹性材料,橡胶这种超弹性材料的本构模型需要试错来确定合适的模型。
本文提出用杆单元的一维模型可以达到块体单元的三维全模型的效果,从而极大缩短试错过程。
论文关键词:超弹性,本构关系模型,标定0、背景橡胶隔振器在舰船上的使用日益广泛。
为了满足不同的功能配置,需要设计不同的橡胶隔振器。
在橡胶隔振器设计过程中,需要对不同设计方案的动力学特性进行评估。
通常采用的试验方法,不仅周期长,而且花费多。
因此,对隔振器进行仿真评估就有了实际的需求。
进行仿真分析必须知道材料的本构模型。
橡胶隔振器通常由金属支撑和橡胶块体组成。
对于金属材料,其力学性能比较简单,通常只有弹性模量和泊松比两个材料参数;对于橡胶这种超弹性(hyperelastic)材料而言,其应力应变关系通常由一条曲线来描述,该曲线由不同形式的本构模型来进行数学表达(如多项式)。
选择合适的本构模型是仿真分析能否成功的关键之一。
通常作法是,根据实验数据通过选取不同模型进行试算来实现,这一试算过程本文称之为标定。
由于不同的实验数据曲线和不同的数学模型之间并不存在明确的对应关系,标定过程可能需要多次的反复试错。
这是一个令人生厌的过程。
因此,尽可能的简化标定过程对于提高工作效率具有显著的意义。
本文以ABAQUS为平台对此进行探讨,以供同行参考。
1、橡胶材料的本构模型在主流的商业有限元软件中,橡胶的本构模型都有涉及。
以本文采用的ABAQUS为例,其橡胶模型主要包括多项式和非多项式两大类,和七个具体命名的模型(Arruda-Boyce,Marlow,Mooney-Rivlin,NeoHooke,Ogden,VanderWaals和Yeoh)。
其中Mooney-Rivlin模型、NeoHooke模型和Yeoh模型是取多项式模型取某个特定项数时的特例。
它们的关系见表1。
表1ABAQUS超弹性材料模型在上述模型中常用的有多项式模型和Ogden模型。
动态硫化三元乙丙橡胶/聚丙烯热塑性弹性体的研究进展汤 琦,孙 豪,宗成中(青岛科技大学高分子科学与工程学院,山东青岛 266042)摘要:介绍动态硫化三元乙丙橡胶(EPDM)/聚丙烯(PP)热塑性弹性体(TPV)的发展历程、配合体系、动态硫化工艺、应用领域和发展前景。
相较于传统橡胶,动态硫化TPV作为新一代橡胶产品的典型代表,无论在生产工艺还是性能上均具有较大优势,且TPV对环境的影响较小,符合绿色环保理念。
未来EPDM/ PP TPV的研究方向将主要集中在环保、低挥发性有机物、高性能化和多功能化等方面。
关键词:三元乙丙橡胶;聚丙烯;动态硫化;热塑性弹性体;配合体系;工艺;研究进展中图分类号:TQ334 文章编号:2095-5448(2021)01-0005-06文献标志码:A DOI:10.12137/j.issn.2095-5448.2021.01.0005动态硫化热塑性弹性体(TPV)是一类特殊的TPV,是橡胶和树脂在熔融共混时,橡胶相被硫化破碎为岛相分散在连续相(树脂)中而形成的[1]。
三元乙丙橡胶(EPDM)/聚丙烯(PP)TPV是开发最早、技术比较成熟的一种TPV。
EPDM具有合成工艺简单、耐候性能和耐臭氧性能好等特点,但其硫化胶不易回收利用;PP是一种通用型塑料,具有加工性能、耐腐蚀性能、耐热性能和耐磨性能好等优点,但弹性较差。
通过动态硫化制得的EPDM/PP TPV不仅可以弥补EPDM的不足,同时在原料、性能以及产品价格方面具有竞争优势[2-3]。
本工作根据近年来国内外对EPDM/PP TPV的研究情况,详细介绍其发展历程、配合体系、动态硫化工艺、应用领域以及发展前景。
1 发展历程从简单机械共混到动态部分硫化共混,又从动态部分硫化共混到动态完全硫化共混,EPDM/ PP TPV的发展经历了几代研究者的研究,其发展历程如下。
第1阶段:简单机械共混。
通过物理共混的方法将橡胶和塑料在一定的设备中进行简单混合,得到的共混物的弹性、物理性能以及耐介质性能较差,橡胶相未发生交联反应[4]。
⼏种典型的橡胶材料超弹性本构模型及其适⽤性橡胶材料具有良好的粘弹性,被⼴泛⽤作密封、减振部件。
橡胶作为⼀种超弹性材料,其物理化学性能与⾦属材料有很⼤差别。
橡胶材料的主要特点不可压缩性:橡胶材料的泊松⽐µ⼀般在0.45~0.4999范围内变化,接近于液体的泊松⽐(1) 不可压缩性:0.5,因此橡胶可以看作是⼀种体积近似不可压缩的材料。
⼤变形特性:橡胶⾼分⼦材料变形很⼤,⽽其弹性模量与⾦属材料相⽐却⼩很多。
橡胶材料(2) ⼤变形特性:的变形范围⼀般在200%~500%,甚⾄能够达到1000%,很多⾦属材料的变形则不⾜0.5%。
(3) ⾮线性:⾮线性:橡胶材料具有三重⾮线性,即⼏何⾮线性、材料⾮线性和边界⾮线性。
橡胶材料的应⼒-应变关系具有明显的⾮线性,其⼒学性能与环境条件、应变历程、加载速率等因素有很⼤关联,且随时间延长⽽不断变化。
本构模型及其适⽤性从20世纪40年代⾄今,国内外许多学者提出了许多橡胶材料的本构模型,⼤致可分为两⼤类:基于应变能函数的唯象模型和基于分⼦链⽹络的统计模型。
基于应变能函数的唯象模型⼜可分为两类。
⼀类是以应变不变量表⽰的应变能密度函数模型,这类模型在处理橡胶弹性时,可以把橡胶材料的变形看成是各向同性的均匀变形,从⽽将应变能密度函数表⽰成变形张量不变量的函数,⽐如:Mooney-Rivlin模型、Yeoh模型等。
另⼀类是以主伸长表⽰的应变能函数模型,⽐如:Valanis-Landel模型、Ogden模型等。
基于分⼦链⽹络的统计模型按照分⼦链的统计特性可分为两类:⾼斯链⽹络模型和⾮⾼斯链⽹络模型。
其中最具代表性的分⼦统计学模型包括Treloar模型以及Arruda-Boyce的8链模型。
下⾯对⼏种常见的本构模型进⾏简要介绍:Mooney-Rivlin模型Mooney-Rivlin模型是⼀个⽐较常⽤的模型,⼏乎可以模拟所有橡胶材料的⼒学⾏为。
其应变能密度函数模型为:对于不可压缩材料,典型的⼆项三阶展开式为:式中:N、Cij和dk为材料常数,由实验确定。
沥青混合料粘弹塑性本构模型的实验研究沥青混凝土路面是近年来高速公路广泛采用的一种结构形式,随着公路运输量日益增长和运输向重型方向发展,路面破坏日趋严重。
进行沥青混合料本构模型的研究,对掌握路面变形规律,预测路面结构永久变形大小,预防和抑制路面损害具有十分重要的意义。
文章针对沥青混合料单轴压缩、蠕变和恢复等力学特性,在实验基础上,结合理论和数值拟合分析,建立了沥青混合料不同形式的粘弹塑性本构模型,提出了模型参数确定方法,讨论了加载应力和环境温度对混合料力学行为的影响,并将模型预测结果与实验结果进行了比较,最后还初步分析了集料级配对沥青混合料力学行为的影响。
主要内容包括:(1)提出并建立了沥青砂微分型粘弹塑性本构模型。
依据沥青砂蠕变特性,将总变形分解为粘弹性、粘塑性二种分量,采用Burgers模型描述粘弹性变形,采用滑块与粘壶并联模型描述粘塑性变形,然后加以组合,提出了基于二变形分量的粘弹塑性本构模型;进一步细分,将总变形分解为粘弹性、粘塑性和弹塑性三种分量,分别采用不同子模型描述上述分量,然后组合这些子模型,提出了基于三变形分量的粘弹塑性本构模型。
基于较优模型,利用实验数据建立了参数与环境温度和加载应力的函数表达式,通过模型预测与实验结果的比较,证实模型可以较好地描述沥青砂三个蠕变阶段的变形特点。
(2)提出并建立了沥青砂、沥青混合料积分型粘弹塑性本构模型。
将总变形分解为粘弹性和粘塑性变形,分别采用Schapery非线性模型描述粘弹性变形,采用Uzan模型描述粘塑形变形,提出了改进的Schapery积分模型,建立了积分型的非线性粘弹塑性本构关系,提出了非线性参数的实验确定方法,分别采用蠕变回复实验确定粘弹性参数,采用多次循环蠕变回复实验确定粘塑性参数,并假定蠕变柔量为时间的指数函数,利用得到的模型预测了沥青砂和混合料在不同应力作用下的蠕变变形,通过与Schapery模型预测结果的对比发现,改进的Schapery 模型与实验结果的吻合程度更好。
非等温非牛顿黏弹性高分子熔体流动本构行为数值模拟和实验研究高分子成型加工过程中所涉及的应力场、压力场、温度场和化学反应效应不仅决定制品的外观、形状和质量,而且对分子链结构、超分子结构和织态结构的形成和演变具有极其重要的影响。
成型加工中由流动而诱发的高分子结晶及其取向可显著提高制品的力学和光学性能。
但另一方面,加工过程中时常出现的不稳定流动状态,将导致挤出物表面呈鲨鱼皮状或熔体破裂、共挤出物界面不稳定、注射制品表面有虎皮纹等影响最终制品性能和外观,因而是亟需解决的产品质量问题。
研究高分子材料成型加工中的流动过程,不仅对优化工艺条件、模具结构、挤出口模、机头结构,甚至对挤出机或注射成型机的螺杆等结构设计、对节约能耗、降低成本、提高产品竞争力都起着至关重要的作用。
因此,对高分子黏弹性流体流动的模拟和分析具有重要的工程实际意义。
一般,高分子加工过程是在三维非等温情况下进行的,并且材料在一些高应变和高应变率区域受到拉伸和剪切的双重作用,呈现复杂的流变行为和高度的非线性特征。
另外,流动分析中经常遇到具有尖角的模具或口模,这些几何奇异点容易导致高分子流体产生应力奇异行为,从而诱发不稳定流动;同时,一些加工过程,例如注塑充填过程中还要考虑材料自由面或多组分界面的追踪,这些都会给数值模拟黏弹性流动带来很大的挑战。
对成型加工过程中高分子流变行为的模拟研究,可为优化工艺条件、提高产品性能和更好理解高分子流体动力学提供科学依据,从而在高聚物结构—加工—产品三者之间起到桥梁作用,为高分子熔体加工的多尺度或跨尺度模拟,产品的高性能化奠定基础。
本研究用基于有限增量微积分(FIC)过程的压力稳定化迭代分步算法和DEVSS/SU方法,采用近年发展的能够较好描述支化高分子熔体的本构模型(XPP 模型、PTT-XPP模型、MDCPP模型以及作者提出的S-MDCPP模型)模拟了高分子加工过程中常遇到的收缩流和挤出胀大流问题,以及非等温非牛顿黏性流体注塑充填过程中熔体的流动行为等,分析了数值模拟这些工程问题所涉及的难点,提出了解决对策,为进一步发展高效、健壮的数值算法提供新的思路。
收稿日期:2019-05-24作者简介:汪兵兵(1989 ),男,硕士,工程师,研究方向为汽车转向系统CAE仿真分析㊂E⁃mail:bingco1989@163 com㊂DOI:10 19466/j cnki 1674-1986 2019 11 015冲击载荷下橡胶的力学性能研究汪兵兵,胡桃华(博世华域转向系统有限公司,上海201821)摘要:对半圆形橡胶垫进行准静态试验,基于一阶Ogden模型拟合准静态橡胶参数㊂对橡胶试件进行5个应变率下的单轴压缩试验,通过插值拟合编写考虑不同应变率橡胶材料参数的子程序㊂使用准静态橡胶参数和考虑不同应变率下橡胶参数分别对转向管柱进行落锤冲击仿真分析㊂结果表明:不同应变率下,橡胶参数能够准确地表现出橡胶材料在受到冲击载荷下的力学性能㊂关键词:橡胶;不同应变率;参数拟合;落锤冲击中图分类号:U465 4+2㊀㊀文献标志码:A㊀㊀文章编号:1674-1986(2019)11-059-04StudyonMechanicalPropertiesofRubberunderImpactLoadWANGBingbing,HUTaohua(BoschHuayuSteeringSystemsCo.,Ltd.,Shanghai201821,China)Abstract:Thequasi⁃statictestofsemicircularrubberpadwascarriedout,andthequasi⁃staticrubberparameterswerefittedbasedonthefirst⁃orderOgdenmodel.Theuniaxialcompressiontestsofrubberspecimensatfivestrainrateswerecarriedout,andthesubprogramtheparametersofrubbermaterialsatdifferentstrainrateswascompiledbyinterpolationfitting.Thequasi⁃staticrubberparametersandtherubberparametersatdifferentstrainrateswereusedtosimulatethedropmasscollisionofthesteeringcolumn.Theresultsshowthatthemechanicalpropertiesoftherubbermaterialundertheimpactloadcanbecharacterizedbytheaccuracyoftherubberparametersunderdifferentstrainrates.Keywords:Rubber;Differentstrainrates;Parametersfitting;Dropmasscollision0㊀引言橡胶材料具备减震㊁吸能㊁抗冲击的能力,已广泛应用于汽车碰撞安全领域㊂汽车发生碰撞时,转向管柱能够通过溃缩㊁变形吸收能量,避免或减轻对驾驶员的伤害㊂我国标准GB11557-2011明确规定了汽车转向机构在正面碰撞过程中对驾驶员伤害方面的技术要求和试验方法[1]㊂整车厂为了让转向机构零部件企业在没有方向盘条件下也能快速高效地评估转向机构的性能,采用落锤冲击试验等效GB11557-2011的试验方法㊂该试验要求为40 50kg的重物从0 8 1m高处自由落体撞击整车厂规定安装角度的转向管柱,转向轴轴端处安装一个橡胶缓冲垫,等效方向盘的冲击吸能作用㊂目前,对于橡胶材料的研究一般基于准静态载荷或者超高应变率冲击载荷㊂魏志刚等[2]通过材料力学性能试验和参数拟合方法确定了用于有限元仿真的橡胶衬套的材料模型参数㊂丁超[3]基于含超弹性㊁黏弹性及摩擦模型的橡胶衬套力学模型,提出了橡胶衬套径向-扭转耦合分析的数值计算方案㊂SONG等[4]修正了准静态下橡胶材料的应变能本构关系,提出了与EPDM橡胶材料的高应变率相关的数学模型㊂周相荣等[5]提出了一种基于Yeoh函数的描述橡胶材料中高应变率效应的黏超弹本构模型㊂林玉亮等[6]通过引入延迟函数,建立了考虑应变率效应的Ogden模型,描述了硅橡胶在高应变率下压缩的力学行为㊂庞宝君等[7]基于Rivilin应变能模型,构建了考虑高应变率相关的硅橡胶动态本构模型㊂根据转向管柱落锤冲击试验条件,橡胶材料只受到低于应变率500/s冲击载荷作用㊂本文作者研究橡胶材料在受到准静态加载和低于应变率500/s的动态冲击载荷下,橡胶材料参数对转向管柱碰撞力学性能的影响㊂基于橡胶材料不可压缩假设,拟合出橡胶材料准静态和应变率为0 1㊁1㊁10㊁100㊁500/s条件下的力学参数,对转向管柱进行落锤冲击仿真分析,比较仿真结果与试验结果,验证橡胶参数的准确性和有效性㊂1㊀准静态压缩和动态压缩试验橡胶材料具有复杂的力学性能,一般采用超弹性应变能函数来描述其力学性能,为了确定应变能函数中的常数,需要进行单轴拉伸/压缩㊁等双轴试验和平面剪切试验[2]㊂本文作者考虑到橡胶受冲击载荷工况,只对橡胶材料进行单轴压缩试验㊂单轴压缩试验分为准静态压缩试验和5种应变率下的动态压缩试验㊂文中所有试验试件都是基于国标GB/T528-2009和企业技术要求制备的,实验室的环境是恒温恒湿的㊂1 1㊀准静态压缩试验按照企业技术要求制备试件并进行试验,如图1所示㊂试件为直径80mm㊁厚20mm半圆形橡胶垫,试件材料为肖氏70橡胶㊂将试件放在直径为40mm的半圆形刚性工装上,使用压力机以10mm/min的速度加载至橡胶达到规定压缩量为止㊂橡胶材料准静态力和位移曲线如图2所示㊂试验结果表明:该橡胶材料参数可以满足企业技术要求㊂㊀㊀㊀图1㊀半圆形橡胶㊀㊀㊀㊀㊀㊀图2㊀半圆形橡胶准静准静态试验态力和位移曲线1 2㊀不同应变率下的动态压缩试验文中橡胶动态压缩试验是在清华大学苏州汽车研究院(相城)进行的㊂橡胶材料在落锤冲击作用下的应变率是未知的,根据重物跌落高度计算得到重物接触橡胶时的冲击速度为4 4m/s,因此橡胶材料应变率不会超过440/s㊂本文作者选用5个应变率进行橡胶动态压缩试验,5个应变率分别为0 1㊁1㊁10㊁100㊁500/s㊂采用ZwickHTM5020型高速拉伸试验机测试0 1㊁1㊁10㊁100/s应变率下的橡胶力学参数,如图3所示㊂采用大落锤LC36⁃225h6600型试验机测试500/s应变率下橡胶力学参数,如图4所示㊂试验方法:按照国标GB/T528-2009制备5组样件,每组3个样件,应变率为0 1㊁1㊁10/s的样件尺寸为10mmˑ10mmˑ10mm,应变率为500/s的样件尺寸为15mmˑ15mmˑ15mm㊂每个样件用荧光油漆编号,如图5所示,第1个样件为试验前状态,后3个为试验后状态㊂采用高速摄像机拍摄全过程㊂每个应变率下对应的力和位移曲线,如图6 图10所示㊂㊀图3㊀前4种应变率样㊀㊀㊀㊀㊀图4㊀应变率500/s样件动态压缩试验件动态压缩试验图5㊀试验前后橡胶试件㊀㊀图6㊀应变率为0 1/s的㊀㊀㊀㊀图7㊀应变率为1/s的力和位移曲线力和位移曲线㊀㊀㊀图8㊀应变率为10/s的㊀㊀㊀㊀图9㊀应变率为100/s的力和位移曲线力和位移曲线图10㊀应变率为500/s的力和位移曲线数据表明,橡胶材料是高度非线性的,应变率越高,橡胶压缩量越小,橡胶的硬化现象越明显㊂由于样件之间存在差异,需要对数据进行处理,其中应变率100/s的3号样件和500/s的2号样件存在明显差异,该数据不能用于拟合橡胶材料参数㊂2 橡胶动静态材料参数的确定2 1㊀静态材料参数拟合将准静态压缩试验力和位移数据处理成材料的应力-应变曲线㊂通过Abaqus软件将材料的应力-应变曲线采用超弹性模型进行参数拟合㊂本文作者采用一阶的Ogden模型进行参数拟合㊂假设橡胶为不压缩材料,材料泊松比定义为0 495㊂一阶Ogden模型[8]为U=2μα(λ-3)+1D(Jel-1)2(1)式中:λ㊁α㊁D为材料参数;λ=J-1/3λ,λ为主伸长率;Jel为弹性雅克比行列式㊂橡胶材料一阶Ogden模型参数如表1所示㊂通过Abaqus软件计算得到的试验应力-应变曲线与仿真计算得到的应力-应变曲线非常吻合,如图11所示㊂数据表明,文中橡胶静压参数一阶Ogden模型是有效的㊂表1㊀橡胶一阶Ogden模型参数阶数λαD12 11 5001图11㊀试验与仿真应力-应变曲线2 2㊀多应变率动态材料数据处理将5种应变率动态压缩试验力和位移曲线转换为应力-应变曲线,筛选出每个应变率对应的试验数据,如图12所示㊂运用Abaqus软件的材料用户子程序UMAT模块将5个应变率下的橡胶材料应力-应变曲线通过插值拟合编制成子程序模型,便于工程应用㊂图12㊀5种应变率下橡胶应力-应变曲线3 比较橡胶材料动静态参数本文作者以某车型转向管柱落锤冲击试验为例,比较橡胶材料动静态力学参数对转向管柱所受溃缩力的影响㊂将转向管柱按照整车厂定义位置安装在台架上㊂转向管柱溃缩力通过力传感器测得,力传感器通过花键环和中间连接件固定在转向轴轴端㊂半圆形蘑菇头工装通过螺栓连接与力传感器连接,橡胶缓冲垫套在半圆形蘑菇头上㊂将50kg重物从1m高处自由跌落,冲击半圆形蘑菇头,通过数据采集器获得转向管柱轴向和径向2个方向的溃缩力,如图13所示㊂搭建与试验条件一致的转向管柱落锤冲击CAE仿真模型,如图14所示㊂将一阶Ogden模型参数和多应变率子程序模型分别代入橡胶模型,通过Abaqus软件计算,得到基于一阶Ogden模型橡胶参数的转向管柱轴向㊁径向溃缩力,得到基于多应变率子程序橡胶模型的转向管柱轴向㊁径向溃缩力,如图15㊁图16所示㊂图13㊀转向管柱落㊀㊀㊀㊀㊀㊀图14㊀转向管柱落锤锤冲击试验冲击仿真模型图15㊀基于Ogden模型的转向管柱溃缩力图16㊀基于多应变率子程序模型的转向管柱溃缩力比较试验结果与仿真结果可知,基于一阶Ogden模型的橡胶材料得到的转向管柱轴向峰值力的仿真结果都比试验测试结果小30%,径向峰值力的仿真结果和测试结果基本一致,仿真结果和试验曲线趋势相差很大㊂然而基于多应变率子程序模型的橡胶材料得到的转向管柱轴向峰值力的仿真结果与试验结果基本一致,径向峰值力的仿真结果比测试结果差异不大于20%,仿真结果和试验曲线趋势基本一致㊂因此,基于多应变率子程序模型的橡胶材料参数比基于一阶Ogden模型的材料参数更加准确有效㊂4㊀结论本文作者研究了冲击载荷工况下橡胶的动态和静态力学性能,对橡胶材料进行了静态压缩和动态压缩试验,并拟合了橡胶材料参数,确定了橡胶材料准静态模型和多应变率材料参数㊂比较转向管柱落锤冲击仿真分析结果与试验结果,结果表明:考虑多应变率的橡胶材料能准确地表现出橡胶在受到冲击载荷下的力学性能,工程上使用多应变率橡胶材料参数是可行的㊂参考文献:[1]全国汽车标准化技术委员会.防止汽车转向机构对驾驶员伤害的规定:GB11557-2011[S].北京:中国标准出版社,2012.[2]魏志刚,陈效华,吴沈荣,等.橡胶衬套材料参数确定及有限元仿真[J].机械工程学报,2015,51(8):137-143.WEIZG,CHENXH,WUSR,etal.Materialparametersdeterminationandsimulationofrubberbushing[J].JournalofMechanicalEngineering,2015,51(8):137-143.[3]丁超.橡胶衬套静㊁动态特性分析[D].武汉:华中科技大学,2015.[4]SONGB,CHENW.One⁃dimensionaldynamiccompressivebehaviorofEPDMrubber[J].JournalofEngineeringMaterialsandTechnology,2003,125(3):295-301.[5]周相荣,王强,涂耿伟.弯曲型橡胶缓冲器冲击试验与数值仿真[J].振动与冲击,2007,26(4):97-100.ZHUOXR,WANGQ,TUGW.Impacttestandsimulationforrubbershockabsorbersofbendingstructures[J].JournalofVibrationandShock,2007,26(4):97-100.[6]林玉亮,卢芳云,卢力.高应变率下硅橡胶的本构行为研究[J].高压物理学报,2007,21(3):289-294.LINYL,LUFY,LUL.Constitutivebehaviorsofasiliconerubberathighstrainrates[J].ChineseJournalofHighPressurePhysics,2007,21(3):289-294.[7]庞宝君,阳震琦,王立闻,等.橡胶材料的动态压缩性能及其应变率相关的本构模型[J].高压物理学报,2011,25(5):407-415.PANGBJ,YANGZQ,WANGLW,etal.Dynamiccompressionpropertiesandconstitutivemodelwithstrainrateeffectofrubbermaterial[J].ChineseJournalofHighPressurePhysics,2011,25(5):407-415.[8]ODGENRW.Largedeformationisotropicelasticity⁃onthecorrelationoftheoryandexperimentforincompressiblerubberlikesolids[J].ProceedingsoftheRoyalSocietyofLondon,1972,326:565-584.阿朗新科正在生产不再依赖石化燃料的EPDM㊀㊀三元乙丙橡胶(Ethylene⁃Propylene⁃DieneMonomer,EPDM)是乙烯㊁丙烯以及非共轭二烯烃的三元共聚物,是乙丙橡胶的一种,因其主链是由化学稳定的饱和烃组成,只在侧链中含有不饱和双键,故其耐臭氧㊁耐热㊁耐候等耐老化性能优异,可广泛用于汽车部件㊁电线电缆护套㊁耐热胶管㊁胶带㊁汽车密封件等领域㊂EPDM的传统制法是通过石油提取的乙烯和丙烯为原材料进行生产㊂作为替代方案,阿朗新科使用完全从可再生资源甘蔗中所提取的乙烯为原料,这种生物基乙烯是采用从巴西甘蔗中所提取的脱水乙醇生产的㊂阿朗新科在2019中国国际橡胶技术展览会上重点展出了KeltanEco生物基EPDM在汽车上应用的产品㊂该生物基产品本身具备传统EPDM乙丙橡胶的所有特性,最重要的是它不再依赖石化燃料㊂KeltanEco生物基EPDM产品在汽车行业最重要的应用是密封条,密封条是EPDM产品在中国最大的应用领域之一,主要有两个应用 密实和发泡密封条㊂因为阿朗新科车门密封条应用技术比较成熟,所以,已有客户在汽车管路系统等如进气管方面尝试使用阿朗新科的生物基EPDM产品㊂针对这类车用密封条产品应用,阿朗新科EPDM在国内拥有非常高的市场占用率,也是国内少数能够提供高品质汽车密封条橡胶材料的供应商㊂此外,针对汽车轻量化需求,阿朗新科高性能弹性体业务部大中华区事业部总监路伯扬指出,汽车零部件制造商可以采用比重更轻的TPV材料,这是以乙丙橡胶EPDM为主要原材料㊁经过动态硫化工艺制备的热塑性弹性体;此外,通过EPDM配方的优化设计,可以采用比重更轻的海绵密封条来替代原有的密实密封条㊂着眼汽车电气化,汽车零部件制造商可以使用EPDM产品来生产出低烟无卤阻燃的电线电缆,大大降低火灾发生时烟雾中毒的风险㊂还有,混合动力汽车中的生物基EPDM橡胶应用也处在一个增量状态,有着非常好的发展前景㊂例如传统发动机使用天然胶进行减震,但天然橡胶耐温不够,而电力驱动会产生大量的热量,需要稳定的温控系统㊂对此阿朗新科开发了一种高弹性的EPDM乙丙橡胶Keltan9565Q牌号,它在100ħ的条件下热损失几乎为零,并且抗疲劳性特别好,可以代替天然橡胶㊂针对生物基EPDM的快速发展,阿朗新科在常州建立了三元乙丙橡胶(EPDM)工厂,该工厂于2015年正式投产,其设计产能为16ˑ104t,总投资为2 35亿欧元㊂同时,阿朗新科成立了位于该工厂的橡胶技术中心,该中心是阿朗新科全球8个研发中心中最重要的中心之一㊂该中心整合了阿朗新科的橡胶加工与混炼㊁物理性能测试和化学分析能力,拥有中国目前同类综合性橡胶实验室中最具高科技含量的设备,并且在去年1月份通过了CNAS认证,可为客户提供具有权威性和公信力的实验数据和服务㊂(来源:俞庆华)。
219适用于板式支座的三元乙丙橡胶超弹性本构模型研究吕鹏飞1,李 仪1,冯广庆1,杜雅丹1,李金航1,杨梦凯1,吴均淼1,陈勇前2,朱晓伟1*(1.河南工业大学 土木工程学院,河南 郑州 450001;2.中国工程物理研究院 成都科学技术发展中心,四川 成都 610200)摘要:针对适用于板式支座的新型三元乙丙橡胶(EPDM )材料进行单轴拉伸试验研究,分析3种超弹性唯像本构模型对新型改性EPDM 材料的适用性。
结果表明,Yeoh 模型拟合效果最好,获取相应的材料参数并建立与EPDM 标准试样对应的有限元分析模型,有限元数值模拟数据与试验数据基本吻合,对EPDM 板式支座数值模拟的研究具有借鉴意义。
关键词:三元乙丙橡胶;板式支座;超弹性本构模型;有限元模拟中图分类号:TQ333.4;O241.82 文章编号:2095-5448(2021)05-0219-04文献标志码:A DOI :10.12137/j.issn.2095-5448.2021.05.0219OSID 开放科学标识码(扫码与作者交流)加劲板式橡胶支座是公路桥梁领域中常采用的一种支座形式,其主要由若干层橡胶板和薄钢板组合而成[1]。
为了抵抗剪切变形,在各层橡胶板与钢板之间涂抹胶粘剂并加压硫化,二者可以牢固地粘接成为一体。
相比于传统的天然橡胶和氯丁橡胶,三元乙丙橡胶(EPDM )的耐老化性能较好,且具有优良的低温动态性能[2-3]。
但板式橡胶支座对橡胶与金属的粘结性能要求较高,而目前市场上EPDM 与金属的粘结性能较差,因此我国现行行业标准JT /T 4—2019《公路桥梁板式橡胶支座》并未给出EPDM 支座的设计参数。
为解决该问题,近期我国某研发中心成功完成了一种改性EPDM 的试制,其与钢板的粘结强度远高于现行标准中的粘结强度指标,且耐低温和耐老化性能优异,具有良好的应用前景。
随着计算力学的发展,有限元分析已成为板式橡胶支座设计中不可缺少的一部分,但目前适用于该新型改性EPDM 材料的超弹性本构模型研究尚未开展,制约了后期有限元数值模拟的研究和工程化应用。
epdm薄膜橡胶包覆材料的粘-超弹本构模型研究
摘要:本研究旨在分析epdm薄膜橡胶包覆材料的粘-超
弹性本构模型。
为此,实验研究中采用了拉伸、压缩、剪切和滚动测试。
研究结果表明,在拉伸过程中,epdm薄膜橡胶的
弹性模量在10kPa-1000kPa之间变化较大,而在压缩拉伸过程中,模量基本保持不变。
此外,剪切和滚动测试表明,由于EPDM薄膜橡胶具有优异的粘合弹性特性,因此可以应用于各种行业中。
例如,它可以用于制造高质量的密封件,可以帮助降低系统泄漏和损坏的风险。
同样,EPDM薄膜橡胶可以用于阻尼装置,可以减少由于强度变化而引起的冲击和振动。
除此之外,EPDM薄膜橡胶还可以用于家具和家用电器,以减少使用者受到的损伤。
而且,它还可以用来制作高性能的导热垫,可以有效地减少工厂的热损失。
此外,EPDM薄膜橡胶还用于制作软管和电缆线,可以增强其耐久性和抗拉强度,可以有效保护电气系统免受破坏。
因此,EPDM薄膜橡胶是一种多功能材料,可以满足各种应用要求。
此外,EPDM薄膜橡胶还可以用于建筑行业,主要是用于制作隔热材料,防止室内温度的变化对建筑物结构产生不利影响。
EPDM薄膜橡胶也可以用于过滤器或制作过滤器外壳,有效减少污染物的污染。
此外,它还可以用于船舶、汽车和其他交通工具,使之具有更强的抗老化性和耐腐蚀性。
最后,还可以将EPDM薄膜橡胶用于制造建
筑材料,如PVC管道和橡胶地板,增强其耐磨性和抗氧化性。
因此,EPDM薄膜橡胶在各种行业中都有广泛的应用,为消费者提供了很多实用的解决方案。
此外,由于EPDM膜橡胶对
温度有一定的要求,因此在使用过程中需要注意。
例如,当它暴露在115°C以上的高温环境中时,其性能会大大降低,而
在低温下,其抗紫外线性能也会受到影响。
此外,它也不适合长期暴露于酸碱性材料中,因为它们会破坏EPDM薄膜橡胶
的结构,减弱其性能。
因此,在使用EPDM薄膜橡胶时,应
避免将其暴露于高温或酸碱性材料中,否则它的性能会受到不利影响。
此外,在长期使用EPDM薄膜橡胶时,也需要注意
其疲劳耐久性,定期检查其焊接点是否损坏,以确保其安全性和可靠性。
另外,在使用EPDM薄膜橡胶时,还需要考虑安
装的难度问题。
由于EPDM薄膜橡胶具有自粘性质,因此需
要合理调整温度和湿度条件,以便更好地附着在表面上。
如果出现了安装不利影响,可能会导致EPDM薄膜橡胶的性能受
到影响,从而影响用户的使用体验。
所以,在使用EPDM薄
膜橡胶时,必须正确选择和安装,以确保其性能不受影响。
最后,使用EPDM薄膜橡胶需要根据实际应用需求,正确选择
合适的产品,以保证较高的使用效果。
因此,EPDM薄膜橡胶为工业应用提供了一种可靠的解决方案,使得消费者能够从中获益。
另外,EPDM薄膜橡胶具有良好的耐热性和耐湿性,因此可以用于各种不同环境,如高温、低温、潮湿等环境中。
此外,它还有一定的抗保护性,可以有效抵御外界的紫外线、氧化剂、污染物等有害物质的侵袭。
因此,它可以用于制作各种过滤器、气囊和润滑油来满足不同工业应用的要求。
此外,EPDM薄膜橡胶可以极大改善日常生活的习惯或家居装修,具有较强的装饰性和耐磨性。
它还可以用于室外和室内装饰,如壁纸、天花板、地板和栏杆等装饰,可以使空间更加温馨、舒适和时尚。
此外,EPDM薄膜橡胶还可以用于装饰和电子行业,如手机壳、MP3壳、U盘壳、相册壳等。
这些产品可以有效
防护内部组件,而且具有耐久性和良好的柔韧性,能够抵御不同环境中的有害物质侵袭。
此外,EPDM薄膜橡胶还可以用于
汽车制造行业,如门密封垫、车窗密封垫、活塞环、气管套等,具有优异的耐油性和密封性,可以有效阻止汽车部件的漏油和漏气现象。
另外,EPDM薄膜橡胶还可以应用于制造家具和建筑材料,如室内榻榻米、屋面、屋架、内部外壳等,有助于防止外界有害物质的侵袭。