聚合物的结晶
- 格式:doc
- 大小:939.50 KB
- 文档页数:10
聚合物的结晶能力聚合物能否结晶和结晶能力的差别,具根本原因是不同聚合物具有不同的结构特征,大分子排列的有规整性,在长度上能形成高度有序的晶格。
当然不可能要求大分子链节全部都是规整的排列,而是指不规整部分少(如支链、交链或结构上的其他不规整性),而且要有合理的长度。
一般而言,大分子链的结构对称性愈好,愈容易结晶.如聚乙烯和聚四氟乙烯,但这并不意味着分子链必须具备高度的对称性,许多结构对称性不强而空间排列规整的聚合物同样也能结晶。
如果说分子空间排列的规整性是聚合物结晶的必要条件,那么大分子间的次价力(如偶极力、诱导力、色散力和氢键等)则是其结晶的充分条件。
因为前者只能说明大分子能够排成有序的阵列,而后者可克服分子热运动以保证整齐的阵列不会混乱。
大分子链的柔顺性是结晶时链段向结晶表面扩散和排列所必需的。
柔顺性差,在一定程度上降低聚合物的结晶能力;柔顺性过大则分子易缠结,排列成序的机会反而小。
另外,分子链节小易于形成晶核,也有利于结晶。
很多缩聚聚合物,由于其重复结构单元一般比加聚聚合物长,所以结晶比较困难。
当聚合物链采用位能最低的构象状态以及链段能密堆积(链中分子具有范德华半径时分子所占空间的体积分数称为分子密堆积分数)时,则结晶能力强。
结晶能力仅是聚合物能够结晶的内因,只有在有利的结晶条件下才能形成结晶。
2.6.1.2 聚合物的结晶形态晶体最本质的特点是微观结构的有序性,即离子、原子或分子在空间排列按最紧密堆积而具有三维长程有序的点阵结构。
这种在空间按一定的周期性排列的有规则质点所组成的空间点阵,具有一定的几何尺寸,称为晶格,每个质点位于晶格的结点上。
晶体的最小单元是“品胞”,了解一个晶胞的原子的性质和位置,就可以决定全部晶体结构。
晶胞的大小和形状,可以用六面体的三边之长(晶轴长度)a、b、c和三个夹角α、β、γ等六个晶胞参数来确定,见图2—36。
组成晶胞的六面体共有七种类型:立方、六方、四方、三方、斜方、单斜和三斜。
聚合物的结晶度的名词解释聚合物是由许多重复单元组成的大分子化合物,它们通常具有高度的分子量和复杂的结构。
结晶度是聚合物中具有规律有序排列的部分的比例,是衡量聚合物结晶程度的重要参数。
1. 聚合物的结晶过程聚合物的结晶过程可以分为两个阶段:核化和生长。
在核化阶段,小分子或聚合物链段聚集形成核心结构,这些核心结构在接下来的生长阶段发展成为晶粒。
结晶的速度受到溶剂、温度和浓度等因素的影响。
2. 结晶的类型根据聚合物分子排列的有序性程度,结晶可以分为完全结晶、部分结晶和无结晶三类。
完全结晶聚合物具有高度有序分子排列,形成紧密堆积的晶体结构。
例如,高密度聚乙烯(HDPE)和聚苯乙烯(PS)。
部分结晶聚合物中,只有一部分聚合物链可以形成结晶区域,其余部分仍然为无序状态。
这种结构常见于低密度聚乙烯(LDPE)和聚丙烯(PP)。
无结晶聚合物则完全没有有序的结晶结构,整个聚合物呈无规则状态。
例如,天然橡胶和软质聚氯乙烯(PVC)。
3. 结晶度的影响因素结晶度受到多种因素的影响。
首先,分子链的长度对结晶度起着关键作用。
较长的分子链使得形成有序结构的机会更多,因此结晶度更高。
其次,溶剂的选择也会影响结晶度。
合适的溶剂能够促进分子链的有序排列,从而增加结晶度。
此外,温度和降温速率也会对结晶度产生影响。
较高的温度和较慢的降温速率有利于结晶的形成。
4. 结晶度的测量方法常用的结晶度测量方法有热分析法、X射线衍射法和差示扫描量热法。
热分析法通过测量聚合物熔点和熔融热来计算结晶度。
X射线衍射法利用X射线通过晶体结构产生的衍射图案来测量结晶度。
差示扫描量热法则通过测量聚合物在加热和冷却过程中的热量差来确定结晶度。
5. 结晶度的意义和应用结晶度对聚合物的性能和应用具有重要影响。
结晶度高的聚合物通常具有较高的力学性能和热稳定性,适用于制造强度要求高的产品,如塑料零件、纤维和薄膜等。
例如,高结晶度的聚乙烯被广泛用于制作各种塑料袋。
相反,结晶度低的聚合物具有较好的柔韧性和可加工性,适用于制备拉伸性和弯曲性要求较高的产品。
聚合物结晶度名词解释一、聚合物结晶的定义聚合物结晶是指聚合物分子在一定的条件下,按照一定的规律有序排列,形成具有一定晶体结构的固态过程。
聚合物结晶的存在对聚合物的性能有着重要的影响,例如硬度、弹性、强度、耐热性等。
二、结晶度的定义与测量结晶度是指聚合物中结晶区域所占的比例,通常用重量百分数或体积百分数表示。
结晶度的测量方法有多种,包括密度法、X射线衍射法、红外光谱法等。
其中,X射线衍射法是最常用的一种方法,通过测量聚合物晶体对X射线的衍射强度,可以计算出聚合物的结晶度。
三、结晶度对聚合物性能的影响1.力学性能:结晶度高的聚合物通常具有较高的硬度和刚度,因为晶体区的分子排列更加规整,能够承受更大的外力。
同时,结晶度对聚合物的弹性模量、拉伸强度和冲击强度等也有影响。
2.热性能:结晶度高的聚合物通常具有较高的耐热性和较好的热稳定性,因为晶体区的分子排列更加稳定。
此外,结晶度也会影响聚合物的熔点和热膨胀系数等。
3.光学性能:结晶度对聚合物的透光性和颜色有影响,因为晶体对光的折射和反射作用不同。
4.稳定性:结晶度高的聚合物通常具有更好的化学稳定性和耐氧化性,因为晶体区的分子排列更加规整和稳定。
四、结晶动力学结晶动力学是指聚合物结晶过程中各种因素对结晶速率的影响。
影响因素包括温度、压力、剪切力、添加剂等。
通过对结晶动力学的了解,可以控制聚合物的结晶过程和结晶形态,进而调控聚合物的性能。
五、影响因素1.温度:温度是影响聚合物结晶速率最重要的因素之一。
随着温度的升高,分子运动速度加快,有利于分子排布成晶格结构,从而提高结晶度。
但温度过高可能导致晶体结构不稳定,反而降低结晶度。
2.压力:在高压条件下,聚合物分子间的距离减小,相互作用力增强,有利于形成稳定的晶体结构。
适当提高压力可以提高聚合物的结晶度。
但压力过高可能导致分子链断裂或产生其他不利影响。
3.剪切力:在加工过程中,聚合物通常会受到剪切力的作用。
剪切力可以促进分子重新排列,有利于形成晶体结构。
聚合物结晶的特点一、引言聚合物结晶是指聚合物在一定条件下形成有序的结晶体系,这种结晶体系具有许多独特的特点。
聚合物作为一种重要的高分子材料,在工业生产和科学研究中得到了广泛应用。
因此,深入了解聚合物结晶的特点对于开发新型高分子材料和提高现有材料性能具有重要意义。
二、聚合物结晶的定义聚合物是由许多重复单元组成的大分子化合物,而聚合物结晶则是指在一定温度、压力和浓度条件下,由于分子间作用力引起分子排列有序而形成的三维空间网络。
三、聚合物结晶的特点1. 非均匀性与无机晶体相比,聚合物结晶具有明显的非均匀性。
这是因为在其形成过程中存在着各种不同类型的链段和侧基,这些链段和侧基会影响到整个分子链的排列方式。
2. 晶体缺陷由于聚合物结构中存在着各种不同类型的链段和侧基,因此在其形成过程中很容易产生晶体缺陷。
例如,链段的错位、侧基的扭曲等都会导致结晶体系中出现缺陷。
3. 分子链取向聚合物结晶过程中,分子链的取向对于晶体性质具有重要影响。
分子链可以沿着不同方向排列,从而产生不同的晶体结构和性质。
4. 晶体形态聚合物结晶的形态与其分子结构密切相关。
例如,线性聚合物往往形成长条状或者针状的结晶体系,而支化聚合物则容易形成球状或者片状的结晶体系。
5. 晶体尺寸聚合物结晶过程中,晶体尺寸对于材料性能有着重要影响。
通常来说,较大尺寸的晶体会使材料具有更好的力学性能和导电性能等。
6. 晶格畸变在某些情况下,聚合物结晶过程中会发生晶格畸变现象。
这种现象主要是由于分子间作用力不均匀所致,会导致部分分子排列方式发生改变。
四、影响聚合物结晶特点的因素1. 温度温度是影响聚合物结晶特点的重要因素之一。
一般来说,较高的温度会促进分子运动和排列,从而有利于结晶体系的形成。
2. 浓度浓度是影响聚合物结晶特点的另一个关键因素。
当浓度较高时,分子间作用力增强,有利于结晶体系的形成。
3. 分子结构聚合物分子结构对于其结晶特点具有重要影响。
例如,线性聚合物往往形成长条状或者针状的结晶体系,而支化聚合物则容易形成球状或者片状的结晶体系。
聚合物的结晶度名词解释聚合物是一种由大量重复单元组成的化合物,具有高分子量和多样化的性质。
作为一种常见的材料,诸如塑料、纤维和涂料等都是聚合物的重要应用。
而聚合物的结晶度是其性能和特性的关键参数之一。
本文将解释聚合物结晶度的概念,并深入探讨其对聚合物性能和应用的影响。
一、聚合物结晶度的定义和测量方法聚合物结晶度是指聚合物中结晶区域的百分比,也可以理解为聚合物中有序排列的聚合物链占据的比例。
结晶区域的形成源于聚合物链的有序排列和相互作用。
测量聚合物结晶度的方法有多种,其中最常用的是X射线衍射分析。
通过X 射线的散射模式,可以获得聚合物结晶度的定量数据。
此外,热差示扫描量热仪(DSC)和热相分析(TGA)等热分析技术也可以用于评估聚合物的结晶度,通过测量样品在升温过程中的热行为,可以间接得到聚合物结晶度的信息。
二、聚合物结晶度对物理性能的影响1. 机械性能:聚合物的结晶度与其强度和刚度密切相关。
由于结晶区域中聚合物链的有序排列,导致物质在外部受力时能更好地传递和分散应力,从而提高了聚合物的强度和刚度。
2. 热性能:结晶度对聚合物的热稳定性和热导率也有显著影响。
结晶区域的存在可以提高聚合物的热抗氧化性能,并降低热传导的速率。
因此,高结晶度的聚合物通常具有较好的热性能。
3. 透明度:聚合物的结晶度与其透明度密切相关。
当聚合物链的排列规则性较高时,光线在聚合物内部的散射较少,聚合物更容易透明。
相反,结晶度较低的聚合物内部会存在较多的结晶缺陷,导致光线的散射增加,从而使聚合物呈现不透明或半透明的性质。
三、聚合物结晶度的调控和应用1. 晶化方式:聚合物的结晶度可通过不同的晶化方式进行调控。
例如,通过控制聚合物的冷却速率、加入结晶助剂或改变添加剂的组成等手段,可以影响聚合物的结晶度。
这种调控方式可以根据不同应用需求,使聚合物具备不同的物理性能。
2. 物理加工:聚合物的结晶度还可以通过物理加工方法进行调节。
例如,拉伸、压缩或拉伸后退火等方法会改变聚合物链的空间排列,从而影响聚合物的结晶度。
聚合物的结晶形态包括以下几种:
1. 单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右。
2. 树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状。
3. 球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环。
4. 纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度。
5. 串晶:在电子显微镜下,串晶形如串珠。
6. 柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状。
7. 伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。
这些结晶形态在聚合物的结构中起着重要的作用,并影响了聚合物的物理和化学性质。
聚合物的结晶聚合物按其能否结晶可以分为两大类:结晶性聚合物和非结晶性聚合物。
后者是在任何条件下都不能结晶的聚合物,而前者是在一定条件下能结晶的聚合物,即结晶性聚合物可处于晶态,也可以处于非晶态。
聚合物结晶能力和结晶速度的差别的根本原因是不同的高分子具有不同的结构特征,而这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键。
聚合物结晶的必要条件是分子结构的对称性和规整性,这也是影响其结晶能力、结晶速度的主要结构因素。
此外,结晶还需要提供充分条件,即温度和时间。
首先讨论分子结构的影响。
高聚物结晶行为的一个明显特点就是各种高分子链的结晶能力和结晶速度差别很大。
大量实验事实说明,链的结构愈简单,对称性愈高,取代基的空间位阻愈小,链的立构规整性愈好,则结晶速度愈大。
例如,聚乙烯链相对简单、对称而又规整,因此结晶速度很快,即使在液氮中淬火,也得不到完全非晶态的样品。
类似的,聚四氟乙烯的结晶速度也很快。
脂肪族聚酯和聚酰胺结晶速度明显变慢,与它们的主链上引入的酯基和酰胺基有关。
分子链带有侧基时,必须是有规立构的分子链才能结晶。
分子链上有侧基或者主链上含有苯环,都会使分子链的截面变大,分子链变刚,不同程度地阻碍链段的运动,影响链段在结晶时扩散、迁移、规整排列的速度。
如全同立构聚苯乙烯和聚对苯二甲酸乙二酯的结晶速度就慢多了,通过淬火比较容易得到完全的非晶态样品。
另外,对于同一种聚合物,分子量对结晶速度是有显著影响的。
一般在相同的结晶条件下,分子量大,熔体粘度增大,链段的运动能力降低,限制了链段向晶核的扩散和排列,聚合物的结晶速度慢。
最后,共聚物的结晶能力与共聚单体的结构、共聚物组成、共聚物分子链的对称性、规整性有关。
无规共聚通常会破坏链的对称性和规整性,从而使共聚物的结晶能力降低。
如果两种共聚单元的均聚物结晶结构不同,当一种组分占优势时,该共聚物是可以结晶的。
这时,含量少的组分作为结晶缺陷存在。
但当两组分配比相近时,结晶能力大大减弱,如乙丙共聚物当丙烯含量达25%左右时,产物便不能结晶而成为乙丙橡胶。
如果两种共聚单元的均聚物结晶结构相同,这种共聚物也是可以结晶的。
通常,晶胞参数随共聚物组成而变化。
嵌段共聚物的各个嵌段基本上保持着相对的独立性,其中能结晶的嵌段将形成自己的晶区。
如聚酯-聚丁二烯-聚酯嵌段共聚物,聚酯段仍可较好地结晶,形成微晶区,起到物理交联的作用。
而聚丁二烯段在室温下可以有高弹性,使共聚物成为一种良好的热塑性弹性体。
4.4.1结晶动力学结晶性聚合物因分子结构和结晶条件不同,其结晶速度会有很大差别。
而结晶速度大小,又对材料的结晶程度和结晶状态影响显著。
为此,研究聚合物的结晶动力学将有助于人们控制结晶过程,改善制品性能。
一、结晶速度的测定方法研究聚合物结晶速度的实验方法大体可以分为两种:一种是在一定温度下观察试样总体结晶速率,如膨胀计法、光学解偏振法、DSC法等;另一种是在一定温度下观察球晶半径随时间的变化,如热台偏光显微镜法、小角激光光散射法等。
(1)膨胀计法和差示扫描量热法(DSC )聚合物结晶过程中,从无序的非晶态排列成高度有序的晶态,由于密度变大,会发生体积收缩,观察体积变化即可研究结晶过程。
方法是将试样与惰性跟踪液体(通常是水银)装入一膨胀计内,加热到聚合物熔点以上,使其全部熔融。
然后将膨胀计移入恒温槽内,观察毛细管内液柱的高度随时间的变化。
如果以h 0、h ∞和h t 分别表示膨胀计的起始、最终和t 时间的读数,以∞∞--h h h h t 0对t 作图,则可得到如图4.76所示的反S 形曲线。
该曲线表明,聚合物在等温结晶过程中,体积变化开始时较为缓慢,过了一段时间后速度加快,之后又逐渐减慢,最后体积收缩变得非常缓慢,达到了视平衡。
图4.76 聚合物的等温结晶曲线从等温结晶曲线还可看出,体积收缩的瞬时速度一直在变,变化终止所需要的时间也不明确,但体积收缩一半的时间可以较准确地测量。
因为在这点附近,体积变化的速度较大,时间测量的误差较小。
为此,通常规定体积收缩进行到一半所需的时间的倒数12/1-t 作为实验温度下的结晶速度,单位为s -1、min -1或h -1。
用膨胀计法测定聚合物结晶速度具有简便、重复性好等优点。
但是,由于体系充装水银,热容量较大,聚合物熔融后移入等温结晶“池“,达到平衡所需时间较长,故对结晶速度很快的聚合物就不适用了。
DSC 方法是将实验以一定的升温速度加热至熔点以上,恒温一定时间,以充分消除试样的热历史,然后,迅速降温至测试温度进行等温结晶。
由于结晶时放出结晶潜热,所以出现一个放热峰,见图4.77。
基线开始向放热方向偏离时,作为开始结晶的时间(t 0),重新回到基线时,作为结晶结束的时间(t =t ∞),则t 时刻的结晶程度为 ()()∞∞∞=∆∆=⎰⎰A A dt dt H d dt dt H d x x t t t00// (4-34)式中 x t 、x ∞是结晶时间为t 及无限大时非晶态转变为晶态的分数;A t 、A ∞为0~t 时间及0~∞时间DSC 曲线所包含的面积。
DSC 方法可以进行快速结晶的测定,且样品用量很少。
除上述等温结晶外,还可进行更有实用价值的非等温结晶研究。
图4.77 聚合物的结晶放热峰(2)偏光显微镜法和小角激光光散射法另一类测定结晶速度方法是直接测定球晶半径随时间的变化。
在等温结晶时,高聚物球晶半径随时间变化是线性的。
这种情况下,可以简单地用单位时间球晶半径增加的长度,表征在某一结晶温度下球晶的径向生长速度。
测定球晶半径随时间变化的方法有两种,就是带有恒温热台的偏光显微镜和小角激光光散射仪。
前一方法相当于目测,而后一方法需要利用H v 散射图中产生最大散射强度的散射角θmax 与样品中球晶半径R 之间的关系计算出每一时刻的球晶半径,即(4πR /λ)sin (θmax /2)= 4.1 ()[]1max 2/sin 41.4-=θπλR (4-35)式中λ为光波在介质中的波长。
二、阿弗拉米(Avrami )方程聚合物和小分子熔体的结晶过程相同,包括两个步骤,即晶核的形成和晶粒的生长。
晶核形成又分为均相成核和异相成核两类。
均相成核为熔体中的高分子链段依靠热运动形成有序排列的链束(晶核),有时间依赖性。
异相成核则以外来杂质、未完全熔融的残余结晶聚合物、分散的小颗粒固体或容器的器壁为中心,吸附熔体中的高分子链有序排列而形成晶核,故常为瞬时成核,与时间无关。
由以上讨论可知,膨胀计法研究聚合物的单位结晶动力学是基于结晶过程试样的体积收缩。
令V 0、V t 、V ∞分别为结晶开始时、结晶过程某一时刻t 以及结晶终了时聚合物的比体积,则V t -V ∞即ΔV t 为任一时刻t 时未收缩的体积,V 0-V ∞即ΔV ∞为结晶完全时最大的体积收缩,∞∆∆V V t为t 时刻未收缩的体积分数。
聚合物的等温结晶过程与小分子物质相似,也可以用Avrami 方程来描述,)exp(0n t Kt V V V V -=--∞∞(4-36)式中K 为结晶速度常数;n 为Avrami 指数。
n 值与成核机理和生长方式有关,等于生长的空间维数和成核过程的时间维数之和(见表4.8)。
可以看出,均相成核时,晶核由大分子链规整排列而成,n 值等于晶粒生长维数+1;异相成核时,晶核是由体系中的杂质形成的,结晶的自由度减小,n 值就等于晶粒生长的维数。
表4.8不同成核和生长类型的Avrami 指数值生长类型均相成核 异相成核 三维生长(球状晶体)n=3+1=4 n=3+0=3 二维生长(片状晶体)n=2+1=3 n=2+0=2 一维生长(针状晶体) n=1+1=2 n=1+0=1将上述Avrami 方程两次取对数可得t n K V V V V t lg lg ln lg 0+=⎥⎦⎤⎢⎣⎡---∞∞ (4-37) 对于膨胀计法所得实验数据,以⎥⎦⎤⎢⎣⎡---∞∞V V V V t 0ln lg 对lg t 作图,即可得到斜率为n 、截距为lg K 的直线,如图4.79所示。
由测得的n 和K 值,可以获得有关结晶过程成核机理、生长方式及结晶速度的信息。
此外,当210=--∞∞V V V V t 时,便可得到n K t 12/12ln ⎪⎭⎫ ⎝⎛=n t K 2/12ln = (4-38)这也就是结晶速度常数K 的物理意义和采用2/11t 来衡量结晶速度的依据。
Avrami 方程可定量地描述聚合物的结晶前期,即主期结晶阶段。
但在结晶后期,即次期结晶或二次结晶阶段,由于生长中的球晶相遇而影响生长,方程与实验数据偏离,如图4.78所示。
钱保功等提出的改进Avrami 方程,其结晶程度的适用范围可比原式扩大。
图4.78尼龙1010等温结晶的Avrami 作图1-189.5℃;2-190.3℃;3-191.5℃;4-193.4℃;5-195.5℃;6-197.8℃ 应该指出,要给一个实际得到的n 值赋予真正的物理意义,有时是非常困难的。
例如PET ,视其结晶程度不同,n 值介于2和4之间。
此外,有时发现n 的非整数值以及n =6这样比较高的数值。
说明实际聚合物的结晶过程比起理论的Avrami 模型要复杂得多。
这可归因于有时间依赖性的初期成核作用、均相成核作用和异相成核作用同时存在等原因。
一些聚合物的阿弗拉米(Avrami )指数列于表4.9中。
表4.9一些聚合物的阿弗拉米指数聚合物n 聚合物 n 聚合物 n 聚乙烯1~4和小数 聚丁二酸乙二酯 3 尼龙6 2~6 等规聚丙烯 3~4 聚对苯二甲酸乙二酯 2~4 尼龙8 5~6上述阿弗拉米关系处理的是结晶总速率,而偏光显微镜方法可以直接观察到球晶的生长速率。
在很宽的温度范围内,球晶生长的线速度G (T )的数学表达式为RT F RT E e e G T G D *0)(∆--⋅= (4-39)式中E D 为链段从熔体扩散到晶液界面所需的活化能;ΔF *为形成稳定的晶核所需的自由能;G 0是与温度几乎没有关系的一个常数。
因而,式(4-39)指数第一项称迁移项,第二项为成核项。
进而还可以得知,E D 与结晶温度和玻璃化温度之差T c -T g 成反比;ΔF *与熔点和结晶温度之差ΔT =T m -T c (即过冷度)的一次或二次方成反比,如果将核看成是二元核,则有T H KT F u m∆⋅∆=∆* (4-40)式中 ΔH u 为链结构单元的熔融热;K 是常数。
三、结晶速度与温度的关系选用膨胀计法在一系列温度下观察聚合物的等温结晶过程,可以得到一组即12/1-t 结晶速度值,然后以12/1-t 对T 作图,即可得到结晶速度-温度曲线。
一些聚合物的结晶速度与温度的关系曲线如图4.79所示。