一道高考题的多种解法
- 格式:doc
- 大小:64.00 KB
- 文档页数:2
一道高考题的多种解法评析及其教学反思高考是中国学生们备受关注的重要考试,它在学生们的学业生涯中扮演着至关重要的角色。
高考题是学生们检验知识掌握和思维能力的重要工具,让我们来评析一道高考题的多种解法,并思考如何在教学中提供更好的辅导与指导。
下面,我们将分析一道数学高考题:已知某数列的通项公式为an = n^3 - 2n,求数列的前n项和Sn。
这道题要求求解数列的前n项和,对于学生来说,有多种解法可以得到正确答案。
下面我将列举几种常见的解法,并对这些解法进行评析。
解法一:逐项计算法这种解法是最直观的方式,即从第一项开始逐个计算直到第n项,并将它们求和。
例如,当n=4时,数列的前4项分别为1,6,15,28,将它们求和可得50。
这种解法的优点是容易理解和操作,对于初学者来说较为友好。
然而,当n较大时,手工计算将变得极为繁琐和耗时,容易出错。
解法二:数学归纳法数学归纳法是一种常用的数学证明方法,也可以用来解决这道题。
首先,我们可以通过观察数列的前几项,猜测出数列的前n项和的通项公式为Sn = (n^2)(n-1)^2/4。
接下来,我们可以通过数学归纳法来证明这个猜测。
首先,当n=1时,显然数列的前1项和为1;其次,假设当n=k时,数列的前k项和的通项公式成立。
那么我们只需要证明当n=k+1时,数列的前k+1项和的通项公式也成立。
通过展开数列的前k+1项,并利用归纳假设,我们可以得到Sn+1 = (k^2)(k-1)^2/4 + (k+1)^3 - 2(k+1) = [(k^2)(k-1)^2 + 4(k+1)^3 - 8(k+1)]/4 = [(k-1)^2(k^2 + 4k + 4) + 4(k+1)(k+1)(k+1) - 8(k+1)]/4 = [(k-1)^2(k+2)^2 + 4(k+1)(k+1)(k+1) - 8(k+1)]/4 = [(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1) -8(k+1)]/4 = [(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1) - 8(k+1)(k+1)]/4 =[(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1 - 2(k+1))]/4 = [(k+2)^2(k-1)^2 +4(k+1)(k+1)(k-1)]/4 = (k+2)^2(k-1)^2/4 + (k+1)(k+1)(k-1) =[(k+1)^2(k+2)^2 - (k+1)(k-1) + (k+1)(k-1)]/4 = [(k+1)^2(k+2)^2 - (k+1)(k-1)]/4 = [(k+1)(k+2)(k+1)(k+2) - (k+1)(k-1)]/4 = [(k+1)(k+2)(k+1)(k+2 -k+1)]/4 = [(k+1)(k+2)(k+2)(k+1)]/4 = (k+1)^2(k+2)^2/4 = (k+1)^2((k+1)-1)^2/4。
高考数学23题不等式多种题型及解法高考数学23题不等式多种题型及解法高考数学中的不等式题型占据了相当重要的比重,其中第23题更是被认为是难度较高的题目之一。
不同的不等式类型呈现多种解法,本文将以该题为例,分别探讨不同类型不等式的解法。
1. 绝对值不等式第23题题干如下:若$x+y+z=1$,那么$\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}$最大值为多少?解法:显然这是一个求最值的问题,用$M\leq\sqrt{(a+b+c)(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b})}$来解决本题。
2. 平均数不等式第23题变形如下:设$a,b,c$是正数,且满足$abc=(1-a)(1-b)(1-c)$,求最大值:$$\sqrt{a}+\sqrt{b}+\sqrt{c}$$解法:根据平均数不等式,得到:$$9(a+b+c)\geq (\sqrt{a}+\sqrt{b}+\sqrt{c})^2$$即:$$\sqrt{a}+\sqrt{b}+\sqrt{c}\leq 3\sqrt{\frac{a+b+c}{3}}$$ 3. 夹逼定理第23题变形如下:对所有的正整数$n$,证明如下不等式成立:$$\sqrt{1}+\sqrt{2}+...+\sqrt{n}<\sqrt{n}+\sqrt{n-1}+...+\sqrt{1}+\sqrt{n}$$解法:通过夹逼定理,得到:$$2n\sqrt{n}<2\sum_{i=1}^{n}\sqrt{i}<2n\sqrt{n+1}$$ 即:$$\sqrt{1}+\sqrt{2}+...+\sqrt{n}<\sqrt{n}+\sqrt{n-1}+...+\sqrt{1}+\sqrt{n}$$4. 柯西不等式第23题变形如下:对于任意正整数$n$,证明如下不等式成立:$$\sqrt{\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}}<\frac{2}{\sqrt{n+ 1}}$$解法:通过柯西不等式,得到:$$\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\right)(n+1+n+2+...+ 2n)\geq (\sqrt{n}+\sqrt{n+1}+...+\sqrt{2n})^2$$即:$$\sqrt{\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}}\geq\frac{2}{\sqrt{n+1}}$$结语:高考数学中的不等式题型固然需要掌握多种解法,但更需要在平时的学习中悉心积累、勤于实践。
对一道求最值题的五种解法题目:已知, ,,求的最大值。
解法一:基本不等式法转化为关于的不等关系,通过解不等式进而求出分析:借助基本不等式可将条件中的的取值范围。
解:∵∴∵∴当且仅当时,等号成立∴∴∴当且仅当时,等号成立由可得或,当时,取最大值 .∴评注:基本不等式是高中求最值的基本方法之一,能够灵活的将与联系起来,是求解最值问题最优选择。
解法二:解三角形法分析:将题中所给条件放在三角形ABC中,利用余弦定理求出角C,然后利用正弦定理将边化为角,进而将问题转化为三角函数求最值问题。
解:在中,,,分别是内角A、B、C的对边,不妨设,则即在中,由余弦定理及可得∵∴∴ ,∴在中,由正弦定理可得即∴,∴∵∴∴∴∴当,即时,取最大值 .评注:本解法将所给条件巧妙的放在三角形中,利用正余弦定理,实现边角互化,将问题转化为三角函数求最值问题。
解法三:三角换元法分析:通过变形已知条件,根据变形的结构特征,引进三角代换,利用三角函数知识解决此题。
解:由可得设则∴∵∴即最大值为 .∴评注:通过变形,构造平方和关系,引入三角代换,利用三角函数知识解决问题。
解法四:判别式法分析:通过代数换元法,将问题转化为关于的一元二次方程有解来处理。
解:设,则,代入将可得整理可得∵关于的一元二次方程有解,∴即,解得,∴,∴的最大值为,即的最大值为.评注:通过换元法将问题转化成关于的一元二次方程,利用判别式△求解。
解法五:齐次消元法分析:由可知分子分母具有齐次结构,分子分母同除以,令,则,问题转化为分式函数求值域,利用判别式法对分式函数求值域。
解:设 ,则,设,则当时.当时,有∴,即,解得且∴的最大值为∴的最大值为∴的最大值为.评注:通过对的等价转化,将问题转化为分式函数求值域,利用判别式法对分式函数求值域。
这道题可以使用多种求最值方法求解,关键在于能够根据题目特点做适当变形,巧妙地和所学知识及相应解题方法结合起来。
化难为易,找到解决问题的途径,需要平时学习中勤于思考,多加积累。
高考数学选择题10大解法实例解析1、特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC 的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C 三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2、极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户.为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为A.5%B.10%C.15%D.20%解析:设共有资金为α,储户回扣率χ,由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α 解出0.1≤χ≤0.15,故应选B.7.逆推验证法(代答案入题干验证法)将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
解答高考数学题的12种方法于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。
近年的高考数学解答题多呈现为多问渐难式的梯度题,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施分段得分,以增加在时间不足前提下的得分。
方法五、一慢一快,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的基础工程,题目本身是怎样解题的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
方法六、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从数量上,而且从性质上影响着后继各步的解答。
所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
方法七、讲求规范书写,力争既对又全考试的又一个特点是以卷面为唯一依据。
这就要求不但会而且要对、对且全,全而规范。
会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、感情分也就相应低了,此所谓心理学上的光环效应。
一道比较大小问题的五种解法题目(2022年新高考全国1卷第7题)设a=0.1e0.1 ,b=19,c=−ln0.9 ,则()A.a<b<cB. c<b<aC. c<a<bD. a<c<b从这道题看,命题者匠心独具,将指数、对数有机地联系在一起,编制出一道比较大小的选择题,全面考查了学生的数学素养和思维能力,是最近几年高考的热点,同时由于这道试题综合性强、复杂程度大,在高考选拔中有很好的区分度.本文将从不同视角入手分析进而给出五种不同解法,供大家参考.解法一:先比较a与b,构造函数f(x)=(1−x)e x−1 ,当x>0,则f′(x)=−xe x<0,故f(x)在[0,+∞)上单调递减,从而有f(0)>f(0.1),即0.9e0.1−1<0 .故a<b.同理,当x< 0时,则f′(x)=−xe x>0,故f(x)在(−∞,0]上单调递增,从而有f(ln0.9)<f(0),即(1−ln0.9)e ln0.9−1<0,化简得−ln0.9<19.故c<b .最后比较a与c的大小,构造定义在[0,0.1]上的函数g(x)=xe x+ln(1−x),则g′(x)=(1−x2)e x−11−x,令ℎ(x)=(1−x2)e x−1,则ℎ′(x)=(1−2x−x2)e x>0,故ℎ(x)=(1−x2)e x−1在[0,0.1]上单调递增,因此,ℎ(x)>ℎ(0)=0,从而当x∈[0,0.1],g′(x)=(1−x2)e x−11−x>0.故函数g(x)=xe x+ ln(1−x)在在[0,0.1]上单调递增,于是g(0.1)>g(0),即0.1e0.1+ln0.9>0 ,故a>c .综上,选择C.点评对于含有指数式,对数式比较大小问题,通常方法是结合函数的单调性及中间值来比较大小,但对这道比较复杂的题,则需要结合题目特征,构造几个合适的函数,通过导函数来研究其单调性,最终比较出大小.解法二令a=xe x,b=x1−x,c=−ln(1−x),由lna−lnb=x+lnx−[lnx−ln(1−x)]=x+ln(1−x), 令y=x+ln(1−x),当x∈[0,0.1],y′=1−11−x<0,所以y<0,即a<b. 比较a与c的大小,利用做差法,以下与解法一方法类似.点评本解法利用了取对数运算后再构造函数,利用函数单调性,最后比较出大小,此种方法有种高屋建瓴的感觉.解法三由三个不等式e x>x+1,e x<11−x (x<1),lnx<12(x−1x)(x>1).在前两个式子中令x=0.1,得0.1+1<e0.1<11−0.1 ,化简得0.11<0.1e0.1<19.故0.11<a<b.在上面第三个式子中令x=109 ,得ln109<12(109−910) ,化简得−ln0.9<19180<0.11 ,故c<a<b .点评此种方法充分利用了几个不等式进行放缩,再进行赋值运算,最后比较大小.这几个不等式可以利用导数判断其单调性来证明,有兴趣者可以自行证明.其中c与b的大小比较,可以利用lnx<x−1 , 这个不等式. 同时,我们在平时训练中可以适当记住一些重要不等式,就能使我们从较高的角度把握全局,从而快捷准确的找到解决问题的路径,这样可以提高我们的解题速度.解法四由ab=0.9e0.1=e0.1+ln0.9<e0.1+(0.9−1)=1,又a>0,b>0,所以a<b.由ac =0.1e0.1−ln0.9=0.1e0.1×10−9ln10−ln9>0.1e0.1√10×9>0.1×(0.1+1)√90>1,又a>0,c>0,所以a>c.于是c<a<b.点评本解法先利用作商法,然后利用不等式进行放缩进行运算,最后得出答案.此解法中第一部分比较中应用不等式lnx<x−1,在第二部分中应用到a−blna−lnb>√ab和e x>x+ 1.解法五从泰勒展开式e x=1+x+x22!+⋯+x nn!+⋯ln(1−x)=−x−x22−x33−⋯−x nn−⋯因为a=0.1e0.1≈0.1×(1+0.1+0.122!)=0.1105,b=19≈0.1111,c=−ln(1−0.1)≈−(−0.1−0.122−0.133)=0.1053,因此c<a<b.点评本解法利用了高等数学中泰勒展开式求出它们的近似值,从而比较出其大小.学有余力的同学可以适当了解一些简单的高数知识,到时候可以秒杀一些压轴的客观小题,从而为取得高分添砖加瓦,但不能过分强求,本末倒置,反而得不偿失.在数学学习中,时时刻刻离不开解题,在解题时我们要充分挖掘题设中的条件、结构、数据之间的联系,多角度分析问题,把每道题研究透,总结出其所含的一些数学思想方法.同时把这些思想方法运用到解决其他题目上去,起到举一反三,不断提升自身的数学素养.。
高考数学的10 种常用解法解数学有两个根本思路:一是直接法;二是接法①充分利用干和支两方面提供的信息,快速、准确地作出判断是解的根本策略。
②解的根本思想是:既要看到通常各常的解思想,原上都可以指的解答;更看到。
根据的特殊性,必定存在着假设干异于常的特殊解法。
我需把两方面有机地合起来,具体具体分析。
1、直接求解法11、如果log7log 3log 2 x0 ,那么x 2 等于〔〕A1B3C3D236942、方程xsin x 的数解的个数〔〕100A 61B 62C 63D 64精1. f(x)=x(sinx+1)+ax 2,f(3)=5, f(- 3)=() (A) - 5(B) - 1(C)1(D) 无法确定2.假设定在数集R 上的函数 y=f(x+1)-1的反函数是 y=f(x- 1),且 f(0)=1, f(2001) 的 ( )(A)1(B)2000(C)2001(D)20023.奇函数 f(x) 足: f(x)=f(x+2) ,且当 x∈ (0,1), f(x)=2 x- 1, f (log 1 24) 的2〔A 〕1〔 B 〕5〔 C〕5〔 D 〕23 2224244. a>b>c,n∈ N,且11n恒成立, n的最大是〔〕b c aa b c(A)2(B)3(C)4(D)55.如果把 y=f(x) 在 x=a及 x=b 之的一段象近似地看作直的一段,a≤ c≤b,那么 f(c)的近似可表示〔〕1f (a) f (b)(B) f (a) f (b) (C) f (a)c a[ f (b) f (a)] (D) f (a)c a(A)b a b [ f (b) f (a)]2a6.有三个命:①垂直于同一个平面的两条直平行;② 平面的一条斜 l 有且有一个平面与垂直;③异面直a, b 不垂直,那么 a 的任一平面与 b 都不垂直。
其中正确的命的个数 ().1C7.数列 1,1+2,1+2+2 2, ⋯ ,1+2+22+⋯ +2n-1, ⋯的前 99 的和是〔〕〔 A 〕 2100- 101〔 B〕 299- 101〔 C〕 2100- 99〔 D〕 299- 99精答案: B DACCDA2、特例法把特殊值代入原题或考虑特殊情况、 特殊位置, 从而作出判断的方法称为特例法〔特殊值法〕(1) 、从特殊结构入手3 一个正四面体,各棱长均为2 ,那么对棱的距离为〔〕A 、1B 、1C 、 2D 、222(2)、从特殊数值入手4、 sin xcos x1 x2 ,那么 tan x 的值为〔 〕,54 B 、4 3 3 4A 、或 4C 、D 、33435、△ ABC 中, cosAcosBcosC 的最大值是〔〕3 1 C 、 11A 、3B 、D 、882(3) 、从特殊位置入手6、如图 2,一个正三角形内接于一个边长为 a 的正三角形中,问x 取什么值时,内接正三角形的面积最小〔〕A 、aB 、aC 、aD 、3 a 图 223 427、双曲线 x 2y 2 1的左焦点为 F ,点 P 为左支下半支异于顶点的任意一点,那么直线PF的斜率的变化范围是〔〕A 、 ( ,0)B 、 ( , 1) U (1, )C 、 ( ,0) U (1, )D 、 (1, )(4) 、从变化趋势入手8、用长度分别为 2、3、 4、 5、6〔单位: cm 〕的 5 根细木棍围成一个三角形〔允许连接,但不允许折断〕,能够得到的三角形的最大面积为多少〔〕A 、 8 5 cm 2B 、 610 cm 2 C 、 3 55 cm 2D 、 20 cm 29、 a b1,P lg a lg b ,Q1 lg a lg b , R lgab,那么〔〕22A R P QB P Q RC Q P RD P R Q注:此题也可尝试利用根本不等式进行变换.10、一个 方体共一 点的三个面的面 分 是2, 3,6 , 个 方体 角 的 是A 2 3B 3 2C 6D 6〔〕精1.假设 04, 〔〕(A) sin 2sin (B) cos2cos (C) tan2 tan (D) cot 2 cot 2.如果函数 y=sin2x+a cos2x 的 象关于直x= - 称,那么 a=()8(A) 2(B) - 2(C)1 (D) - 13. f(x)=x1 +1(x ≥ 1).函数 g(x)的 象沿 x 方向平移 1 个 位后,恰好与f(x) 的象关于直 y=x 称, g(x) 的解析式是〔 〕〔A 〕 x 2+1(x ≥0)(B)(x - 2)2+1(x ≥ 2) (C) x 2+1(x ≥1) (D)(x+2) 2+1(x ≥ 2)4.直三棱柱 ABC — A / B / C / 的体 V , P 、 Q 分 棱 AA /、 CC /上的点,且 AP=C / Q ,四棱 B — APQC 的体 是〔 〕〔A 〕 1V〔 B 〕 1V〔 C 〕 1V〔D 〕 1V23455.在△ ABC 中, A=2B , sinBsinC+sin 2B=()(A)sin 2A (B)sin 2B(C)sin 2C(D)sin2B6.假设 (1-2x) 80 12 x 2 8 8128)=a +a x+a +⋯ +a x ,|a |+|a |+ ⋯ +|a|=(〔 A 〕 1〔 B 〕- 1〔 C 〕 38- 1〔 D 〕 28- 17.一个等差数列的前 n 和 48,前2n 和60, 它的前3n 和 〔〕(A) 24(B) 84(C) 72(D) 368.如果等比数列a n 的首 是正数,公比大于1,那么数列 log 1 a n是〔〕3(A) 增的等比数列;(B) 减的等比数列;(C) 增的等差数列;(D) 减的等差数列。
X 1 X 2 O -X X 3
图1
一道高考试题的多种解法
例题:(2010江苏卷5)空间有一沿x 轴对称分布的电场,其电场强度E 随X 变化的图像如图所示。
下列说法正确的是
(A )O 点的电势最低
(B )X 2点的电势最高
(C )X 1和- X 1两点的电势相等
(D )X 1和X 3两点的电势相等
该题考查电场强度与电势的关系,考查图象。
根据学生做题情况,选项特别迷惑不易得出,因而大致归类有三种方法可供学生分析理解。
解析:
法一:
把该图像与等量同种正(或负)电
荷的电场线对照,沿x 轴方向如图1所
示分布O 点的电势可能最高可能最低,
所以A 和B 错误。
X 1和- X 1两点关于O
点对称,因而X 1和- X 1两点的电势相等,
所以C 正确。
X 1的电势高于X 3的电势,
所以D 错误。
法二:
可画出电场线,如图2沿电场线电势降落(最快),所
以A 点电势最高,A 错误,B 错误;根据Ed U =,电场强度是变量,可用x E -图象面积表示,所以C 正确;X 1和X 3两点电场强度大小相等,电势不相等,D 错误,此项迷惑人。
法三: 把电场强度E 随X 变化的图像转化成电场力F 随X 变化,如图3由x F -面积可以看出,将同一电荷从O 点分别移动到X 1和- X 1两点电场力做功相同,则X 1和- X 1两点的电势相等,所以C 正确。
从O 点移动到X 1和X 3两点做功不同,X 1和X 3两点的电势不等,所以D 错误。
X X X O -X X 图2 图3。