6.3.4平面向量数乘运算的坐标表示-【新教材】人教A版(2019)高中数学必修第二册课件
- 格式:pptx
- 大小:2.01 MB
- 文档页数:36
6.3.4 平面向量数乘运算的坐标表示(第2课时)【学习目标】两个向量共线的坐标表示(1) 设a =(x 1,y 1),b =(x 2,y 2)≠0,则a ∥b ⇔a =λb (λ∈R ).(2)若用坐标表示,可写为 (x 1,y 1)=λ(x 2,y 2),即⎩⎨⎧x 1=λx 2,y 1=λy 2,消去λ,可得向量 a ,b (b≠0)共线的充要条件 .注意:平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.【小试牛刀】1.思维辨析(对的打“√”,错的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( ) (2)若a =(x 1,y 1),b =(x 2,y 2),且a 与b 共线,则x 1x 2=y 1y 2.( )(3)若A ,B ,C 三点共线,则向量AB →,BC →,CA →都是共线向量.( )(4)向量(2,3)与向量(-4,-6)反向.( )(5)已知a =(2,3),b =(-1,2),若m a +b 与a -2b 平行,则m =-12.( ) 2.已知a =(3,1),b =(2,λ),若a ∥b ,则实数λ的值为________.【经典例题】题型一 向量共线的坐标表示点拨:(1)向量是否共线,利用向量共线的坐标表示或b →=λa →验证. (2)判断AB →∥CD →,只要把点的坐标代入公式x 1y 2-x 2y 1=0,看是否成立.【跟踪训练】1 已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.题型二 三点共线问题点拨:三点共线问题转化成向量共线问题,向量共线常用的判断方法有两种: 一是直接用AB→与=λAC →;二是利用坐标运算.例2已知A (-1,-1),B (1,3),C (2,5),判断A ,B ,C 三点之间的位置关系。
高中数学人教A版(2019)必修第二册6.3.1平面向量基本定理说课稿一、教材分析本节课选自普通高中课程标准实验教科书人教版必修2第六章《平面向量及其应用》第三节《平面向量基本定理及其坐标表示》第一课时。
本节首先由向量的概念和运算得出平面向量基本定理.平面向量基本定理是平面向量中的重要内容.此定理表明平面内的任一向量可以由同一平面内的两个取定的不共线向量表示,而且表示式是唯一的.因而向量的运算可以归结为两个取定的不共线向量的运算,这为利用向量运算解决问题带来了方便.由此定理还可引出向量的坐标的概念,进而引出向量运算的坐标表示。
1.平面向量基本定理平面向量基本定理告诉我们,同一平面内任一向量都可表示为两个取定的不共线向量的线性组合,这样,如果将平面内向量的起点放在一起,那么由平面向量基本定理可知,平面内的任意一个点都可以通过取定的两个不共线的向量得到表示。
也就是说,平面内的任意一个点可以由平面内的一个点及两个取定的不共线的向量来表示.这是引进平面向量基本定理的一个原因,下面对其中的思想作一概述.用向量表示几何元素是容易的,并且很直接.选一个定点,那么,任何一个点都可以用一个向量来表示.对于一条直线l,如果我们的兴趣只在于它的方向,那么用一个与l平行的非零向量图片就行了;如果想确定这条直线的位置,则还要在l上任选一点。
这样,一个点A,一个向量图片就在原则上确定了直线l,这是对直线的一种定性刻画。
如果想具体地表示l上的每一个点,我们需要实数k和向量图片的乘法图片.这时,l上的任意一点X都可以通过点A和某个图片来表示(图6-17).希望在“实际”上控制直线l,可以看作是引入图片的一个原因.再来看平面.两条相交直线确定一个平面 a.一个定点,两个不共线的向量便“原则”上确定了平面α,这是对平面的一种定性刻画.但在讨论几何问题时,常常涉及平面α上的某一点X,为了具体地表示它,我们需要引进向量的加法.这时,平面α上的点X就可以表示为(相对于定点A),这样点X 就成为可操作的对象了(图6-18).在解决几何问题时,这种表示能发挥很重要的作用.虽然向量的加法、数乘运算有非常坚实的物理背景,但当我们舍弃了这种背景而只从纯粹数学的角度来看问题的话,上述考虑可使我们看到引进相应的向量运算的理由,这可以使我们更容易接受并喜爱向量运算。
高中数学必修2第六章 平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度;①向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ①b , 规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作①OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是①OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形法则的物理模型.ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;①若a ,b 互为相反向量,则a =-b ,a +b =0;①零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;①当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ①由①可知,当λ=0时,λa =0;由①①知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;①(λ+μ)a =λa +μa ;①λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则①a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ①b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ①a ①b ①a ·b =0①当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方①|a ·b |≤|a |·|b |. (7)运算律:①a ·b =b ·a ;①(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ①R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ①b ①x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.①两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2. ①向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x x +y y √x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在①ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为①ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;①sin 2a R A =,sin 2bR B =,sin 2c C R=;①::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示.2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-①方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).①方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);①建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.①求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.①检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章 复数 【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ①R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ①R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ①R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ①R }中任取两个数a +bi ,c +di (a ,b ,c ,d ①R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ①R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ①R )可以分类如下: 复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),①集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ①R )一一对应↔ 复平面内的点z (a ,b ). ①复数z =a +bi (a ,b ①R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ①R )的模或绝对值. ①记法:复数z =a +bi 的模记为|z |或|a +bi |. ①公式:|z |=|a +bi |=√a 2+b 2(a ,b ①R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。
6.3.4 平面向量数乘运算的坐标表示一、选择题1.(2019·全国高一课时练习)已知平面向量(,4)a m =,(1,2)=-b ,且a ∥b ,则m = A .8- B .2- C .2 D .8【答案】B 【解析】由题意结合平面向量平行的充要条件可得:4,212mm =∴=--.本题选择B 选项.2.(2019·全国高一课时练习)已知平面向量()1,2a =,()2,b m =-且//a b ,则23a b +=( ) A .()2,4-- B .()3,6-- C .()4,8-- D .()5,10--【答案】C【解析】()1,2a =,()2,b m =-且//a b ,()122m ∴⨯=⨯-,4m =-∴,则()2,4b =--,因此,()()()2321,232,44,8a b +=+--=--,故选C.3.已知向量()2cos ,2sin a θθ=,(b =,且a 与b 共线,[)0,2πθ∈,则θ= A .π3 B .π6 C .π3或2π3 D .π6或7π6【答案】D【解析】因为a 与b 共线,所以2230cos sin θθ⨯=,cos θθ=,所以3sin tan cos θθθ==又因为[)0,2θπ∈,所以6πθ=或76π.本题选择D 选项4.已知向量则下列向量中与向量平行且同向的是( )A .B .C .D .【答案】A 【解析】,故选A .5.(多选题)若三点A (4,3),B (5,m ),C (6,n )在一条直线上,则下列式子正确的是( ) A .2m -n =3B .n -m =1C .m =3,n =3D .m -2n =3 【答案】AC【解析】∵三点(4,3)A ,(5,)B m ,(6,)C n 在一条直线上∴AB AC λ=∴(1,3)(2,3)m n λ-=-∴12λ=∴13(3)2m n -=-,即23m n -=.当m =3时,n =3。