高教版中等职业学校职业高中平面向量的数乘运算教案课件
- 格式:doc
- 大小:185.50 KB
- 文档页数:4
平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:一、平面向量的数乘运算概念1. 引入实数与向量的乘积,即数乘运算。
2. 讲解数乘运算的定义及性质。
二、平面向量的数乘运算规则1. 讲解数乘运算的分配律。
2. 讲解数乘运算的结合律。
3. 讲解数乘运算的单位向量。
三、数乘运算在坐标系中的应用1. 讲解二维坐标系中向量的数乘运算。
2. 讲解三维坐标系中向量的数乘运算。
四、数乘运算与向量长度的关系1. 讲解数乘运算与向量长度的关系。
2. 讲解数乘运算在求向量长度中的应用。
五、数乘运算在向量运算中的应用1. 讲解数乘运算在向量加法中的应用。
2. 讲解数乘运算在向量减法中的应用。
教学方法:1. 采用讲授法,讲解数乘运算的概念、规则及应用。
2. 利用多媒体演示,直观展示数乘运算在坐标系中的应用。
3. 引导学生通过练习,巩固数乘运算的知识。
教学评估:1. 课堂练习:布置有关数乘运算的题目,检查学生掌握情况。
2. 课后作业:布置有关数乘运算的综合题目,要求学生在规定时间内完成。
3. 单元测试:进行有关数乘运算的测试,了解学生对知识的掌握程度。
教学资源:1. 教学PPT:展示数乘运算的概念、规则及应用。
2. 练习题库:提供丰富的数乘运算题目,供学生练习。
3. 坐标系软件:辅助展示数乘运算在坐标系中的应用。
教学建议:1. 在讲解数乘运算概念时,注意与实数的乘法进行对比,帮助学生理解。
2. 在讲解数乘运算规则时,举例说明,让学生更好地掌握。
3. 在数乘运算的应用部分,注重引导学生思考,提高解决问题的能力。
4. 针对不同程度的学生,合理安排课堂练习和课后作业,提高教学效果。
5. 及时进行教学评估,针对学生的薄弱环节进行有针对性的讲解和辅导。
平面向量的数乘运算教学内容:六、数乘运算与向量坐标的关系2. 举例说明数乘运算在坐标系中的应用。
【教学过程】 *揭示课题7.2.3 平面向量的数乘运算 *情境导入有一同学从O 点出发,向东行进,1秒后到达A 点,按照相同的走法,问3秒后人在哪里,用向量怎么表示?观察图7-15可以看出,向量OC 与向量a 共线,并且OC =3a .图7−15*引入新知一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为(7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.当λ=0时,λa = 0。
实数λ与向量的乘法运算叫做向量的数乘运算。
由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有(7.4)容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则: ()()111=-=-a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 . 【做一做】请画出图形来,分别验证这些法则.向量加法及数乘运算在形式上与实数的有关运算规律相类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中.但是,要注意向量的运算与数a a aaOA BC的运算的意义是不同的. *例题讲解例1 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .例2 计算: (1)(-3)×4a(2)5(a +b )-2(a -b ) (3)(a +4 b -3c )-(2 a -3 b -5c )*练习强化1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). *揭示课题7.4.1 平面向量的内积 *情境导入如图7-21所示,水平地面上有一辆车,某人用100 N 的力,朝着与水平线成︒30角的方向拉小车,使小车前进了100 m .那么,这个人做了多少功?我们知道,这个人做功等于力与在力的方向上移动的距离的乘积.如图7-22所示,设水平方向的单位向量为i ,垂直方向的单位向量为j ,则F =x i + y j cos30sin 30=⋅+⋅F i F j ,Fs图7—21︒30O图7-16即力F 是水平方向的力与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s ,即W =|F |cos ︒30·|s |=100×23·10=5003 (J ) *引入新知力F 与位移s 都是向量,而功W 是一个数量,它等于由两个向量F ,s 的模及它们的夹角的余弦的乘积,W 叫做向量F 与向量s 的内积,它是一个数量,又叫做数量积.如图7-23,设有两个非零向量a , b ,作OA =a , OB =b ,由射线OA 与OB 所形成的角叫做向量a 与向量b 的夹角,记作<a ,b>.我们规定,0180θ≤≤两个向量a ,b 的模与它们的夹角的余弦之积叫做向量a 与向量b 的内积,记作a ·b , 即(7.10) 上面的问题中,人所做的功可以记作W =F ·s. 由内积的定义可知 a ·0=0, 0·a =0. 由内积的定义可以得到下面几个重要结果:(1) 当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =−|a ||b |. (2) cos<a ,b >=||||⋅a ba b . (3) 当b =a 时,有<a ,a >=0,所以a ·a =|a ||a |=|a |2,即|a |.(4) 当,90a b <>=时,a ⊥b ,因此,a ·b =cos900,a b ⋅=因此对非零向量a ,b ,有a ·b =0⇔a ⊥b.可以验证,向量的内积满足下面的运算律: (1) a ·b =b ·a .(2) (a λ)·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .注意:一般地,向量的内积不满足结合律,即a ·(b ·c )≠(a ·b )·c .B*例题讲解60,求a·b.例1 已知|a|=3,|b|=2, <a,b>=︒-,求<a,b>.例2 已知|a|=|b|=2,a·b=2*练习强化60,求a·b.1. 已知|a|=7,|b|=4,a和b的夹角为︒2. 已知a·a=9,求|a|.30,求(2a+b)·b.3. 已知|a|=2,|b|=3, <a,b>=︒*归纳小结向量的数乘运算得到的是什么向量?向量的内积运算得到的是什么?。
教案:平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:一、平面向量的数乘运算概念1. 引入向量的概念,回顾向量的定义和表示方法。
2. 引入数乘运算的概念,解释数乘运算的含义。
二、平面向量的数乘运算规则1. 展示平面向量的数乘运算例子,引导学生总结数乘运算的规律。
2. 讲解平面向量的数乘运算规则,包括标量与向量的乘法以及向量的数乘。
三、数乘运算的性质1. 引导学生思考数乘运算的性质,如交换律、结合律等。
2. 讲解数乘运算的性质,并通过示例进行说明。
四、数乘运算在实际问题中的应用1. 给出实际问题,引导学生运用数乘运算进行解决。
2. 讲解数乘运算在实际问题中的应用方法,如速度和加速度的合成等。
五、巩固练习1. 提供练习题,让学生独立完成,巩固对数乘运算的理解和应用。
2. 解答学生的问题,给予指导和帮助。
教学资源:1. 教学PPT或黑板,用于展示向量和数乘运算的示例和性质。
2. 练习题,用于巩固学生的理解和应用能力。
教学评估:1. 课堂讲解的清晰度和连贯性。
2. 学生对数乘运算的理解程度和应用能力。
3. 学生练习题的完成情况。
教学时间安排:1. 第一节课:介绍平面向量的数乘运算概念。
2. 第二节课:讲解平面向量的数乘运算规则。
3. 第三节课:讲解数乘运算的性质。
4. 第四节课:讲解数乘运算在实际问题中的应用。
5. 第五节课:巩固练习和解答学生问题。
教案:平面向量的数乘运算(续)六、数乘运算与向量长度的关系1. 回顾向量长度的定义和计算方法。
2. 讲解数乘运算与向量长度的关系,引导学生理解数乘运算对向量长度的影响。
七、数乘运算与向量方向的关系1. 讲解数乘运算与向量方向的关系,包括数乘运算对向量方向的影响。
2. 引导学生通过示例理解数乘运算对向量方向的影响。
八、数乘运算的逆元素1. 引入逆元素的概念,解释数乘运算的逆元素。
平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:第一章:平面向量数乘运算的概念1.1 向量的概念回顾1.2 数乘运算的定义1.3 数乘运算的性质第二章:平面向量的数乘运算规则2.1 数乘运算的分配律2.2 数乘运算的结合律2.3 数乘运算的单位向量第三章:数乘运算在坐标系中的应用3.1 坐标系的回顾3.2 数乘运算在坐标系中的表示3.3 数乘运算在坐标系中的应用举例第四章:数乘运算与向量长度的关系4.1 向量长度的概念回顾4.2 数乘运算与向量长度的关系4.3 数乘运算在求向量长度中的应用第五章:数乘运算与向量方向的关系5.1 向量方向的概念回顾5.2 数乘运算与向量方向的关系5.3 数乘运算在改变向量方向中的应用教学方法:1. 采用讲授法,讲解平面向量数乘运算的概念、规则及其应用。
2. 通过示例和练习,让学生熟练掌握数乘运算的计算方法。
3. 利用坐标系,直观地展示数乘运算在实际问题中的应用。
教学评估:1. 课堂练习:布置相关的习题,检查学生对数乘运算的理解和掌握程度。
2. 课后作业:布置综合性较强的题目,巩固学生对数乘运算的应用能力。
3. 单元测试:进行全面的测试,评估学生对平面向量数乘运算的整体掌握情况。
教学资源:1. 教学PPT:制作精美的PPT,展示平面向量数乘运算的概念、规则及应用。
2. 坐标系模型:准备实物或电子模型,直观展示数乘运算在坐标系中的应用。
3. 练习题库:收集相关的习题,供课堂练习和课后作业使用。
第六章:数乘运算与向量加法的结合6.1 向量加法的概念回顾6.2 数乘运算与向量加法的结合规则6.3 数乘运算在向量加法中的应用举例第七章:数乘运算与向量减法的结合7.1 向量减法的概念回顾7.2 数乘运算与向量减法的结合规则7.3 数乘运算在向量减法中的应用举例第八章:数乘运算与向量数乘的结合8.1 向量数乘的概念回顾8.2 数乘运算与向量数乘的结合规则8.3 数乘运算在向量数乘中的应用举例第九章:数乘运算在实际问题中的应用9.1 数乘运算在物理学中的应用9.2 数乘运算在工程学中的应用9.3 数乘运算在其他领域的应用第十章:总结与拓展10.1 数乘运算的总结10.2 数乘运算的拓展学习10.3 数乘运算在后续课程中的应用教学方法:1. 采用讲授法,讲解数乘运算与向量加法、减法、数乘的结合规则及其应用。
第四单元4.2.3《平面向量的数乘运算》教案一、创设情境 激发兴趣问题:青藏铁路是世界上海拔最高、 线路最长、气候条件最恶劣的高原铁路.大家有没有发现:这趟列车有两个火车头,这是为什么呢?分析:两台火车机车挂接在一起担任列车牵引任务叫作机车双机重联,这种运行模式可以实现一台机车两车动力,可以提高速度,加大运量.由于青藏铁路部分段落坡度较陡,机车一般采用双机重联.上图采用双机重联的 “雪域神舟”号就是我国自行研制的高原机车.假设每一台机车的牵引力均为f ,双机重联后能产生两车动力,即=2f f f f +=合,如图 4-25所示.二、自主探究 讲授新知上例中,根据向量的加法法则,三台机车重联,牵引力=+3f f f f f +=合;如果机车倒车,牵引力相反,=(--+--3f f f f f +=合)()(). 如果n 台机车重联,则牵引力为了解 观看 课件思考 分析 讨论 回答 理解 领会通过 引入 双车 重联 两车 动力 情境, 激发 学生 兴趣带领 学生 分析 引导 启发 学生 得出 结果=++n f f f f nf +=合个….1. 实数与向量的乘法:一般地,实数λ与向量 a 的乘积仍是一个向量,记作λa .它的模与方向规定如下: (1) |λa|=|λ|∙|a |;(2) 当λ>0时,λa 与 a 的方向相同;当λ<0时,λa 与 a 的方向相反.(3) 当λ=0时,λa =0∙ a =0,方向任意. (4) 当 a =0 时,a =λ∙ 0 =0,方向任意.定义:求实数与向量乘积的运算叫做向量的数乘运算.2.向量的数乘运算满足以下的运算法则:设λ,μ∈R ,对任意向量a ,b ,则 (λ+ μ)a =λa + μa ;λ(μa )=(λμ)a ; λ(a +b )=λa +λb.3.向量的线性运算如图4-26,已知向量a ,可以作出 2a ,-2a ,12a .数乘向量λa 的几何意义是把向量a 沿着相同或相反的方向,伸长(或缩短)到原来的λ倍(或1λ),这些向量均为共线向量.理解 记忆 思考 归纳 联想 理解 观察求解引导 启发 学生 思考 注意 观察 学生 是否 理解 知识 点 加深 记忆 帮助 学生 更好 理解 掌握三、典型例题巩固知识例 1计算.(1)3(a-2b)-2(2a+b) ;(2)3a-2(3a-4b)+3(a-b).解:类比多项式计算中的合并同类项,可得(1)3(a-2b)-2(2a+b)= 3a-6b-4a-2b= -a-8b ;(2)3a-2(3a-4b)+3(a-b)=3a-6a+8b+3a-3b=5b例2在▱ABCD中,O为两对角线的交点.如图 4-27,AB= a,AD= b,试用表示a,b向量AO,OD.解:因为AC=a+b,BD= b+(-a)=b- a,而O为AC,BD的中点,所以,12AO AC==12(a+b)=12a+12b,12OD BD==12(b -a)=-12a+12b.例3若b=2a(a≠0), c=12b-3a ,求证:c∥ a .证明:因为b=2a,所以c=12b-3a=12(2a) -3a= a-3a=-2a .因此 c∥ a .注意:(1) 向量的加、减与数乘运算的结果一定是向量,而不是一个数.(2) 向量的线性运算在形式上与实数的有关运算规律类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的线性运算中,但要注意向量的线性运算与实数的运算意义是不同的. 思考求解领会掌握观察分析思考归纳通过例题领会通过例题进一步领会加深理解掌握强调领会。