上海初二数学知识点初二数学上册知识点梳理
- 格式:doc
- 大小:15.00 KB
- 文档页数:5
八年级上册数学上海知识点近年来,上海作为中国的先进城市,对教育的投入也越来越大,其教学方法和教学内容也得到了广泛的认可。
在八年级上册数学学科中,上海的教学点有很多,我们今天就来介绍一下上海的数学知识点。
一、有理数1.1 有理数的概念“有理数”这个名词相信我们已经听过很多遍,简单来说,有理数就是能表示为两个整数比值的数,比如-3, 0, 1/2等等。
1.2 有理数的基本运算有理数的基本运算包括加、减、乘、除四种运算。
通常我们会通过转换分母的方法来进行计算。
二、平方根2.1 平方根的概念平方根指的是某个数的二次方等于这个数的数值,就是a的平方根记作根号下a。
2.2 平方根的性质平方根有很多性质,比如平方根的和等于整个数的和的平方根,平方根的积等于整个数的积的平方根等等。
这些性质在数学运算中是非常有用的。
三、方程与不等式3.1 方程与不等式的概念方程和不等式都是数学中常见的概念,方程指的是含有一个或多个未知数的等式,不等式指的是含有比较大小的符号的等式。
3.2 方程与不等式的解法解方程和不等式的主要方法包括平衡法、代入法、分离法等等,需要经过一定的计算和化简才能求出正确答案。
四、比例与相似4.1 比例的概念比例是数学中常见的概念,指的是两个数之间的等比关系。
比如3:5表示3和5的比例关系,或者用分数3/5来表示。
4.2 相似的概念相似是指两个物体之间大小、形状或者结构相同,但是比例不同的情况。
例如两个三角形A、B,如果A所有角度与B相等,且对应的边成比例,则称A和B相似。
五、三角函数5.1 三角函数的概念三角函数是三角学中的分支,指的是一系列的三角函数公式,如正弦函数、余弦函数、正切函数等等。
5.2 三角函数的应用三角函数在数学、物理、工程、计算机等领域有广泛的应用,比如可以用于对声、光、电信号等进行处理,或者用于地图制作等等。
总结:八年级上册数学学科在上海有很多有意思的知识点,有理数、平方根、方程与不等式、比例与相似以及三角函数等等都是常见的概念。
八年级上沪教版数学知识点归纳总结八年级上册数学知识点归纳总结第一章有理数1. 有理数的概念:有理数是可以表示为两个整数之比的数,包括正整数、负整数、零以及分数。
2. 有理数的比较:可以通过比较分子和分母的大小来比较两个有理数的大小。
3. 有理数的加法和减法:有理数的加法和减法满足交换律和结合律,可以通过分数的通分和分子的加减来进行计算。
4. 有理数的乘法和除法:有理数的乘法和除法满足交换律和结合律,可以通过分数的相乘和相除来进行计算。
5. 有理数的绝对值:绝对值表示一个数与零的距离,可以用来表示一个数的大小。
6. 有理数的乘方:有理数的乘方是将一个数连乘若干次,可以通过将底数连乘若干次来计算。
第二章代数式与方程式1. 代数式的概念:代数式是由数、字母和运算符号组成的式子,可以进行运算。
2. 代数式的加减法:代数式的加减法可以通过将同类项合并来进行计算。
3. 方程式的概念:方程式是一个等式,其中包含有未知数,可以通过求解未知数的值使等式成立。
4. 解方程的基本方法:解方程可以通过逆运算的原理,将方程两边进行相同的运算,求解未知数的值。
5. 一元一次方程:一元一次方程是指未知数的最高次数为1的方程,可以通过移项和合并同类项来求解。
6. 一元一次方程的应用:一元一次方程可以用来解决实际问题,如购物、时间等问题。
第三章图形的认识1. 图形的基本概念:包括点、线、面的概念,可以通过这些基本图形来构造其他图形。
2. 平行线和垂直线:平行线是指在同一个平面内永不相交的直线,垂直线是指相交成直角的直线。
3. 三角形的分类:根据边长和角度的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。
4. 三角形的性质:包括三角形内角和为180度、等腰三角形的底角相等等性质。
5. 四边形的分类:根据边长和角度的大小,四边形可以分为正方形、长方形、菱形、平行四边形等。
6. 圆的基本概念:圆是由一条曲线上的所有点与一个确定的点的距离相等的点的集合。
《数学》(八年级上册)知识点总结第一章 实数一、实数的概念及分类1、实数的分类 正有理数零 有限小数和无限循环小数实数 负有理数正无理数无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如60o 等二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意:a 的双重非负性: a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
三、二次根式计算1、含有二次根号“”;被开方数a 必须是非负数。
2、性质:(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥∙=b a b a ab ()0,0(≥≥=∙b a ab b a )(4))0,0(>≥=b a b a b a ()0,0(>≥=b a ba b a ) 3、化简二次根式:把二次根式被开方数的完全平方因式移到根号外。
上海八年级数学上册知识点上海市初中数学课程标准从七年级开始实施,八年级数学上册内容涵盖了数的性质、因式分解、分数、代数式、一次函数、图形的平移、对称、旋转等基础知识。
本文将从知识点的角度,分析八年级数学上册中的重要知识点。
一. 数与式1. 自然数、整数、有理数、无理数、实数的区分自然数:正整数,是人数、物品个数等的记录方式。
整数:包括正整数、0、负整数,是整数封闭性的基础。
有理数:可以表示为两个整数的比,数轴上有间隔。
无理数:数轴上缺少的点,不能化为两个整数的比,如π、√2等。
实数:有理数与无理数的集合。
2. 代数式的定义和判定代数式:由常数,变量及它们的积、和、差、商和幂次运算符号组成的式子。
如:5x-3、(x+1)^2-1代数式的判定:当含有字母的符号变量代表任意实数时,就是代数式,若代表某个确定的数,则不是代数式。
3. 表示式的基本形式表示式:一个代数式中的字母表示的数称为未知数,代数式中未知数出现的次数称为代数式的次数。
其中,一个未知数的代数式称为一元代数式。
表达式的基本形式:常数项、一次项、二次项……m次项的多项式。
其中,一次项的系数是截距,即函数图像与y轴的交点。
二. 因式分解1. 因式分解的定义因式分解:把一个代数式分解成多个因式的乘积的过程。
如:x^2-3x+2=(x-1)(x-2)2. 因式分解的方法分解公因数、提取完全平方、配方法、三项组合公式等。
3. 因式分解的应用求解代数式的值、寻找变量的取值范围、解决实际问题等。
三. 分数1. 分数的定义分数:是一个整体被等分成了若干份,每一份称为一份之一,表示被分的整体中的若干等份中的一份,例如:1/2表示等分后的一份之一,即一个整体中的两份等分之一。
2. 分数的化简和扩展化简分数:把分子和分母都除以相同的因数,使它们互质;扩展分数:使用通分的方法,保持分数的大小不变。
3. 分数的加减乘除分数的加减乘除法需要先进行通分、约分,再按照分数的运算法则进行计算。
八年级上沪教版数学知识点一、有理数1. 有理数的定义:有理数指可以表示为两个整数比的数,包括正整数、负整数、零以及分数。
2. 有理数的表示方法:可以表示为分数形式或者小数形式。
3. 有理数的运算法则:加减乘除的运算法则与整数相同,需要注意的是,分数相加减时需要先通分再进行运算。
二、代数式1. 代数式的定义:代数式指由数字、字母或者符号构成的式子,可以进行加减乘除等运算。
2. 代数式的分类:单项式、多项式、恒等式、方程式等。
3. 代数式的基本运算:合并同类项、乘法公式、配方法等。
三、方程式1. 方程式的定义:方程式指带有未知数的等式,可以用来求解未知数的值。
2. 方程式的解法:常见的求解方法有加减消元法、代入法、配方法、公式法等。
3. 方程式的应用:方程式在生活中有很多应用,比如物理中的牛顿第二定律、经济学中的成本收益分析等。
四、三角形1. 三角形的定义:三角形指由三条线段构成的一个图形。
2. 三角形的分类:按照角度可以分为锐角三角形、直角三角形以及钝角三角形;按照边长可以分为等边三角形、等腰三角形以及普通三角形。
3. 三角形的性质:三角形有很多基本性质,比如内角和为180度、等角的三角形对应边长成比例等。
五、解直角三角形1. 正弦、余弦、正切函数的定义:用直角三角形的角所对应的边长比来表示三角函数。
2. 直角三角形的解法:利用三角函数定义中的正弦、余弦、正切函数,可以求解直角三角形的任意一条边长。
3. 应用举例:利用三角函数可以解决很多实际问题,比如高空抛物、导弹轨迹等。
以上是八年级上沪教版数学的主要知识点,掌握好这些知识对于后续学习和实际生活应用都有帮助。
同时,在学习过程中,需要掌握好基本的计算技巧和思维方法,勤于练习,不断提高自己的数学水平。
2024年沪科版八年级数学上册知识点总结一、有理数的加减乘除运算1. 有理数的加法运算:同号相加,异号相减。
将分子分母化为最简整数形式,要注意约分。
2. 有理数的减法运算:减去一个数等于加上这个数的相反数。
3. 有理数的乘法运算:同号得正,异号得负。
将分子分母化为最简整数形式,要注意约分。
4. 有理数的除法运算:除以一个数等于乘以这个数的倒数。
5. 有理数的四则运算综合运用。
二、平方根与立方根1. 平方根:给定一个非负实数a,且a≥0,开根号的结果称为a的平方根。
记作√a。
2. 整数的平方根:如果一个整数的平方等于一个非负整数,那么这个非负整数就是该整数的平方根;否则,这个整数没有平方根。
3. 立方根:给定一个实数a,开立方根的结果称为a的立方根。
记作3√a。
三、带有根号的计算1. 同底数的相加相减:进行根号运算时,同底数的根号可以相加相减,底数不变。
2. 同底数的乘方:进行根号运算时,同底数的根号可以进行乘方运算,即合并同底数的指数。
3. 分数的根号运算:分子分母同时进行根号运算,然后约分,也可以先约分再进行根号运算。
四、代数式1. 代数式的定义:用字母表示数的式子,包含一个或多个字母和常数、运算符号组成。
2. 代数式的值:为了求代数式的值,需要给字母赋予特定的数值,将字母用数代替,然后进行计算。
3. 代数式的运算:常用的代数式运算有加法、减法、乘法和除法。
五、线性方程与方程的解1. 线性方程:只含有一次幂的方程称为线性方程。
2. 化简与解方程:对于方程要进行化简,恢复原来的形式,再解方程。
3. 解方程的方法:常用的解方程的方法有相加相减法、代入法、等式交换法和系数分离法。
六、百分数1. 百分数的概念:以分号“%”表示,百分数等于百分数的百分之一。
2. 百分数与小数的互相转化:将百分数转化为小数,就是将百分号去掉,除以100;将小数转化为百分数,就是乘以100再加上百分号。
3. 百分数的应用:常用的百分数应用有百分数的简化、比较大小和求百分数。
上海八年级上数学知识点一、有理数1. 有理数的概念有理数包括整数、分数、正小数和负小数。
2. 有理数的比较大小相同符号的比较绝对值大小,不同符号的比较符号。
二、分式1. 分式的概念分式是指一个数被表示为两个整数的比值的形式,其中分母不能为0。
2. 分式的化简利用分式的基本性质和等式的性质来简化分式。
3. 分式的加减法将分母化为相同的整数,再加减分子。
三、代数式1. 代数式的概念代数式是指用数或字母表示的表示式。
2. 代数式的加减法将同类项的系数相加减即可。
四、方程1. 方程的概念方程是指一个等式两边都是代数式的式子。
2. 方程的解法化简方程式,通过加减乘除等运算,将方程的未知量解出来。
五、三角形1. 三角形的分类三角形可以根据边长和角度分为等边三角形、等腰三角形、直角三角形、钝角三角形、锐角三角形。
2. 三角形的性质三角形的内角和为180度,直角三角形两条直角边平方和等于斜边平方。
六、平面直角坐标系1. 平面直角坐标系的概念平面直角坐标系是一个由两个互相垂直的坐标轴组成的图形系统。
2. 平面直角坐标系上的图形关系利用坐标轴可以表示出图形在坐标系内的位置,并且可以计算出图形的相关数据。
七、函数1. 函数的概念函数是一组有序数对,其中每个输入值都对应唯一的输出值。
2. 函数的图象函数可以通过输入值和输出值在坐标轴上的位置确定一个图象。
综上所述,上海八年级上数学主要包括有理数、分式、代数式、方程、三角形、平面直角坐标系和函数等知识点。
通过学习这些知识点,可以为学生们提供代数思维的基础,并为他们在高中数学学习和数学竞赛中打下坚实的基础。
上海初二数学知识点总结一、整数与分数1. 整数的运算•加法:两个整数相加,结果仍为整数。
•减法:两个整数相减,结果仍为整数。
•乘法:两个整数相乘,结果仍为整数。
•除法:两个整数相除,结果有可能是整数,也有可能是分数。
2. 分数的运算•加法:两个分数相加,首先要求分母相同,然后分子相加即可,结果仍为分数。
•减法:两个分数相减,同样要求分母相同,然后分子相减即可,结果仍为分数。
•乘法:两个分数相乘,分子相乘得到新的分子,分母相乘得到新的分母,结果仍为分数。
•除法:两个分数相除,相当于将一个分数倒置后再进行乘法运算,结果仍为分数。
二、代数式与方程式1. 代数式的展开与合并•展开:将代数式中的括号内的项分别与外面的项相乘,并合并同类项,得到展开后的结果。
•合并:将代数式中的同类项相加或相减,得到合并后的结果。
2. 一元一次方程•方程的基本形式:\[ax + b = 0\],其中 \(a\) 和 \(b\) 为已知数,\(x\) 是未知数。
•解方程方法:通过变量的逆运算,将 \(ax\) 的系数化为 1,得出 \(x\) 的值。
3. 两个一元一次方程的解•方法:将两个方程联立,通过消元法或代入法,得出方程组的解。
三、单位与单位换算1. 常用单位•长度:米(m)、千米(km)、分米(dm)、厘米(cm)、毫米(mm)等。
•面积:平方米(\(m2\))、平方千米(\(km2\))、平方分米(\(dm2\))、平方厘米(\(cm2\))、平方毫米(\(mm^2\))等。
•容积:立方米(\(m3\))、立方千米(\(km3\))、立方分米(\(dm3\))、立方厘米(\(cm3\))、立方毫米(\(mm^3\))等。
2. 单位换算•长度的换算:根据不同的单位之间的比例关系,进行换算。
•面积的换算:面积的换算可以根据长度的换算规律来进行计算。
•容积的换算:容积的换算同样可以根据长度的换算规律来进行计算。
四、图形与坐标系1. 常见的几何图形•线段:两个点之间的连线,有固定长度。
八年级上册数学知识点沪科(一)运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2、因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。
上海初二数学知识点初二数学上册知识点梳理
初二数学上册知识点梳理第11-12章
第十一章全等三角形
1.全等三角形的性质:全等三角形对应边相等、对应角相等.
2.全等三角形的断定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).
3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的间隔相等
4.角平分线推论:角的内部到角的两边的间隔相等的点在叫的平分线上.
5.证明两三角形全等或利用它证明线段或角的相等的根本方法步骤:
①、确定条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),
②、回忆三角形断定,搞清我们还需要什么,
③、正确地书写证明格式(顺序和对应关系从推导出要证
明的问题).
第十二章轴对称
1.假如一个图形沿某条直线折叠后,直线两旁的局部可以
互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂
直平分线.
3.角平分线上的点到角两边间隔相等.
4.线段垂直平分线上的任意一点到线段两个端点的间隔
相等.
5.与一条线段两个端点间隔相等的点,在这条线段的垂直
平分线上.
6.轴对称图形上对应线段相等、对应角相等.
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点.
8.点(_,y)关于_轴对称的点的坐标为(_,-y)
点(_,y)关于y轴对称的点的坐标为(-_,y)
点(_,y)关于原点轴对称的点的坐标为(-_,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边
对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.
10.等腰三角形的断定:等角对等边.
11.等边三角形的三个内角相等,等于60°,
12.等边三角形的断定:三个角都相等的三角形是等腰三角形.
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形.
13.直角三角形中,30°角所对的直角边等于斜边的一半.
初二数学上册知识点梳理第13-14章
第十三章实数
※算术平方根:一般地,假如一个正数_的平方等于a,即_2=a,那么正数_叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.
※平方根:一般地,假如一个数_的平方根等于a,即_2=a,那么数_就叫做a的平方根.
※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.
※正数的立方根是正数;0的立方根是0;负数的立方根是负数.
数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
第十四章一次函数
1.画函数图象的一般步骤:
一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),
三、连线(依次用平滑曲线连接各点).
2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.
3.假设两个变量_,y间的关系式可以表示成
y=k_+b(k≠0)的形式,那么称y是_的一次函数(_为自变量,y 为因变量).特别地,当b=0时,称y是_的正比例函数.
4.正比列函数一般式:y=k_(k≠0),其图象是经过原点(0,0)的一条直线.
5.正比列函数y=k_(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=k_经过第一、三象限,y随_的增大而增大,当k0时,y随_的增大而增大; 当kn).
※2.
在应用时需要注意以下几点:
①法那么使用的前提条件是“同底数幂相除”而且0不能做除数,所以法那么中a≠0.
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),那么00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数
的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a>>初二数学上册知识点梳理。