2015-2016学年上海市徐汇区八年级第一学期期末数学试卷带答案
- 格式:doc
- 大小:308.00 KB
- 文档页数:26
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
2011学年第一学期期末考试八年级数学试卷(考试时间90分钟) 2012年1月(本试卷所有答案请书写在答题纸规定位置上)一、选择题(共6题,共12分) 1、下列运算中,正确的是( ▲ )(A )x x x 32=+ (B )12223=- (C )2+5=25 (D )x b a x b x a )(-=- 2、在下列方程中,整理后是一元二次方程的是( ▲ )(A )23(2)(31)x x x =-+ (B ) (2)(2)40x x -++=(C )2(1)0x x -= (D )2131x x ++= 3、已知点(1,-1)在kx y =的图像上,则函数xky =的图像经过( ▲ ).(A )第一、二象限; (B )第二、三象限; (C )第一、三象限; (D )第二、四象限. 4、下列命题中,是假命题的是( ▲ ).(A )对顶角相等 (B )互为补角的两个角都是锐角 (C )如果两条直线都和第三条直线平行,那么这两条直线也互相平行 (D )两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 5、已知:如图,在△ABC 中,090=∠C ,BD 平分ABC ∠,AB BC 21=,BD =2,则点D 到AB 的距离为( ▲ ). (A )1 (B )2 (C )3 (D )3 6、在Rt △ABC ,∠ACB =90°,CD 、CE 是斜边上的高和中线,AC =CE =10cm ,则BD 长为( ▲ )(A )25cm ; (B ) 5cm ; (C )15cm ; (D )10cm.二、填空题(共12题,共36分) 70)x >化成最简二次根式是 ▲ ;5题图第6题图8、关于x 的方程2460x x m ++=有两个相等的实数根,则m 的值为 ▲ ; 9、已知正比例函数(23)y a x =-的图像经过第一、三象限,则a 的取值范围是___▲___; 10、如果函数xx f 1)(=,那么)2(f = ▲ ;11、命题:“同角的余角相等”的逆命题是 ▲ ; 12、到点A 的距离等于6cm 的点的轨迹是 ▲ ; 13、已知直角坐标平面内两点 A (3,-1)和B (-1,2),那么A 、B 两点间的距离等于 ▲ ;14、如图,将△ABC 绕点A 按逆时针方向旋转得到△ADE ,DE 交AC 于F ,交BC 于G ,若∠C =35°,∠EFC =60°,则这次旋转了 ▲ °;15、三角形三边的垂直平分线的交点到 ▲ 的距离相等;16、在Rt △ABC 中,∠C =90°,AB =18,BC =9,那么∠B = ▲ °; 17、如图,90C D ∠=∠=︒,请你再添加一个条件:▲ 使ABC BAD ∆≅∆;18、已知直角三角形的两边长分别为5,12,那么第三边的长为 ▲ . 三、简答题(共4题,共22分) 19、(5分)计算:︒--++-)23(31913227.20、(5分)解方程:解方程:()()6112=+-+x x21、(6分)已知一个正比例函数的图像与反比例函数9y x=的图像都经过点A (3,-m )。
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
AD E B C 2015学年度第一学期八年级数学期终试卷(测试时间90分钟,满分100分)一、填空题(本大题共14题,每题2分,满分28分) 1x 的取值范围是 2.b a +的一个有理化因式是___________.3.已知关于x 的一元二次方程043)2(2=-++-m x x m 有一个根是0,则m=__________. 4.方程01832=-+x x 的解是__________.5.某种型号的书包原价为a 元,如果连续两次以相同的百分率x 涨价,那么两次涨价后的价格为_________元(用含a 和x 的代数式表示). 6.如果11)(-=x x f ,那么=)2(f __________. 7.在实数范围内分解因式:243x x --= _________________.8.已知0<mn ,那么函数x n my =的图像经过第__________象限. 9.若2>m ,则反比例函数xm y 2-=的图像在每个象限内,y 的值随x 的值增大而10.在Rt △ABC 中,∠C=90°,AB =32,BC=3,那么∠B = 度.11.经过已知点A 和点B 的圆的圆心的轨迹是______________________________________. 12.如图,等腰△ABC 的腰长为8,底边BC = 5,如果AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,那么△BEC 的周长为.13. 如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,AE 为折痕。
已知AB =8,BC =10,则EC 的长为 。
14. 已知在△ABC 中,AB=15,AC=13,BC 边上的高为12,那么BC 的长是 .第13题图第12题图二、选择题(本大题共4题,每题3分,满分12分)15是同类二次根式的是……………………………( )(A (B (C (D 16.如果a 、c 异号,b ≠0,那么关于x 的方程02=++c bx ax …………………( ) (A )有两个相等的实数根; (B )有两个不相等的实数根; (C )仅有一个实数根 (D )没有实数根.17.在Rt △ABC 中,90A ∠=︒,∠B 与∠C 的平分线相交于点O ,那么∠BOC 等于…………………………………………………………………………………( ) (A )100°; (B )120°; (C )135°; (D )150°. 18.下列命题是假命题的是…………………………………………( ). (A) 三条边对应相等的两个三角形全等;(B )斜边和一条直角边对应相等的两个直角三角形全等; (C) 两边和第三边上的高对应相等的两个三角形全等; (D) 关于某条直线对称的两个三角形全等. 三、解答题(满分60分)19. (本题6分) 计算:⎫20.(本题7分) 解方程:2550x x --=.DCE AHFB FECBA D21.(本题7分)已知关于x 的方程()2212(1)0a x bx c x -+++=有两个相等的实数根,且,,a b c 是ABC ∆的三边,试判断ABC ∆的形状,并说明理由。
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
上海徐汇中学八年级上册期末数学模拟试卷含详细答案一、选择题1.若解关于x 的方程1222x m x x -=+--时产生增根,那么m 的值为( ) A .1 B .2 C .0 D .-12.若关于x 的分式方程1233m x x x-=---有增根,则实数m 的值是( ) A .2 B .2- C .1 D .03.甲、乙两地相距360,km 新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2,h 设原来的平均速度为/,xkm h 根据题意:下列所列方程中正确的是( )A .()3603602150%x x=++ B .()3603602150%x x -=+ C .360360250%x x -= D .360360250%x x-= 4.下列各式从左边到右边的变形属于因式分解的是( )A .6ab =2a •3bB .a (x +y )=ax +ayC .x 2+4x +4=x (x +4)+4D .a 2﹣6a +9=(a ﹣3)25.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .233m m m m ⎛⎫-=- ⎪⎝⎭C .243(4)3a a a a --=--D .22()()a b a b a b -=+-6.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的个数为( )A .1B .2C .3D .4 7.下列运算正确的是( ) A .()325a a = B .()22ab ab = C .632a a a ⋅= D .235a a a ⋅=8.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8 B .9.6 C .10 D .129.下列图形具有稳定性的是( )A .B .C .D .10.如图所示,在直角三角形ACB 中,已知∠ACB=90°,点E 是AB 的中点,且DE AB ⊥,DE 交AC 的延长线于点D 、交BC 于点F ,若∠D=30°,EF=2,则DF 的长是( )A .5B .4C .3D .2二、填空题11.观察下列各式:(x -1)(x +1)=x 2-1;(x -1)(x 2+x +1)=x 3-1;(x -1)(x 3+x 2+x +1)=x 4-1,根据前面各式的规律可得(x -1)(x n +x n -1+…+x +1)=______(其中n 为正整数).12.已知23a =,26b =,212c=,则2a c b +-=________. 13.关于x 的分式方程223242mx x x x +=--+无解,则m 的值为_______. 14.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.15.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.16.计算:22016011(1)3π-⎛⎫---++= ⎪⎝⎭____;2007200831143⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭_____. 17.如图,是一个33⨯的正方形网格,则∠1+∠2+∠3+∠4=________.18.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于P ,连接AP 并延长交BC 于点D ,则∠ADB =_____度.19.若分式方程3211m x x+=--的解为正数,则m 的取值范围是__________. 20.如图,一个直角三角形纸片ABC ,90BAC ∠=,D 是边BC 上一点,沿线段AD 折叠,使点B 落在点E 处(E B 、在直线AC 的两侧),当50EAC ∠=时,则CAD ∠=__________°.三、解答题21.如图所示,△ABC 中,AB=BC ,DE ⊥AB 于点E ,DF ⊥BC 于点D ,交AC 于F . ⑴若∠AFD=155°,求∠EDF 的度数;⑵若点F 是AC 的中点,求证:∠CFD=12∠B .22.如图,已知△ABC .(1)请用尺规作图作出AC 的垂直平分线,垂足为点D ,交AB 于点E (保留作图痕迹,不要求写作法);(2)连接CE ,如果△ABC 的周长为27,DC 的长为5,求△BCE 的周长.23.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=. 其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.24.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD 是∠BAC 的平分线.25.如图,已知直线y =13x -+1与x 轴、y 轴分别交于点A 、B ,以线AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90o 、点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),设△OPA 的面积为S .(1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的的取值范围;(3)△OPA 的面积能于92吗,如果能,求出此时点P 坐标,如果不能,说明理由. 26.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x-<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.27.如图,AC 平分∠BCD ,AB =AD ,AE ⊥BC 于E ,AF ⊥CD 于F .(1)若∠ABE =60°,求∠CDA 的度数;(2)若AE =2,BE =1,CD =4.求四边形AECD 的面积.28.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“巧数”,如:22420=-,221242=-,222064=-,因此4,12,20这三个数都是“巧数”.(1)400和2020这两个数是“巧数”吗?为什么?(2)设两个连续偶数为2n 和22n -(其中n 取正整数),由这两个连续偶数构造的“巧数”是4的倍数吗?为什么?(3)求介于50到101之间所有“巧数”之和.29.观察下列各式(x -1)(x +1)=x 2-1(x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)(2)你能否由此归纳出一般规律(x -1)(x n +x n-1+…+x +1)(3)根据以上规律求32018+32017+32016+32+3+1的值30.如图,△ACF ≌△DBE ,其中点A 、B 、C 、D 在一条直线上.(1)若BE ⊥AD ,∠F=62°,求∠A 的大小.(2)若AD=9cm ,BC=5cm ,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】关于x 的方程1222x m x x -=+--有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得: 12(2)x m x -=+-, 整理得30x m -+=,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.2.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】去分母得:m=x-1-2x+6,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=2,故选:A .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.A解析:A【解析】【分析】设原来的平均速度为xkm/h ,则提速以后的平均速度为(1+50%)xkm/h ,根据提速以后时间缩短了2h ,列出方程即可.【详解】设原来的平均速度为xkm/h ,则提速以后的平均速度为(1+50%)xkm/h , 由题意得:()3603602150%x x=++. 故选:A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列出方程.4.D解析:D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、从左到右的变形,不属于因式分解,故本选项不符合题意;B 、从左到右的变形,是整式的乘法,不属于因式分解,故本选项不符合题意;C 、从左到右的变形,不属于因式分解,故本选项不符合题意;D 、从左到右的变形,属于因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义:将一个多项式写成整式的积的性质,叫做将多项式因式分解也叫做分解因式,掌握多项式的因式分解与整式乘法之间的区别是解题的关键.5.D解析:D【解析】【分析】直接利用因式分解的定义得出答案.【详解】A 、2(3)(3)9a a a +-=-,是整式乘法,故此选项不合题意;B 、233m m m m ⎛⎫-=- ⎪⎝⎭,不符合因式分解的定义,故此选项不合题意; C 、243(4)3a a a a --=--,不符合因式分解的定义,故此选项不合题意;D 、22()()a b a b a b -=+-是分解因式,符合题意;故选:D .【点睛】此题主要考查了因式分解的意义,正确分解因式是解题关键.6.D解析:D【解析】【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】证明:如图:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.7.D解析:D【解析】【分析】利用幂的运算性质直接计算后即可确定正确的选项.【详解】A 、()326a a =,故错误,不符合题意;B 、()222ab a b =,故错误,不符合题意;C 、639a a a ⋅=,故错误,不符合题意;D 、235a a a ⋅=,正确,符合题意,故选:D .【点睛】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算. 8.B解析:B【解析】【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】 本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.9.A解析:A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.故选:A.【点睛】本题考查了三角形的稳定性和四边形的不稳定性.10.B解析:B【解析】【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.二、填空题11.xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.解析:x n+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(x n+x n-1+…x+1)=x n+1-1.12.【解析】【分析】先计算,再逆运用同底数幂的乘除法法则,代入求值即可.【详解】∵2b=6,∴(2b)2=62.即22b=36.∵2a+c-2b=2a×2c÷22b=3×12÷36=解析:【解析】【分析】先计算22b,再逆运用同底数幂的乘除法法则,代入求值即可.【详解】∵2b=6,∴(2b)2=62.即22b=36.∵2a+c-2b=2a×2c÷22b=1,∴20a c b +-=.故答案为:0.【点睛】本题考查了同底数幂的乘除法法则及幂的乘方法则,熟练掌握同底数幂的乘除法法则及逆运用,是解决本题的关键.13.1或6或【解析】【分析】方程两边都乘以,把方程化为整式方程,再分两种情况讨论即可得到结论.【详解】解:当时,显然方程无解,又原方程的增根为:当时,当时,解析:1或6或4-【解析】【分析】方程两边都乘以()()22x x +-,把方程化为整式方程,再分两种情况讨论即可得到结论.【详解】 解:223242mx x x x +=--+ ()()232222mx x x x x ∴+=-+-+ ()()2232x mx x ∴++=-()110,m x ∴-=-当1m =时,显然方程无解,又原方程的增根为:2,x =±当2x =时,15,m -=-当2x =-时,15,m -=6,m ∴=综上当1m =或4m =-或6m =时,原方程无解.故答案为:1或6或4-.【点睛】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键. 14.15【解析】【分析】凸六边形ABCDEF ,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB 、CD 、EF 的解析:15【解析】【分析】凸六边形ABCDEF ,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、P .∵六边形ABCDEF 的六个角都是120°,∴六边形ABCDEF 的每一个外角的度数都是60°.∴△AHF 、△BGC 、△DPE 、△GHP 都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2. ∴六边形的周长为1+3+3+2+4+2=15.故答案为15.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.15.720【解析】【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和解析:720【解析】【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=720°,故答案是:720.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.16.【解析】【分析】根据负指数幂以及零指数幂即可得出第一个算式的值,利用积的乘方的逆运算即可得出第二个算式的值.【详解】解:,故答案为:;.【点睛】本题解析:9-43 【解析】【分析】根据负指数幂以及零指数幂即可得出第一个算式的值,利用积的乘方的逆运算即可得出第二个算式的值.【详解】 解:22016011(1)3π-⎛⎫---++ ⎪⎝⎭191=--+9=-,2007200831143⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭2007344=433⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2007200731111433⎛⎫⎛⎫⎛⎫=⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎝⨯⎭⎭()20074=13⎛⎫-⨯- ⎪⎝⎭413⎛⎫=-⨯- ⎪⎝⎭43= 故答案为:9-;43. 【点睛】本题主要考查的是负指数幂、零指数幂以及积的乘方的逆运算,掌握的这三个知识点是解题的关键.17.180°.【解析】【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.【详解】解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所解析:180°.【解析】【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.【详解】解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.【点睛】此题主要考查了全等图形,解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用.18.120【解析】【分析】由作图可知AD是∠CAB的角平分线,利用角平分线的性质可以推知∠CAD=30°,根据三角形外角的性质即可得到结论.【详解】解:∵在△ABC中,∠C=90°,∠B=30解析:120【解析】【分析】由作图可知AD是∠CAB的角平分线,利用角平分线的性质可以推知∠CAD=30°,根据三角形外角的性质即可得到结论.【详解】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,由作图可知AD是∠CAB的角平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADB=90°+30°=120°,故答案为:120;【点睛】本题考查了作图-基本作图,角平分线的定义,三角形外角的性质,正确的识别图形是解题的关键.19.m>1且m≠3【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】解:方程两边同乘以x-1,得,m-3=2(x-1),解得,∵分式方程解为正解析:m>1且m≠3【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】解:方程两边同乘以x-1,得,m-3=2(x-1),解得12mx-=,∵分式方程3211mx x+=--解为正数∴12mx-=>且x-1≠0,即m>1且11 2m-≠,∴m>1且m≠3,故答案为:m>1且m≠3.【点睛】本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.20.20【解析】【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD,再根据∠CAB=90°即可求出答案.【详解】解:由翻折可得,∠EAD=∠BAD,又∠CAB=90°,∠EAC=50°解析:20【解析】【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD,再根据∠CAB=90°即可求出答案.【详解】解:由翻折可得,∠EAD=∠BAD,又∠CAB=90°,∠EAC=50°,∴∠EAC+∠CAD=90°-∠CAD,∴50°+∠CAD=90°-∠CAD,∴∠CAD=20°.故答案为:20.【点睛】本题考查的是图形翻折变换的性质及四边形内角和定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.三、解答题21.(1)50°;(2)见解析【解析】试题分析:⑴根据等腰三角形的性质、三角形的内角和定理与四边形的内角和为360°,可求得所求角的度数.⑵连接BF,根据三角形内角和定理与等腰三角形三线合一,可知12CFD ABC ∠=∠.试题解析:⑴∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△EDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.⑵连接BF,∵AB=BC,且点F是AC的中点,∴BF ⊥AC ,12ABF CBF ABC ∠=∠=∠, ∴∠CFD +∠BFD =90°,∠CBF +∠BFD =90°,∴∠CFD =∠CBF ,∴12CFD ABC ∠=∠. 22.(1)见解析(2)17【解析】【分析】(1)利用基本作图作DE 垂直平分AC ;(2)根据线段垂直平分线的性质得到EA =EC ,AD =CD =5,则利用△ABC 的周长得到AB+BC =17,然后根据等线段代换可求出△AEC 的周长. 【详解】(1)如图,DE 为所作;(2)∵DE 垂直平分AC ,∴EA =EC ,AD =CD =5,∴AC =10,∵△ABC 的周长=AB+BC+AC =27,∴AB+BC =27﹣10=17,∴△AEC 的周长=BE+EC+BC =BE+AE+BC =AB+BC =17.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).23.解:(1)①②④⑤;(2)18DAE ∠=︒【解析】【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线,∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24°∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.24.证明见解析.【解析】【分析】根据等腰三角形的性质得∠DBC =∠DCB ,结合条件,得∠ABC =∠ACB ,进而得AB =AC ,易证△ABD ≌△ACD ,进而即可得到结论.【详解】∵BD =DC ,∴∠DBC =∠DCB .∵∠1=∠2,∴∠ABC =∠ACB ,∴AB =AC ,在△ABD 与△ACD 中∵12AB AC BD DC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACD (SAS),∴∠BAD =∠CAD ,∴AD 是∠BAC 的平分线.【点睛】本题主要考查等腰三角形的判定和性质定理以及三角形全等的判定和性质定理,掌握等腰三角形的判定和性质定理以及三角形全等的判定和性质定理是解题的关键.25.(1)(4,3);(2)S=3342x +, 0<x <4;(3)不存在. 【解析】【分析】(1)直线y =13x -+1与x 轴、y 轴分别交于点A 、B ,可得点A 、B 的坐标,过点C 作CH ⊥x 轴于点H ,如图1,易证△AOB ≌△CHA ,从而得到AH =OB 、CH =AO ,就可得到点C 的坐标;(2)易求直线BC 解析式,过P 点作PG 垂直x 轴,由△OPA 的面积=1OA PG 2即可求出S 关于x 的函数解析式.(3)当S =92求出对应的x 即可. 【详解】解:(1)∵直线y =13x -+1与x 轴、y 轴分别交于点A 、B , ∴A 点(3,0),B 点为(0,1),如图:过点C 作CH ⊥x 轴于点H ,则∠AHC =90°.∴∠AOB =∠BAC =∠AHC =90°,∴∠OAB =180°-90°-∠HAC =90°-∠HAC =∠HC A .在△AOB 和△CHA 中,AOB CHA OAB HCA AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△CHA (AAS ),∴AO =CH =3,OB =HA =1,∴OH =OA +AH =4∴点C 的坐标为(4,3);(2)设直线BC 解析式为y =kx +b ,由B (0,1),C (4,3)得:143b k b =⎧⎨+=⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线BC 解析式为112y x =+, 过P 点作PG 垂直x 轴,△OPA 的面积=12OA PG ,∵PG =112y x =+,OA =3, ∴S =113(1)22x +=3342x +; 点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),∴0<x <4. ∴S 关于x 的函数解析式为S =3342x +, x 的的取值范围是0<x <4; (3)当s =92时,即339422x +=,解得x =4,不合题意,故P 点不存在. 【点睛】本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.26.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【解析】【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②,由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.27.(1)120°;(2)9.【解析】【分析】(1)、根据角平分线的性质以及AB=AD 得出Rt △ABE 和Rt △ADF 全等,从而得出∠ADF =∠ABE =60°,根据平角得出∠ADC 的度数;(2)、根据三角形全等得出FD =BE =1,AF =AE =2,CE =CF =CD +FD =5,最后根据S 四边形AECD =S △AEC +S △ACD 得出答案.【详解】解:(1)∵AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,∴∠ACE =∠ACF ,∠AEC =∠AFC =90°,∴AE =AF ,在Rt △ABE 和Rt △ADF 中,AE=AF ,AB=AD ,∴Rt △ABE ≌Rt △ADF(HL),∴∠ADF =∠ABE =60°,∴∠CDA =180°-∠ADF =120°;(2)由(1)知Rt △ABE ≌Rt △ADF ,∴FD =BE =1,AF =AE =2,在△AEC 和△AFC 中,∠ACE=∠ACF,∠AEC=∠AFC,AC=AC ,∴△AEC ≌△AFC(AAS),∴CE =CF =CD +FD =5,∴S 四边形AECD =S △AEC +S △ACD =12EC·AE +12CD·AF =12×5×2+12×4×2=9. 【点睛】本题主要考查的是角平分线的性质、三角形全等的应用以及三角形的面积计算,难度中等.理解角平分线上的点到角两边的距离相等的性质是解决这个问题的关键.28.(1)400不是“巧数”,2020是“巧数”,理由见解析;(2)是,理由见解析;(3)532.【解析】【分析】(1)根据“巧数”的定义进行判断即可;(2)列出这两数的平方差,运用平方差公式进行计算,对结果进行分析即可;(3)介于50到100之间的所有“巧数”中,最小的为:142-122=52,最大的为:262-242=100,将它们全部列出不难求出他们的和.【详解】解:(1)400不是“巧数”,2020是“巧数”.原因如下:因为2240010199=-,故400不是“巧数”,因为2020=5062-5042,故2020是“巧数”;(2)22(2)(22)(222)(222)2(42)4(21)n n n n n n n n --=+--+=-=-∵n 为正整数,∴2n -1一定为正整数,∴4(2n -1)一定能被4整除,即由这两个连续偶数构造的“巧数”是4的倍数;(3)介于50到100之间的所有“巧数”之和,S=(142-122)+(162-142)+(182-162)+…+(262-242)=262-122=532.故答案是:532.【点睛】本题考查了因式分解的应用.能根据“巧数”的定义进行计算是解决此题的关键.(2)中能利用因式分解把所求的代数式进行变形是解题关键;(3)中不要先计算50到100之间的每一个巧数,根据题意先把它们的和列出来,会发现可以抵消部分,然后计算简单.29.(1)x 7﹣1;(2)x n+1﹣1;(3)2019312-. 【解析】【分析】 (1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7﹣1;(2)总结题中规律得:(x ﹣1)(x n +x n ﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312-. 【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.30.(1)∠A =28°;(2)AB =2 cm .【解析】【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【详解】(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA=BD.∴CA-CB=BD-CB.即AB=CD.∵AD=9 cm, BC=5 cm,∴AB+CD=9-5=4 cm.∴AB=CD=2 cm.【点睛】考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.。
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2015-2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。
A.1 B2 C 。
3 D 。
42。
与3-2相等的是( )A.91B.91-C 。
9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A 。
x <2B 。
x >2C 。
x ≠2 D.x ≥2 4。
下列长度的各种线段,可以组成三角形的是( )A 。
1,2,3B 。
1,5,5 C.3,3,6 D 。
4,5,6 5。
下列式子一定成立的是( )A.3232a a a =+ B 。
632a a a =• C 。
()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A.2.5×106 B 。
2。
5×105 C 。
2.5×10-5 D.2。
5×10—68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
A 。
50° B 。
80° C 。
50°或80° D.40°或65° 9。
把多项式x x x +-232分解因式结果正确的是( )A 。
2)1(-x xB 。
2)1(+x xC 。
)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。
A 。
2x+1 B.x(x+1)2C.x (x 2-2x ) D 。
x (x-1)11。
如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C 。
2015—2016学年度第一学期期末学业质量评估八年级数学试题(时间120分钟,满分120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.2. 填空题和解答题答案用黑色或蓝黑色墨水钢笔、中性笔或圆珠笔书写.一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在下面的表格里,每小题选对得3分,满分36分.多选、不选、错选均记零分.)1.下列命题中真命题是A. 两边分别对应相等且有一角为30º的两个等腰三角形全等B. 两边和其中一边的对角分别对应相等的两个三角形全等C. 两个锐角分别对应相等的两个直角三角形全等D. 两角和一边分别对应相等的两个三角形全等2. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是A.B.C.D.3. 某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是A. 96,94.5B. 96,95C. 95,94.5D. 95,954. 如图,P在AB上,AE=AG,BE=BG,则图中全等三角形的组数一共有A.1 组B.2 组C.3组D.4组5. 等腰三角形的一个角是80°,则它的底角是A.50°B.80°C.20°或80°D.50°或80°6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7. 甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是A.甲、乙射中的总环数相同B.甲、乙的众数相同C.乙的成绩波动较大D.甲的成绩稳定8. 如图,OP平分∠AOB,PC⊥OA于C,D在OB上,则PC与PD 的大小关系是A.PC≥PDB.PC=PDC.PC≤PDD.不能确定9. 已知2a =3b =4c ≠0,则c b a +的值为 A. 54 B. 45 C.2 D. 2110. 白浪河是潍坊的母亲河,为打造特色滨水景观区,现有一段河道整治任务由A 、B 两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,那么A 工程队一共做的天数是A .12B .13C .14D .1511. 已知a=2x ,b=2y ,x +y=100xy ,那么分式abba +的值等于 A. 200 B. 100 C. 50 D. 2512. 已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是 A.2 B.2 C.4 D.10二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题4分,满分24分)13.已知点A (3,﹣2),点B (a ,b )是A 点关于y 轴的对称点,则a+b=_________. 14. 老师为了了解学生周末利用网络进行学习的时间,随机调查了10名学生,其统计数据如下表,则这10名学生周末利用网络进行学习的平均时间是 h.全等三角形的对应边相等17. 如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长等于________cm .18. 如图,AD 是∠BAC 的角平分线,E 是AB 上一点,AE=AC ,EF ∥BC 交AC 于F .下列结论①△ADC ≌△ADE ;②CE 平分∠DEF ;③AD 垂直平分CE .其中正确的是三、解答题(本题共6小题,共60分.解答应写出文字说明、证明过程或推演步骤.) 19.(本大题满分20分)(1)计算:①9122-m --32m ②-12a a -a -1(2(320.(本大题满分6分)已知:如图,A B∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?22.(本大题满分8分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?24.(本大题满分10分)已知:如图,点B,C,E三点在同一条直线上,CD平分∠ACE,DB=DA,DM⊥BE于M.(1)求证:AC=BM+CM;(2)若AC=2,BC=1,求CM的长.。
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年上海市徐汇区八年级(上)期末数学试卷一.选择题(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列各式中与是同类二次根式的是()A.B.C.D.2.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,那么下列结论错误的是()A.∠A+∠DCB=90°B.∠ADC=2∠B C.AB=2CD D.BC=CD3.如图,点P在反比例函数y=(x>0)第一象限的图象上,PQ垂直x轴,垂足为Q,设△POQ的面积是s,那么s与k之间的数量关系是()A.B.C.s=k D.不能确定4.如果y关于x的函数y=(k2+1)x是正比例函数,那么k的取值范围是()A.k≠0 B.k≠±1 C.一切实数D.不能确定5.如果关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0有两个相等的实数根,其中a、b、c是△ABC 的三边长,那么△ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形6.下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等二.填空题(本大题共12题,每题2分,满分24分)7.计算: = .8.函数的定义域是.9.在实数范围内因式分解:x2﹣3x+1= .10.如果f(x)=,那么f(2)= .11.已知变量x和变量x﹣2,那么x﹣2是不是x的函数?你的结论是:(填“是”或“不是”).12.如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).13.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠D=30°,AB=DE,EF=BC,如果EF=,那么AC的长是.14.已知关于x的方程x2+mx﹣6=0的一个根为2,那么它的另一个根是.15.如果点A(3,m)在正比例函数图象上,那么点A和坐标原点的距离是.16.某产品原价每件价格为200元,经过两次降价,且每次降价的百分率相同,现在每件售价为162元,那么每次降价的百分率是.17.在一个角的内部(不包括顶点)且到角的两边距离相等的点的轨迹是.18.在△ABC中,AB=AC,MN垂直平分AB分别交AB、BC于M、N.如果△ACN是等腰三角形,那么∠B的大小是.三、简答题(本大题共4题,每题5分,满分20分)19.先化简再计算:(其中ab=9).20.解方程:(2x﹣3)2=x(x﹣5)+6.21.如图,已知线段a,b,求作:△ABC,使AB=AC=a,BC=b.22.如图,正比例函数y=kx(k≠0)与反比例函数y=﹣的图象交于点A(﹣1,m)和点B.求点B的坐标.四、(本大题共3题,第23、24题每题7分,第25题8分,满分22分)23.如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,DE垂直平分AB,分别交AB、BC于点D、E.求CE 的长.24.某商店从厂家以每件21元的价格购进一批商品,该店可以自行定价,若每件商品售价为a元,则可以卖出(350﹣10a)件;但物价局限定每件商品加价不能超过进价的20%,如果商店计划要赚400元,那么每件商品售价是多少元?25.如图,AD∥BC,∠A=90°,AB=BC,点E是AB的中点,BD=CE.(1)求证:BD⊥CE;(2)联结CD、DE,试判断△DCE的形状,并证明你的结论.五、(本大题共2题,第26题10分,第27题12分,满分22分)26.如图,点B(2,n)是直线y=k1x(k1≠0)上的点,如果直线y=k1x(k1≠0)平分∠yOx,BA⊥x轴于A,BC⊥y轴于C.(1)求k1的值;(2)如果反比例函数y=(k2≠0)的图象与BC、BA分别交于点D、E,求证:OD=OE;(3)在(2)的条件下,如果四边形BDOE的面积是△ABO面积的,求反比例函数的解析式.27.如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,BC=CD.(1)求∠DCB的大小;(2)如图2,点F是边BC上一点,将△ABF沿AF所在直线翻折,点B的对应点是点H,直线HF⊥AB,垂足为G,如果AB=2,求BF的长;(3)如图3,点E是△ACD内一点,且∠AEC=150°,联结DE,请判断线段DE、AE、CE能否构成直角三角形?如果能,请证明;如果不能,请说明理由.2015-2016学年上海市徐汇区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列各式中与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】先化简二次根式,再根据同类二次根式的定义判定即可.【解答】解:A、与不是同类二次根式,B、=3与不是同类二次根式,C、=2与是同类二次根式,D、=3与不是同类二次根式,故选C.【点评】本题考查了同类二次根式,解题的关键是二次根式的化简.2.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,那么下列结论错误的是()A.∠A+∠D CB=90°B.∠ADC=2∠B C.AB=2CD D.BC=CD【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线性质得出CD=AD=BD,根据等边对等角得出∠DCB=∠B,再逐个判断即可.【解答】解:A、∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,∴CD=AD=BD=AB,∴∠DCB=∠B,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠DCB=90°,故本选项错误;B、∵∠DCB=∠B,∠ADC=∠B+∠DCB,∴∠ADC=2∠B,故本选项错误;C、∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,∴AB=2CD,故本选项错误;D、根据已知不能推出BC=CD,故本选项正确;故选D.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质的应用,能熟记直角三角形斜边上的中线等于斜边的一半是解此题的关键.3.如图,点P在反比例函数y=(x>0)第一象限的图象上,PQ垂直x轴,垂足为Q,设△POQ的面积是s,那么s与k之间的数量关系是()A.B.C.s=k D.不能确定【考点】反比例函数系数k的几何意义.【分析】根据点P在反比例函数图象上结合反比例函数系数k的几何意义就可以求出s与k之间的数量关系.【解答】解:∵点P是反比例函数y=图象上一点,且PQ⊥x轴于点Q,∴S△POQ=|k|=s,解得:|k|=2s.∵反比例函数在第一象限有图象,∴k=2s.即s=故选:B.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是根据反比例函数系数k的几何意义找出△POQ面积s与k的关系.4.如果y关于x的函数y=(k2+1)x是正比例函数,那么k的取值范围是()A.k≠0 B.k≠±1 C.一切实数D.不能确定【考点】正比例函数的定义.【分析】根据正比例函数的定义,列出方程求解即可.【解答】解:∵函数y=(k2+1)x是正比例函数,∴k2+1≠0,∴k取全体实数,故选C.【点评】本题考查了正比例函数的定义,掌握正比例函数的定义:形如y=kx(k≠0)的形式,叫正比例函数.5.如果关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0有两个相等的实数根,其中a、b、c是△ABC 的三边长,那么△ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【考点】根的判别式.【分析】由方程有两个相等的实数根以及该方程为一元二次方程,结合根的判别式即可得出关于a、b、c的方程组,解方程组即可得出a2=b2+c2,由此即可得出结论.【解答】解:∵关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0有两个相等的实数根,∴,即,解得:a2=b2+c2且a≠c.又∵a、b、c是△ABC的三边长,∴△ABC为直角三角形.故选A.【点评】本题考查了根的判别式,解题的关键是求出a2=b2+c2.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.6.下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等【考点】命题与定理.【分析】分别写出原命题的逆命题,然后判断真假即可.【解答】解:A、逆命题为两直线平行,同位角相等,正确,为真命题;B、逆命题为:在一个三角形中等角对等边,正确,是真命题;C、逆命题为:三条边对应相等的三角形全等,正确,是真命题;D、逆命题为:三个角对应相等的三角形全等,错误,为假命题,故选D.【点评】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题,难度不大.二.填空题(本大题共12题,每题2分,满分24分)7.计算: = 2 .【考点】二次根式的乘除法.【分析】先化简二次根式,再利用二次根式的除法运算法则求出即可.【解答】解:原式=2÷=2,故答案为:2.【点评】此题主要考查了二次根式的除法运算,正确掌握运算法则是解题关键.8.函数的定义域是x≥3 .【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的意义,被开方数是非负数,列不等式求得.【解答】解:根据题意得:2x﹣6≥0,解得x≥3.【点评】当函数表达式是二次根式时,被开方数为非负数.9.在实数范围内因式分解:x2﹣3x+1= .【考点】实数范围内分解因式.【分析】根据x2﹣3x+1=0的解为:x=,根据求根公式的分解方法和特点得出答案.【解答】解:∵x2﹣3x+1=0的解为:x=,∴x2﹣3x+1=(x﹣)(x﹣).故答案为:(x﹣)(x﹣).【点评】此题主要考查了实数范围内分解因式,利用求根公式法得出方程的根再分解因式是解决问题的关键.10.如果f(x)=,那么f(2)= .【考点】函数值.【分析】将x=2代入公式,再分母有理化可得.【解答】解:当x=2时,f(2)===,故答案为:.【点评】本题主要考查函数的求值,(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.11.已知变量x和变量x﹣2,那么x﹣2是不是x的函数?你的结论是:是(填“是”或“不是”).【考点】函数的概念.【分析】根据函数的概念进行判断,自变量与因变量需满足一一对应的关系.【解答】解:∵对于变量x的每一个确定的值,变量x﹣2有且只有一个值与之对应,∴根据函数的概念可知,x﹣2是x的函数.故答案为:是【点评】本题主要考查了函数,解决问题的关键是掌握函数的概念.设在一个变化过程中有两个变量x 与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.12.如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式y=(答案不唯一)(只需写一个).【考点】反比例函数的性质.【分析】先根据函数的增减性判断出k的符号,进而可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.13.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠D=30°,AB=DE,EF=BC,如果EF=,那么AC的长是 3 .【考点】全等三角形的判定与性质.【分析】先利用含30度的直角三角形三边的关系得到DF=3,然后利用“HL”证明Rt△ABC≌Rt△DEF,再利用全等三角形的性质得到AC的长.【解答】解:在Rt△DEF中,∵∠F=90°,∠D=30°,∴DF=EF=×=3,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF,∴AC=DF=3.故答案为3.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.已知关于x的方程x2+mx﹣6=0的一个根为2,那么它的另一个根是﹣3 .【考点】根与系数的关系.【分析】设方程的另一根为a,由一个根为2,利用根与系数的关系列出关于a的方程,求出方程的解得到a的值,即为方程的另一根.【解答】解:∵方程x2+mx﹣6=0的一个根为2,设另一个为a,∴2a=﹣6,解得:a=﹣3,则方程的另一根是﹣3.故答案为:﹣3.【点评】此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时方程有解,此时设方程的解为x1,x2,则有x1+x2=﹣,x1x2=.15.如果点A(3,m)在正比例函数图象上,那么点A和坐标原点的距离是 5 .【考点】一次函数图象上点的坐标特征.【分析】先把A(3,m)代入中求出m,从而确定A点坐标,然后利用勾股定理计算点A和坐标原点的距离.【解答】解:把A(3,m)代入得m=×3=4,则点A的坐标为(3,4),所以点A和坐标原点的距离==5.故答案为5.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,于是解决此类问题时把已知点的坐标代入解析式求解.16.某产品原价每件价格为200元,经过两次降价,且每次降价的百分率相同,现在每件售价为162元,那么每次降价的百分率是10% .【考点】一元二次方程的应用.【分析】解答此题利用的数量关系是:衬衫原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种衬衫平均每次降价的百分率为x,根据题意列方程得,200×(1﹣x)2=162,解得x1=0.1,x2=﹣1.9(不合题意,舍去);答:这种衬衫平均每次降价的百分率为10%.故答案为:10%.【点评】本题考查了一元二次方程在实际生活中的应用,此题列方程得依据是:衬衫原来价格×(1﹣每次降价的百分率)2=现在价格.17.在一个角的内部(不包括顶点)且到角的两边距离相等的点的轨迹是这个角的平分线(除顶点).【考点】轨迹;角平分线的性质.【分析】根据角平分线上的点到角两边的距离相等进行解答.【解答】解:∵角平分线上的点到角两边的距离相等,∴在∠AOB的内部且到这个角的两边距离相等的点的轨迹是∠AOB的平分线(端点除外),故答案为∠AOB的平分线(端点除外).【点评】此题考查了点的轨迹问题,要熟悉角平分线的性质是解题的关键.18.在△ABC中,AB=AC,MN垂直平分AB分别交AB、BC于M、N.如果△ACN是等腰三角形,那么∠B的大小是45°或36°.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】首先根据线段垂直平分线的性质得出NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.【解答】解:∵MN是AB的中垂线,∴NB=NA.∴∠B=∠BAN,∵AB=AC,∴∠B=∠C.设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC时,∠CAN=∠C=x°.则在△ABC中,根据三角形内角和定理可得:4x=180,解得:x=45,则∠B=45°;2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;3)当CA=CN时,∠NAC=∠ANC=.在△ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36.即∠B的度数为45°或36°.故答案为45°或36°.【点评】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,正确对△ANC的边进行讨论是解题的关键.三、简答题(本大题共4题,每题5分,满分20分)19.先化简再计算:(其中ab=9).【考点】二次根式的化简求值.【分析】先将题目中的式子化简,然后将ab=9代入即可解答本题.【解答】解:==当ab=9时,原式==.【点评】本题考查二次根式的化简求值,解题的关键是明确如何化简二次根式.20.解方程:(2x﹣3)2=x(x﹣5)+6.【考点】解一元二次方程-公式法.【分析】原方程化为,3x2﹣7x+3=0,找出a,b,c,求出△=b2﹣4ac的值,再代入求根公式即可.【解答】解:原方程化为,3x2﹣7x+3=0;∴△=(﹣7)2﹣4×3×3=13;∴;∴原方程的根是,.【点评】本题考查了用公式法解一元二次方程,找出a,b,c,求出△=b2﹣4ac的值,是解此题的关键.21.如图,已知线段a,b,求作:△ABC,使AB=AC=a,BC=b.【考点】作图—复杂作图.【分析】先作线段BC=b,然后分别以B、C两点为圆心,a为半径画弧,两弧相交于点A,再连结AB、AC,则△ABC满足条件.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.如图,正比例函数y=kx(k≠0)与反比例函数y=﹣的图象交于点A(﹣1,m)和点B.求点B的坐标.【考点】反比例函数与一次函数的交点问题.【分析】只需把点A的坐标代入反比例函数的解析式,即可求得m,能够根据对称的性质,求得另一个交点B的坐标.【解答】解:由题意,得,∴A(﹣1,2);又∵2=﹣k,∴k=﹣2,∴y=﹣2x;∴,解得,,∴B(1,﹣2).【点评】本题利用了待定系数法确定m,k的值,并且用到了过原点的直线与反比例函数图象的两个交点坐标关于原点对称的知识.四、(本大题共3题,第23、24题每题7分,第25题8分,满分22分)23.如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,DE垂直平分AB,分别交AB、BC于点D、E.求CE 的长.【考点】线段垂直平分线的性质.【分析】由在Rt△ABC中,∠C=90°,AC=6,AB=10,根据勾股定理可求得BC的长,又由DE垂直平分AB,可得AE=BE,然后设CE=x,则AE=BE=8﹣x;利用勾股定理即可求得方程x2+62=(8﹣x)2,解此方程即可求得答案.【解答】解:在Rt△ABC中,∠C=90°,∴;∵DE垂直平分AB,分别交AB、BC于点D、E,∴AE=BE;设CE=x,则AE=BE=8﹣x;在Rt△ACE中,∠C=90°,∴CE2+AC2=AE2;即x2+62=(8﹣x)2,解得,即.【点评】此题考查了线段垂直平分线的性质以及勾股定理.注意掌握方程思想的应用是解此题的关键.24.某商店从厂家以每件21元的价格购进一批商品,该店可以自行定价,若每件商品售价为a元,则可以卖出(350﹣10a)件;但物价局限定每件商品加价不能超过进价的20%,如果商店计划要赚400元,那么每件商品售价是多少元?【考点】一元二次方程的应用.【分析】本题的等量关系是商品的单件利润=售价﹣进价.然后根据商品的单价利润×销售的件数=总利润,设商品的售价为a,列出方程求出未知数的值后,根据“物价局限定每次商品加价不能超过进价的20%”将不合题意的舍去,进而求出卖的商品的件数.【解答】解:设每件商品售价是x元,由题意,得(x﹣21)(350﹣10x)=400;化简,得x2﹣56x+775=0;解得 x1=25,x2=31;又21×(1+0.2)=25.2,∴x=31不合题意,舍去.答:每件商品售价是25元.【点评】本题考查了一元二次方程的应用.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25.如图,AD∥BC,∠A=90°,AB=BC,点E是AB的中点,BD=CE.(1)求证:BD⊥CE;(2)联结CD、DE,试判断△DCE的形状,并证明你的结论.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由条件可证明Rt△ABD≌Rt△BCE,则可求得∠EFD=90°,可证得结论;(2)过点D作DG⊥BC于G,结合条件可证明△ABD≌△GDB,则可证得BD=CD,结合条件可证得CD=CE,可证明△CDE为等腰三角形.【解答】(1)证明:∵AD∥BC,∴∠A+∠CBE=180°,又∠A=90°,∴∠CBE=90°;∵AB=BC,BD=CE,在Rt△ABD和Rt△BCE中∴Rt△ABD≌Rt△BCE(HL),∴∠D=∠BEC,∵∠D+∠ABD=90°,∴∠BEC+∠ABD=90°,∵∠EFB+∠BEC+∠ABD=180°,∴∠EFB=90°,∴BD⊥CE;(2)解:△DCE是等腰三角形.证明如下:∵Rt△ABD≌Rt△BEC,∴AD=BE,又AB=BC,点E是AB的中点,∴,如图,过点D作DG⊥BC于G,∴∠DGB=90°=∠A,∵AD∥BC,∴∠GBD=∠ADB,在△ABD和△GDB中∴△ABD≌△GDB(AAS),∴;∴DF垂直平分BC,∴BD=CD,又BD=CE,∴CD=CE,∴△DCE是等腰三角形.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键,即SSS、SAS、ASA、AAS和HL.五、(本大题共2题,第26题10分,第27题12分,满分22分)26.如图,点B(2,n)是直线y=k1x(k1≠0)上的点,如果直线y=k1x(k1≠0)平分∠yOx,BA⊥x轴于A,BC⊥y轴于C.(1)求k1的值;(2)如果反比例函数y=(k2≠0)的图象与BC、BA分别交于点D、E,求证:OD=OE;(3)在(2)的条件下,如果四边形BDOE的面积是△ABO面积的,求反比例函数的解析式.【考点】反比例函数综合题.【分析】(1)根据角的平分线的性质,可得B的横、纵坐标相等,则利用待定系数法即可求得k1的值;(2)利用k2表示出D和E的坐标,然后利用勾股定理求得OD和OE的长,从而判断;(3)S△BOE=S四边形BDOE,则S△BOE=S△AOB,据此即可求得AE的长,则k2即可求得.【解答】解:(1)∵直线y=k1x(k1≠0)平分∠yOx,BA⊥x轴于A,BC⊥y轴于C,∴AB=BC;又B(2,n),∴AB=BC=2;∴B(2,2),∴2=2k1,∴k1=1.(2)∵反比例函数y=(k2≠0)的图象与BC、BA分别交于点D、E,∴D(,2),E(2,);∴OD==,OE==;∴OD=OE.(3)由题意,可得△BOD≌△BOE,∴S△BOE=S四边形BDOE;又S四边形BDOE=S△AOB,∴S△BOE=S△AOB,即BEOA=×ABOA,∴BE=AB=;∴AE=,∴E(2,),∴=,解得k2=,∴y=.【点评】本题考查了反比例函数与正方形的性质的运算,正确求得AE的长是本题的关键.27.如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,BC=CD.(1)求∠DCB的大小;(2)如图2,点F是边BC上一点,将△ABF沿AF所在直线翻折,点B的对应点是点H,直线HF⊥AB,垂足为G,如果AB=2,求BF的长;(3)如图3,点E是△ACD内一点,且∠AEC=150°,联结DE,请判断线段DE、AE、CE能否构成直角三角形?如果能,请证明;如果不能,请说明理由.【考点】三角形综合题.【分析】(1)只要证明AB=2AC,即可得到∠B=30°,再根据DC=DB即可解决问题.(2)首先证明△ABH是等边三角形,设GF=x,得到BF=2GF=2x,在RT△BFG中利用勾股定理即可解决问题.(3)线段DE、AE、CE能构成直角三角形,如图3中,作∠ECP=60°,截取CP=CE,连接AP、PE,ED,只要证明△DCE≌△ACP即可解决问题.【解答】解:(1)如图1中,在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD,设CD=x,则AB=2x,BC=x,∴AC===x,∴AC=DC=AB,∴∠B=30°,又CD=BD,∴∠DCB=∠B=30°.(2)如图2中,连接BH.△AHF与△ABF关于直线AF对称,又点B的对应点是点H,∴AH=AB,HF=BF,∵HF⊥AB,∠ABC=30°,∴∠BFG=60°,∴∠FBH=∠FHB=30°;∴∠ABH=60°,∴△ABH是等边三角形,∴BG=AB=1,设GF=x,∴BF=2GF=2x,∴x2+12=(2x)2,解得x=∴BF=.(3)线段DE、AE、CE能构成直角三角形.如图3中,作∠ECP=60°,截取CP=CE,连接AP、PE,ED.∵PC=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=CE,∠PEC=60°,∵∠B=30°,∴∠BAC=60°,又CD=AD,∴△ACD是等边三角形,∴∠ACD=60°,AC=CD;∴∠ACD﹣∠ACE=∠PCE﹣∠ACE,即∠DCE=∠ACP,在△DCE和△ACP中,,∴△DCE≌△ACP,∴DE=AP,又∠AEC=150°,∴∠AEP=150°﹣60°=90°,∴线段DE、AE、CE能构成直角三角形.【点评】本题考查三角形综合题、全等三角形的判定和性质、等边三角形的性质和判定、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会添加辅助线,构造全等三角形,属于中考常考题型.。
初二数学期末学业水平质量检测参考答案一、选择题:(每题只有一个正确答案,共10道小题,每小题2分,共20分)1. C,2. D,3.A,4. D,5. C ,6.B,7. D,8. A,9.D, 10. C二、填空题:(共6道小题,第11~14小题,每小题3分,第15~16小题,每小题4分,共20分)11.2; 12.2)(3a b -; 13.360º; 14.③;15.1或3;16.三边分别相等的两个三角形全等,全等三角形对应角相等;3 .三、解答题(共11道小题,第17~24小题,每小题5分,第25~26小题,每小题6分,第27小题8分,共60分)17.23423)7(2102⨯+-+--⎪⎭⎫ ⎝⎛-π 解:原式=323214+-+-………………………………..(4分)=35+ ………………………………..(5分)18.计算:()()()3232322-+-- 解:原式=323622+-+-………………………………..(4分) =626-………………………………..(5分)19.计算:21422++-m m 解:原式=)2)(2(2)2)(2(2-+-+-+m m m m m …………………………..(2分) =)2)(2(22-+-+m m m ………………………………..(4分) =)2)(2(-+m m m ………………………………..(5分)20.解方程:116112=---+x x x 解: 1)1)(1(611=-++-+x x x x ………………………………..(1分) )1)(1(6)1(2-+=++x x x ……..(2分)161222-=+++x x x ………………………………..(3分)82-=x4-=x ………………………………..(4分)检验:把4-=x 带入最简公分母)1)(1(-+x x 中,最简公分母值不为零.∴4-=x 是原方程的解. ………………………………..(5分)21.已知:0232=-+x x ,求代数式)225(4232---÷--x x x x x 的值. 解:原式=)2425()2(232----÷--x x x x x x………………………………..(1分) =2)3)(3()2(23--+÷--x x x x x x ………………………………..(2分) =)3)(3(2)2(23x x x x x x -+-⋅-- =)3(21x x +………………………………..(3分) =)3(212x x + ………………………………..(4分) 0232=-+x x∴232=+x x原式=41 ………………………………..(5分)22.解: 第一个盒子摸出白球的可能性为531061==p ………………..(2分) 第二个盒子摸出白球的可能性为211262==p ………………..(3分) 21p p >………………..(4分)∴第一个盒子摸出白球的可能性大. ………………..(5分)23. 证明: DE BC //E ACB ∠=∠∴………………..(1分)在△ABC 和△DCE 中⎪⎩⎪⎨⎧=∠=∠=CD BC E ACB DE AC ∴△ABC ≅△DCE (SAS )………………..(4分) ∴ AB =CD ………………..(5分)24.解:设新购买的纯电动汽车每行驶1千米所需电费为x 元, 根据题意得:27108= ………………..(3分)25.(1)Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形………………..(2分)B(2)证明: Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形∴AC 垂直平分B B '………………………………..(3分)∴'AB AB =,'21BB BC =︒=∠30BAC∴︒=∠60B ∴△'ABB 为等边三角形………………………………..(5分) ∴'BB AB = '21BB BC =∴AB BC 21=………………………………..(6分)26.(1)l 即为所求作的直线………………………………..(2分)(2)①︒45≤ABC ∠<︒90………………………………..(3分)②图形在(1)的基础上完成………………………………..(4分) 证明: 线段AB 的垂直平分线为l∴ AB CD ⊥BE AE ⊥ ∴︒=∠=∠90BDC AEB∴︒=∠+∠=∠+∠90B BCD B BAE∴BCD BAE ∠=∠………………………………..(6分)27.(1)①……………………………..(1分)②垂直,相等.……………………………..(3分)(2)①……………………………..(4分)图2 图3②如图2成立,如图3不成立.证明: EF CD ⊥∴ ︒=∠90DCF︒=∠90ACB∴BCD ACB BCD DCF ∠+∠=∠+∠即BCF ACD ∠=∠………………………………..(6分)CF CD AC BC ==,∴△ACD ≅△BCF (SAS )∴ BF AD =,FBC BAC ∠=∠∴︒=∠+∠=∠+∠=∠90BAC ABC FBC ABC ABF即AD BF ⊥……………………………..(8分)A A。
2015学年度第一学期期末初二质量调研 数 学 试 卷(2016.1)(时间90分钟,满分100分)一、填空题(本大题共有14题,每题2分,满分28分) 1.化简:()=>0182x x . 2.方程022=-x x 的根是 . 3.函数2-=x y 的定义域是 .4.某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是 .5.在实数范围内分解因式:1322--x x = . 6.如果函数()12+=x x f ,那么()3f = .7.已知关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,那么k 的取值范围是 .8.正比例函数x a y )12(-=的图像经过第二、四象限,那么a 的取值范围是 . 9.已知点),(11y x A 和点),(22y x B 在反比例函数xky =的图像上,如果当210x x <<,可得1y >2y ,那么0______k .(填“>”、“=”、“<”)10.经过定点A 且半径为2cm 的圆的圆心的轨迹是 . 11.请写出“等腰三角形的两个底角相等”的逆命题: . 12.如图1,在△ABC 中,︒=∠90C ,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离等于 .13.如果点A 的坐标为(3-,1),点B 的坐标为(1,4),那么线段AB 的长等于____________.学校_______________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图114.在Rt △ABC 中,︒=∠90C ,将这个三角形折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N ,如果AC BN 2=,那么=∠B 度. 二、选择题(本大题共有4题,每题3分,满分12分)15.下列方程中,是一元二次方程的是 ……………………………………………………( ) (A )y x 342=; (B )15)1(2-=+x x x ; (C )6532-=-x x ; (D )01312=-+x x. 16.已知等腰三角形的周长等于20,那么底边长y 与腰长x 的函数解析式和定义域分别是…( )(A )x y 220-=)200(<<x ; (B )x y 220-=)100(<<x ; (C )x y 220-=)105(<<x ; (D )220xy -=)105(<<x . 17.下列问题中,两个变量成正比例的是………………………………………………… ( ) (A )圆的面积S 与它的半径r ; (B )正方形的周长C 与它的边长a ;(C )三角形面积一定时,它的底边a 和底边上的高h ;(D )路程不变时,匀速通过全程所需要的时间t 与运动的速度v .18.如图2,在△ABC 中,AB=AC ,∠A =120°,如果D 是BC 的中点,DE ⊥AB ,垂足是E ,那么 AE ︰BE 的值等于………………………………………………………………… ( ) (A )31; (B )33; (C )41; (D )51.三、(本大题共有7题,满分60分) 19.(本题满分7分)计算:)7581()3165.0(---.图220.(本题满分7分)用配方法解方程:01632=-+x x .21.(本题满分7分)已知21y y y +=,并且1y 与x 成正比例,2y 与x -2成反比例. 当1=x 时,1-=y ; 当3=x 时,5=y .求y 关于x 的函数解析式.……………………密○………………………………………封○…………………………………○线………………………………………………22.(本题满分8分)已知:如图3,在△ABC 中,45ACB ∠=︒,AD 是边BC 上的高,G 是AD 上一点,联结CG ,点E 、F 分别是AB 、CG 的中点,且DE DF =.求证:△ABD ≌△CGD .23.(本题满分8分)已知:如图4,在△ABC 中,∠ACB =90°, AD 为△ABC 的外角平分线,交BC 的 延长线于点D ,且∠B=2∠D . 求证:AB+AC=CD .图 3DCBA图424.(本题满分11分)如图5,在平面直角坐标系xOy 中,已知直线x y 3=与反比例函数)0(≠=k xky 的图像交于点A ,且点A 的横坐标为1,点B 是x 轴正半轴上一点,且AB ⊥OA . (1)求反比例函数的解析式; (2)求点B 的坐标;(3)先在AOB ∠的内部求作点P ,使点P 到AOB ∠的两边OA 、OB 的距离相等,且PA PB =;再写出点P 的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P )学校_____________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图525.(本题满分12分)如图6,在△ABC 中,D 是AB 的中点,E 是边AC 上一动点,联结DE ,过点D 作DF ⊥DE 交边BC 于点F (点F 与点B 、C 不重合),延长FD 到点G ,使DF DG =,联结EF 、AG ,已知10=AB ,6=BC ,8=AC . (1)求证: AG AC ⊥;(2)设x AE =,y CF =,求y 与x 的函数解析式,并写出定义域; (3)当△BDF 是以BF 为腰的等腰三角形时,求AE 的长.GFEDCBA 图62015学年度第一学期期末初二质量调研数学试卷参考答案一、填空题(本大题共14题,每题2分,满分28分) 1.x 23; 2.21,021==x x ; 3.x ≥2; 4.20%; 5.)4173)(4173(2--+-x x ; 6.13-; 7.41<k 且0≠k ;8.a <21; 9.>; 10.以点A 为圆心,2cm 为半径的圆; 11.有两个角相等的三角形是等腰三角形(写两个“底角”相等不给分); 12.3; 13.5; 14.15二、选择题(本大题共4题,每题3分,满分12分)15.B ; 16.C ; 17.B ; 18.A .三、简答题(本大题共5题,每题7分,满分35分) 19.解:原式= )3542()3222(---················································· (4分) =35423222+-- ······················································· (1分) =3342+. ···································································· (2分) 20.解:移项,得1632=+x x . ································································· (1分) 二次项系数化为1,得3122=+x x . ················································ (1分) 配方,得131122+=++x x , 34)1(2=+x . ······························································· (2分)利用开平方法,得3321±=+x .解得 33211+-=x ,33211--=x . ··············································· (2分) 所以,原方程的根是33211+-=x ,33211--=x . ··························· (1分)21.解:由1y 与x 成正比例,可设111(0)y k x k =≠··········································· (1分) 由2y 与x -2成反比例,可设222(0)2k y k x =≠-. ································· (1分) ∵21y y y +=,∴221-+=x k x k y . ··············································· (1分) 把1=x ,1-=y 和3=x ,5=y 分别代入上式,得 ⎩⎨⎧=+-=-.53,12121k k k k ······································································ (1分)解得⎩⎨⎧==.2,121k k ··········································································· (2分)所以 y 关于x 的函数解析式是22-+=x x y . ·································· (1分)22.证明:∵AD ⊥BC ,E 是AB 的中点,∴AB DE 21=(直角三角形斜边上的中线等于斜边的一半). ··········· (2分) 同理:CG DF 21=. ······························································· (1分)∵ DF DE =,∴ CG AB =. ·················································· (1分) ∵AD ⊥BC ,︒=∠45ACB ,∴︒=∠45DAC . ·························· (1分) ∴DAC ACD ∠=∠. ································································ (1分) ∴ CD AD = . ······································································· (1分) 在Rt △ABD 和Rt △CGD 中,⎩⎨⎧==.,CG AB CD AD∴Rt △ABD ≌Rt △CGD (H .L ). ············································· (1分)23.证明:过点D 作DE ⊥AB ,垂足为点E . ················································ (1分)又∵∠ACB =90°(已知)∴DE =DC (在角的平分线上的点到这个角的两边的距离相等). ········ (2分) 在Rt △ACD 和Rt △AED 中DE =DC (已证) AD =AD (公共边)∴Rt △ACD ≌Rt △AED (H.L ). ··················································· (1分) ∴AC =AE ,∠CDA=∠EDA . ······················································· (1分) ∵∠B=2∠D (已知),∴∠B=∠BDE . ············································ (1分) ∴BE =DE . ·············································································· (1分) 又∵AB +AE =BE ,∴AB+AC=CD .········································································ (1分)24. 解:(1)由题意,设点A 的坐标为(1,m ),∵点A 在正比例函数x y 3=的图像上,∴3=m . ∴点A 的坐标为)3,1(. ········································ (1分) ∵点A 在反比例函数xky =的图像上, ∴13k=,解得3=k . ······················································ (1分) ∴反比例函数的解析式为xy 3=. ············································· (1分) (2)过点A 作AC ⊥OB ,垂足为点C ,可得1=OC ,3=AC .∵AC ⊥OB ,∴∠90=ACO °.由勾股定理,得2=AO . ······················································· (1分) ∴AO OC 21=. ∴∠30=OAC °.∴∠60=AOC °.∵AB ⊥OA ,∴∠90=OAB °.∴∠30=ABO °. ································································ (1分) ∴OA OB 2=.∴4=OB . ·········································································· (1分) ∴点B 的坐标是)0,4(. ··························································· (1分) 【说明】其他方法相应给分.(3)作图略. ··············································································· (2分) 点P的坐标是3(. ····························································· (2分) 25.(1)证明:∵6=BC ,8=AC ,∴100643622=+=+AC BC .∵1002=AB , ∴222AB AC BC =+.∴△ABC 是直角三角形,且∠ACB =90°(勾股定理的逆定理). ·· (1分)∵D 是AB 的中点,∴BD AD =.在△ADG 和△BDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF DG BDF ADG BD AD∴△ADG ≌△BDF (S.A.S ).∴B GAB ∠=∠. ································································· (1分) ∵︒=∠90ACB ,∴︒=∠+∠90B CAB (直角三角形的两个锐角互余). ················· (1分) ∴︒=∠+∠90GAB CAB .∴︒=∠90EAG . ···························· (1分) 即:AG AC ⊥.(2)联结EG .∵x AE =,8=AC ,∴x EC -=8.∵︒=∠90ACB ,由勾股定理,得222)8(y x EF +-=. ···································· (1分) ∵△ADG ≌△BDF ,∴BF AG =.∵y CF =,6=BC ,∴y BF AG -==6.∵︒=∠90EAG ,由勾股定理,得222)6(y x EG -+=. ···································· (1分)∵DF DG =,DF ⊥DE ,∴EG EF =.∴22)8(y x +-22)6(y x -+=. ············································· (1分) ∴374-=x y ,定义域:74<x <254. ································· (1+1分) (3)1°当DB BF =时,56=-y ,∴1=y .∴3741-=x .∴25=x .即25=AE . ····································· (1分) 2°当FB DF =时,联结DC ,过点D 作FB DH ⊥,垂足为点H . 可得y FB DF -==6.∵︒=∠90ACB ,D 是AB 的中点,∴5==DB DC .∵FB DH ⊥,6=BC ,∴3==HB CH .∴y FH -=3.∵FB DH ⊥,由勾股定理,得4=DH .在Rt △DHF 中,可得222)3(4)6(y y -+=-.解得611=y . ··································································· (1分) ∴374611-=x .解得825=x ,即825=AE . ··············································· (1分) 综上所述,AE 的长度是25,825.。
2015-2016学年上海市徐汇区初二(上)期末数学试卷一.选择题(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(2分)下列各式中与是同类二次根式的是()A.B.C. D.2.(2分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,那么下列结论错误的是()A.∠A+∠DCB=90°B.∠ADC=2∠B C.AB=2CD D.BC=CD3.(2分)如图,点P在反比例函数y=(x>0)第一象限的图象上,PQ垂直x 轴,垂足为Q,设△POQ的面积是s,那么s与k之间的数量关系是()A.B.C.s=k D.不能确定4.(2分)如果y关于x的函数y=(k2+1)x是正比例函数,那么k的取值范围是()A.k≠0 B.k≠±1 C.一切实数D.不能确定5.(2分)如果关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0有两个相等的实数根,其中a、b、c是△ABC的三边长,那么△ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形6.(2分)下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等二.填空题(本大题共12题,每题2分,满分24分)7.(2分)计算:=.8.(2分)函数的定义域是.9.(2分)在实数范围内因式分解:x2﹣3x+1=.10.(2分)如果f(x)=,那么f(2)=.11.(2分)已知变量x和变量x﹣2,那么x﹣2是不是x的函数?你的结论是:(填“是”或“不是”).12.(2分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).13.(2分)在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠D=30°,AB=DE,EF=BC,如果EF=,那么AC的长是.14.(2分)已知关于x的方程x2+mx﹣6=0的一个根为2,那么它的另一个根是.15.(2分)如果点A(3,m)在正比例函数图象上,那么点A和坐标原点的距离是.16.(2分)某产品原价每件价格为200元,经过两次降价,且每次降价的百分率相同,现在每件售价为162元,那么每次降价的百分率是.17.(2分)在一个角的内部(不包括顶点)且到角的两边距离相等的点的轨迹是.18.(2分)在△ABC中,AB=AC,MN垂直平分AB分别交AB、BC于M、N.如果△ACN是等腰三角形,那么∠B的大小是.三、简答题(本大题共4题,每题5分,满分20分)19.(5分)先化简再计算:(其中ab=9).20.(5分)解方程:(2x﹣3)2=x(x﹣5)+6.21.(5分)如图,已知线段a,b,求作:△ABC,使AB=AC=a,BC=b.22.(5分)如图,正比例函数y=kx(k≠0)与反比例函数y=﹣的图象交于点A (﹣1,m)和点B.求点B的坐标.四、(本大题共3题,第23、24题每题7分,第25题8分,满分22分)23.(7分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,DE垂直平分AB,分别交AB、BC于点D、E.求CE的长.24.(7分)某商店从厂家以每件21元的价格购进一批商品,该店可以自行定价,若每件商品售价为a元,则可以卖出(350﹣10a)件;但物价局限定每件商品加价不能超过进价的20%,如果商店计划要赚400元,那么每件商品售价是多少元?25.(8分)如图,AD∥BC,∠A=90°,AB=BC,点E是AB的中点,BD=CE.(1)求证:BD⊥CE;(2)联结CD、DE,试判断△DCE的形状,并证明你的结论.五、(本大题共2题,第26题10分,第27题12分,满分22分)26.(10分)如图,点B(2,n)是直线y=k1x(k1≠0)上的点,如果直线y=k1x (k1≠0)平分∠yOx,BA⊥x轴于A,BC⊥y轴于C.(1)求k1的值;(2)如果反比例函数y=(k2≠0)的图象与BC、BA分别交于点D、E,求证:OD=OE;(3)在(2)的条件下,如果四边形BDOE的面积是△ABO面积的,求反比例函数的解析式.27.(12分)如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,BC=CD.(1)求∠DCB的大小;(2)如图2,点F是边BC上一点,将△ABF沿AF所在直线翻折,点B的对应点是点H,直线HF⊥AB,垂足为G,如果AB=2,求BF的长;(3)如图3,点E是△ACD内一点,且∠AEC=150°,联结DE,请判断线段DE、AE、CE能否构成直角三角形?如果能,请证明;如果不能,请说明理由.2015-2016学年上海市徐汇区初二(上)期末数学试卷参考答案与试题解析一.选择题(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(2分)下列各式中与是同类二次根式的是()A.B.C. D.【解答】解:A、与不是同类二次根式,B、=3与不是同类二次根式,C、=2与是同类二次根式,D、=3与不是同类二次根式,故选:C.2.(2分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,那么下列结论错误的是()A.∠A+∠DCB=90°B.∠ADC=2∠B C.AB=2CD D.BC=CD【解答】解:A、∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,∴CD=AD=BD=AB,∴∠DCB=∠B,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠DCB=90°,故本选项错误;B、∵∠DCB=∠B,∠ADC=∠B+∠DCB,∴∠ADC=2∠B,故本选项错误;C、∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,∴AB=2CD,故本选项错误;D、根据已知不能推出BC=CD,故本选项正确;故选:D.3.(2分)如图,点P在反比例函数y=(x>0)第一象限的图象上,PQ垂直x 轴,垂足为Q,设△POQ的面积是s,那么s与k之间的数量关系是()A.B.C.s=k D.不能确定【解答】解:∵点P是反比例函数y=图象上一点,且PQ⊥x轴于点Q,=|k|=s,∴S△POQ解得:|k|=2s.∵反比例函数在第一象限有图象,∴k=2s.即s=故选:B.4.(2分)如果y关于x的函数y=(k2+1)x是正比例函数,那么k的取值范围是()A.k≠0 B.k≠±1 C.一切实数D.不能确定【解答】解:∵函数y=(k2+1)x是正比例函数,∴k2+1≠0,∴k取全体实数,故选:C.5.(2分)如果关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0有两个相等的实数根,其中a、b、c是△ABC的三边长,那么△ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∵关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0有两个相等的实数根,∴,即,解得:a2=b2+c2且a≠c.又∵a、b、c是△ABC的三边长,∴△ABC为直角三角形.故选:A.6.(2分)下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等【解答】解:A、逆命题为两直线平行,同位角相等,正确,为真命题;B、逆命题为:在一个三角形中等角对等边,正确,是真命题;C、逆命题为:三条边对应相等的三角形全等,正确,是真命题;D、逆命题为:三个角对应相等的三角形全等,错误,为假命题,故选:D.二.填空题(本大题共12题,每题2分,满分24分)7.(2分)计算:=2.【解答】解:原式=2÷=2,故答案为:2.8.(2分)函数的定义域是x≥3.【解答】解:根据题意得:2x﹣6≥0,解得x≥3.9.(2分)在实数范围内因式分解:x2﹣3x+1=.【解答】解:∵x2﹣3x+1=0的解为:x=,∴x2﹣3x+1=(x﹣)(x﹣).故答案为:(x﹣)(x﹣).10.(2分)如果f(x)=,那么f(2)=.【解答】解:当x=2时,f(2)===,故答案为:.11.(2分)已知变量x和变量x﹣2,那么x﹣2是不是x的函数?你的结论是:是(填“是”或“不是”).【解答】解:∵对于变量x的每一个确定的值,变量x﹣2有且只有一个值与之对应,∴根据函数的概念可知,x﹣2是x的函数.故答案为:是12.(2分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式y=(答案不唯一)(只需写一个).【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).13.(2分)在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠D=30°,AB=DE,EF=BC,如果EF=,那么AC的长是3.【解答】解:在Rt△DEF中,∵∠F=90°,∠D=30°,∴DF=EF=×=3,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF,∴AC=DF=3.故答案为3.14.(2分)已知关于x的方程x2+mx﹣6=0的一个根为2,那么它的另一个根是﹣3.【解答】解:∵方程x2+mx﹣6=0的一个根为2,设另一个为a,∴2a=﹣6,解得:a=﹣3,则方程的另一根是﹣3.故答案为:﹣3.15.(2分)如果点A(3,m)在正比例函数图象上,那么点A和坐标原点的距离是5.【解答】解:把A(3,m)代入得m=×3=4,则点A的坐标为(3,4),所以点A和坐标原点的距离==5.故答案为5.16.(2分)某产品原价每件价格为200元,经过两次降价,且每次降价的百分率相同,现在每件售价为162元,那么每次降价的百分率是10%.【解答】解:设这种衬衫平均每次降价的百分率为x,根据题意列方程得,200×(1﹣x)2=162,解得x1=0.1,x2=﹣1.9(不合题意,舍去);答:这种衬衫平均每次降价的百分率为10%.故答案为:10%.17.(2分)在一个角的内部(不包括顶点)且到角的两边距离相等的点的轨迹是这个角的平分线(除顶点).【解答】解:∵角平分线上的点到角两边的距离相等,∴在∠AOB的内部且到这个角的两边距离相等的点的轨迹是∠AOB的平分线(端点除外),故答案为∠AOB的平分线(端点除外).18.(2分)在△ABC中,AB=AC,MN垂直平分AB分别交AB、BC于M、N.如果△ACN是等腰三角形,那么∠B的大小是45°或36°.【解答】解:∵MN是AB的中垂线,∴NB=NA.∴∠B=∠BAN,∵AB=AC,∴∠B=∠C.设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC时,∠CAN=∠C=x°.则在△ABC中,根据三角形内角和定理可得:4x=180,解得:x=45,则∠B=45°;2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;3)当CA=CN时,∠NAC=∠ANC=.在△ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36.即∠B的度数为45°或36°.故答案为45°或36°.三、简答题(本大题共4题,每题5分,满分20分)19.(5分)先化简再计算:(其中ab=9).【解答】解:==当ab=9时,原式==.20.(5分)解方程:(2x﹣3)2=x(x﹣5)+6.【解答】解:原方程化为,3x2﹣7x+3=0;∴△=(﹣7)2﹣4×3×3=13;∴;∴原方程的根是,.21.(5分)如图,已知线段a,b,求作:△ABC,使AB=AC=a,BC=b.【解答】解:如图,△ABC为所作.22.(5分)如图,正比例函数y=kx(k≠0)与反比例函数y=﹣的图象交于点A (﹣1,m)和点B.求点B的坐标.【解答】解:由题意,得,∴A(﹣1,2);又∵2=﹣k,∴k=﹣2,∴y=﹣2x;∴,解得,,∴B(1,﹣2).四、(本大题共3题,第23、24题每题7分,第25题8分,满分22分)23.(7分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,DE垂直平分AB,分别交AB、BC于点D、E.求CE的长.【解答】解:在Rt△ABC中,∠C=90°,∴;∵DE垂直平分AB,分别交AB、BC于点D、E,∴AE=BE;设CE=x,则AE=BE=8﹣x;在Rt△ACE中,∠C=90°,∴CE2+AC2=AE2;即x2+62=(8﹣x)2,解得,即.24.(7分)某商店从厂家以每件21元的价格购进一批商品,该店可以自行定价,若每件商品售价为a元,则可以卖出(350﹣10a)件;但物价局限定每件商品加价不能超过进价的20%,如果商店计划要赚400元,那么每件商品售价是多少元?【解答】解:设每件商品售价是x元,由题意,得(x﹣21)(350﹣10x)=400;化简,得x2﹣56x+775=0;解得x1=25,x2=31;又21×(1+0.2)=25.2,∴x=31不合题意,舍去.答:每件商品售价是25元.25.(8分)如图,AD∥BC,∠A=90°,AB=BC,点E是AB的中点,BD=CE.(1)求证:BD⊥CE;(2)联结CD、DE,试判断△DCE的形状,并证明你的结论.【解答】(1)证明:∵AD∥BC,∴∠A+∠CBE=180°,又∠A=90°,∴∠CBE=90°;∵AB=BC,BD=CE,在Rt△ABD和Rt△BCE中∴Rt△ABD≌Rt△BCE(HL),∴∠D=∠BEC,∵∠D+∠ABD=90°,∴∠BEC+∠ABD=90°,∵∠EFB+∠BEC+∠ABD=180°,∴∠EFB=90°,∴BD⊥CE;(2)解:△DCE是等腰三角形.证明如下:∵Rt△ABD≌Rt△BEC,∴AD=BE,又AB=BC,点E是AB的中点,∴,如图,过点D作DG⊥BC于G,∴∠DGB=90°=∠A,∵AD∥BC,∴∠GBD=∠ADB,在△ABD和△GDB中∴△ABD≌△GDB(AAS),∴;∴DG垂直平分BC,又BD=CE,∴CD=CE,∴△DCE是等腰三角形.五、(本大题共2题,第26题10分,第27题12分,满分22分)26.(10分)如图,点B(2,n)是直线y=k1x(k1≠0)上的点,如果直线y=k1x (k1≠0)平分∠yOx,BA⊥x轴于A,BC⊥y轴于C.(1)求k1的值;(2)如果反比例函数y=(k2≠0)的图象与BC、BA分别交于点D、E,求证:OD=OE;(3)在(2)的条件下,如果四边形BDOE的面积是△ABO面积的,求反比例函数的解析式.【解答】解:(1)∵直线y=k1x(k1≠0)平分∠yOx,BA⊥x轴于A,BC⊥y轴于C,∴AB=BC;又B(2,n),∴AB=BC=2;∴B(2,2),∴2=2k1,∴k1=1.(2)∵反比例函数y=(k2≠0)的图象与BC、BA分别交于点D、E,∴D(,2),E(2,);∴OD==,OE==;(3)由题意,可得△BOD≌△BOE,=S四边形BDOE;∴S△BOE=S△AOB,又S四边形BDOE=S△AOB,∴S△BOE即BE•OA=×AB•OA,∴BE=AB=;∴AE=,∴E(2,),∴=,解得k2=,∴y=.27.(12分)如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,BC=CD.(1)求∠DCB的大小;(2)如图2,点F是边BC上一点,将△ABF沿AF所在直线翻折,点B的对应点是点H,直线HF⊥AB,垂足为G,如果AB=2,求BF的长;(3)如图3,点E是△ACD内一点,且∠AEC=150°,联结DE,请判断线段DE、AE、CE能否构成直角三角形?如果能,请证明;如果不能,请说明理由.【解答】解:(1)如图1中,在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD,设CD=x,则AB=2x,BC=x,∴AC===x,∴AC=DC=AB,∴∠B=30°,又CD=BD,∴∠DCB=∠B=30°.(2)如图2中,连接BH.△AHF与△ABF关于直线AF对称,又点B的对应点是点H,∴AH=AB,HF=BF,∵HF⊥AB,∠ABC=30°,∴∠BFG=60°,∴∠FBH=∠FHB=30°;∴∠ABH=60°,∴△ABH是等边三角形,∴BG=AB=1,设GF=x,∴BF=2GF=2x,∴x2+12=(2x)2,解得x=∴BF=.(3)线段DE、AE、CE能构成直角三角形.如图3中,作∠ECP=60°,截取CP=CE,连接AP、PE,ED.∵PC=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=CE,∠PEC=60°,∵∠B=30°,∴∠BAC=60°,又CD=AD,∴△ACD是等边三角形,∴∠ACD=60°,AC=CD;∴∠ACD﹣∠ACE=∠PCE﹣∠ACE,即∠DCE=∠ACP,在△DCE和△ACP中,,∴△DCE≌△ACP,∴DE=AP,又∠AEC=150°,∴∠AEP=150°﹣60°=90°,∴线段DE、AE、CE能构成直角三角形.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。