2018-2019学年上海市浦东新区八年级(上)期末数学试卷
- 格式:doc
- 大小:719.50 KB
- 文档页数:12
2018-2019学年上海市浦东新区高二(下)期中数学试卷一.填空题1.已知(0,0)O 、(1,1)A ,则直线OA 的倾斜角为_____ 【答案】4π 【解析】【分析】本题首先可以根据两点坐标求出直线的斜率,然后根据直线的斜率与直线的倾斜角之间的关系即可写出它的倾斜角。
【详解】由题意可知点()()0,01,1O A 、,则直线OA 的斜率为10110k -==-, 令直线的倾斜角为θ,因为tan θk =,所以直线OA 的倾斜角为4π,故答案为4π。
【点睛】本题考查了直线的相关性质,主要考查了直线的斜率与倾斜角的计算问题,考查了推理能力,斜率与倾斜角之间的关系为tan θk =,是基础题。
2.经过点()10P ,,且与y 轴平行的直线方程为_____ 【答案】1x =【解析】【分析】本题首先可以根据直线与y 轴平行得出直线方程的斜率不存在,直线方程为0x x =,然后根据点p 坐标即可得出直线方程的解析式。
【详解】过点()1,0P ,且与y 轴平行的直线方程为1x =,故答案为:1x =.【点睛】本题考查了直线的相关性质,主要考查了直线方程的求法与应用问题,考查与y 轴平行的直线的相关性质,考查推理能力,是基础题.3.抛物线24y x =的准线方程为_____.【答案】1x =-【解析】【分析】本题利用抛物线的标准方程得出抛物线的准线方程。
【详解】由抛物线方程可知,抛物线24y x =的准线方程为:1x =-.故答案:1x =-. 【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题。
4.圆心为()1,1C ,半径为1的圆的方程是_____【答案】()()22111x y -+-=【解析】【分析】本题利用圆的标准方程以及题意中给出的圆心坐标和半径即可得出结果。
【详解】圆心为()1,1C ,半径为1的圆的方程是:()()22111x y -+-=. 故答案为:()()22111x y -+-=. 【点睛】本题考查圆的相关性质,主要考查圆的标准方程的求法,根据圆心以及半径即可写出圆的标准方程,是简单题。
2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷试题数:18.满分:01.(填空题.3分)在等比数列{a n }中.已知a 2=4.a 6=16.则a 4=___ .2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ .4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ .7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ .8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ .9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ .11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n13.(单选题.3分)设S k =1k+1 + 1k+2 + 1k+3 +…+ 12k.则S k+1为( )A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k +12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+114.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 9015.(问答题.0分)已知关于x 的方程sin 2x+cosx+m=0.x∈[0.2π). (1)当m=1时.解此方程(2)试确定m 的取值范围.使此方程有解.16.(问答题.0分)在公差为d 的等差数列{a n }中.已知a 1=10.且a 1.2a 2+2.5a 3成等比数列. (Ⅰ)求d.a n ;(Ⅱ)若d <0.求|a 1|+|a 2|+|a 3|+…+|a n |.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金; (2)第几年起.新增盈利累计总额超过累计技术改造金.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷参考答案与试题解析试题数:18.满分:01.(填空题.3分)在等比数列{a n}中.已知a2=4.a6=16.则a4=___ .【正确答案】:[1]8【解析】:由等比数列通项公式得a2a6=a42 .由此能求出a4.【解答】:解:∵在等比数列{a n}中.a2=4.a6=16.∴ a2a6=a42 =4×16=64.且a4>0.解得a4=8.故答案为:8.【点评】:本题考查等比数列的第4项的求法.考查等比数列的性质等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .【正确答案】:[1]π+arcsin 13【解析】:先将x∈[π. 32π ].化为π-x∈[- π2,0 ].再利用诱导公式sin(π-x)=sinx.求出π-x=arcsin(- 13)=-arcsin 13.然后计算得解.【解答】:解:因为x∈[π. 32π ].所以π-x∈[- π2,0 ].由sinx=- 13.sin(π-x)=sinx.所以sin(π-x)=- 13.即π-x=arcsin(- 13)=-arcsin 13.所以x=π+arcsin 13.故答案为:π+arcsin 13 .【点评】:本题考查了解三角方程.及正弦的主值区间.属简单题3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ . 【正确答案】:[1] {4,n =14n −1,n ≥2【解析】:根据数列的递推公式即可求出通项公式.【解答】:解:当n=1时.a 1=S 1=2×12+1+1=4.当n≥2时.a n =S n -S n-1=2n 2+n+1-[2(n-1)2+n-1+1]=4n-1. 当n=1时.a 1=3≠4. 故a n = {4,n =14n −1,n ≥2 .故答案为: {4,n =14n −1,n ≥2 .【点评】:本题考查了数列的递推公式.属于基础题4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .【正确答案】:[1] 2661【解析】:由等差数列的性质和求和公式可得 a 9b 9= S17T 17.代值计算可得.【解答】:解:由等差数列的性质和求和公式可得 a 9b 9= 2a 92b 9 = a 1+a 17b 1+b 17 = S 17T 17 = 3×17+17×17+3 = 2661. 故答案为: 2661【点评】:本题考查等差数列的性质和求和公式.属基础题. 5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .【正确答案】:[1]2【解析】:求出数列通项公式的表达式.求出数列的和.然后求解数列的极限即可.【解答】:解: 11+2+3+⋯+n = 2n (n+1) =2( 1n −1n+1 ).∴ lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )= lim n→∞2(1- 12+12−13+13−14 +… +1n −1n+1 )=lim n→∞(2- 2n+1 )=2.故答案为:2.【点评】:本题考查数列的和.数列的极限的求法.考查计算能力.6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ . 【正确答案】:[1]√5+12【解析】:根据题意.这个数为a.则整数部分aq.则小数部分为a-aq.结合等比数列的性质可得a 2q 2=a (a-aq ).即q 2+q-1=0.解可得q 的值.又由aq 为正整数且aq 2<1.设aq 这个正整数为m.则有a= mq =m× √5+12且m (√5+12 )×( √5−12)2<1.解可得m 的值.变形可得a 的值.即可得答案.【解答】:解:小数部分、整数部分及这个正实数依次成等比数列. 不妨设这个数为a.则整数部分aq.则小数部分为a-aq.则q >0. 则有a 2q 2=a (a-aq ). 即q 2+q-1=0. 解得q=√5−12 .q= −1−√52(舍去). 又由aq 为正整数.设aq 这个正整数为m.则a= mq =m× √5+12. 又由aq 2<1.即m ( √5+12 )×( √5−12)2<1. 解可得m <√5+12.又由m 为整数.则m=1.则a= mq=m× √5+12 = m q = √5+12. 故答案为: √5+12.【点评】:本题考查等比数列的性质.涉及等比中项的计算.注意分析q 的范围.属于基础题. 7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ . 【正确答案】:[1] 1955【解析】:由0.3 4• 5• =0.3+0.045+0.0045+….可得等号右边的数从0.045起为公比为0.01的无穷等比数列.运用无穷递缩等比数列的求和公式.计算可得所求值.【解答】:解:0.3 4• 5• =0.3+0.045+0.0045+… =0.3+ 0.0451−0.01 =0.3+ 45990 = 342990 = 1955 . 故答案为: 1955.【点评】:本题考查循环小数化为分数的方法.考查无穷递缩等比数列的求和公式的运用.考查运算能力.属于基础题.8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ . 【正确答案】:[1](-1.0)∪(0. 18 ]【解析】:由题意 a 11−q =12 .|q|<1.从而q=1-2a 1.进而a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+18.利用-1<q <1.能求出a 2的取值范围.【解答】:解:∵无穷等比数列{a n }的各项和为 12 .∴ a 11−q =12 .|q|<1.∴q=1-2a 1.a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+ 18 . ∵-1<q <1.a 2的取值范围是(-1.0)∪(0. 18]. 故答案为:(-1.0)∪(0. 18 ].【点评】:本题考查等比数列的第二项的取值范围的求法.考查等比数列的性质等基础知识.考查运算求解能力.是基础题.9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .【正确答案】:[1] 3π4【解析】:先将两方程变形为:-θ- π4 =sinθ.-θ- π4 =arcsinθ.由y=sinθ.y=arcsinθ互为反函数.其图象关于直线y=x 对称.则方程组 {y =xy =−x −π4.由对称性及中点坐标公式可得.解的横坐标为θ1+θ22.得解.【解答】:解:由x-cosx= π4 .可化为: π4 -x=sin (x- π2 ). x+arcsin (x- π2 )= π4 .可化为: π4 -x=arcsin (x- π2 ). 设θ=x - π2.则有:-θ- π4=sinθ.-θ- π4=arcsinθ. 由y=sinθ.y=arcsinθ.互为反函数. 其图象关于直线y=x 对称. 联立 {y =x y =−x −π4 .得:x=- π8 .即θ1+θ2=- π4 . 所以x 1- π2 +x 2- π2 =- π4 . 则x 1+x 2= 3π4 . 故答案为: 3π4 .【点评】:本题考查了函数与其反函数图象关于直线y=x 对称的性质.属中档题 10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ . 【正确答案】:[1]若sp+tm=kn.s+t=k.则有b p s b m t =b n k .(s.t.k.p.m.n∈N*) 【解析】:利用类比推理可得【解答】:解:利用类比推理可得.对于等比数列{b n }.若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*). 故答案为:若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*)【点评】:本题考查了类比推理的问题.属于基础题.11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【正确答案】:C【解析】:由举例1.-1.1可得“a 、b 、c 成等比数列”不能推出“b= √ac “.由等比中项概念可得:当a 、b 、c 是非零实数.“b= √ac “.可推出“a 、b 、c 成等比数列”.故“a 、b 、c 成等比数列”是“b= √ac “的必要不充分条件.【解答】:解:当“a 、b 、c 成等比数列”时.不妨取“1.-1.1“.则不满足“b= √ac “. 即“a 、b 、c 成等比数列”不能推出“b= √ac “. 当a 、b 、c 是非零实数.“b= √ac ”.由等比中项概念可得:“a 、b 、c 成等比数列”即“a 、b 、c 成等比数列”是“b= √ac ”的必要不充分条件. 故选:C .【点评】:本题考查了等比数列的性质及充分.必要条件.属简单但易错题. 12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n【正确答案】:C【解析】:此题可采用排除法法.可取a n =(-1)n .排除A ;取a n = 1n.排除B ;取a n =b n =n.排除D 得到答案.【解答】:解:取a n =(-1)n .排除A ; 取a n = 1n .排除B ; 取a n =b n =n.排除D . 故选:C .【点评】:考查学生认识极限及运算的能力.以及学会采用排除法做选择题. 13.(单选题.3分)设S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .则S k+1为( ) A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k + 12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+1【正确答案】:C【解析】:先利用S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .表示出S k+1.再进行整理即可得到结论.【解答】:解:因为S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .所以s k+1= 1(k+1)+1 + 1(k+1)+2 +…+ 12(k+1)−2 + 12(k+1)−1 + 12(k+1) =1k+1 +1k+2 +…+ 12k + 12k+1 + 12k+2 - 1k+1=s k +12k+1 - 12k+2. 故选:C .【点评】:本题主要考查数列递推关系式.属于易错题.易错点在与整理过程中.不能清楚哪些项有.哪些项没有.14.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 90 【正确答案】:B【解析】:由y=arcsinx 的值域为[- π2 . π2 ].考虑数列{a n }的周期为360.一个周期内的和.即可得到所求最小值和最大值.【解答】:解:由y=arcsinx 的值域为[- π2 . π2 ]. 当n 取1到90的自然数可得: S 90=π180 + 2π180 +…+ 90π180; 当n 取91到180的自然数可得: a 91+a 92+…+a 180= 89π180 + 88π180 +…+ π180 +0; 当n 取181到270的自然数可得:a 181+a 182+…+a 270=-( π180 + 2π180 +…+ 90π180 ); 当n 取271到360的自然数可得:a 271+a 272+…+a 360=-( 89π180 + 88π180 +…+ π180 +0). 由{a n }的周期为360.可得S 360=0.且S180>0.且为最大值;而S1800=S360×5=0.S2016=S216>0.S1980=S180>0.则故排除A.C.D.故选:B.【点评】:本题考查反正弦函数值的求法.以及数列的求和.考查分类讨论思想方法.以及运算能力和推理能力.属于中档题.15.(问答题.0分)已知关于x的方程sin2x+cosx+m=0.x∈[0.2π).(1)当m=1时.解此方程(2)试确定m的取值范围.使此方程有解.【正确答案】:【解析】:(1)由sin2x+cos2x=1.则sin2x+cosx+m=0可化为:cos2x-cosx-1-m=0.将m=1代入解一元二次方程可得解.(2)分离m与cosx.用值域法可得解.即1+m=cos2x-cosx.再用配方法求cos2x-cosx的值域即可得解.【解答】:解:(1)sin2x+cosx+m=0.所以cos2x-cosx-1-m=0.当m=1时.方程为:cos2x-cosx-2=0.所以cosx=-1或cosx=2.又cosx∈[-1.1].所以cosx=-1.又x∈[0.2π).所以x=π.故方程的解集为:{π}(2)由(1)得.cos2x-cosx-1-m=0有解.即1+m=cos2x-cosx有解.又1+m=cos2x-cosx=(cosx- 12)2- 14.又cosx∈[-1.1].所以(cosx- 12)2- 14∈[- 14,2 ].即1+m∈[- 14,2 ].即m∈[ −54,1 ].故答案为:[ −54,1 ]【点评】:本题考查了三角函数的运算及二次函数的值域.与方程有解问题.属中档题16.(问答题.0分)在公差为d的等差数列{a n}中.已知a1=10.且a1.2a2+2.5a3成等比数列.(Ⅰ)求d.a n;(Ⅱ)若d<0.求|a1|+|a2|+|a3|+…+|a n|.【正确答案】:【解析】:(Ⅰ)直接由已知条件a1=10.且a1.2a2+2.5a3成等比数列列式求出公差.则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论.得到等差数列{a n}的前11项大于等于0.后面的项小于0.所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.【解答】:解:(Ⅰ)由题意得5a3•a1=(2a2+2)2 .即5(a1+2d)•a1=(2a1+2d+2)2 .整理得d2-3d-4=0.解得d=-1或d=4.当d=-1时.a n=a1+(n-1)d=10-(n-1)=-n+11.当d=4时.a n=a1+(n-1)d=10+4(n-1)=4n+6.所以a n=-n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n.因为d<0.由(Ⅰ)得d=-1.a n=-n+11.则当n≤11时. |a1|+|a2|+|a3|+⋯+|a n|=S n=−12n2+212n.当n≥12时.|a1|+|a2|+|a3|+…+|a n|=-S n+2S11= 12n2−21n2+110.综上所述.|a1|+|a2|+|a3|+…+|a n|= {−12n2+212n,n≤1112n2−212n+110,n≥12.【点评】:本题考查了等差数列、等比数列的基本概念.考查了等差数列的通项公式.求和公式.考查了分类讨论的数学思想方法和学生的运算能力.是中档题.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金;(2)第几年起.新增盈利累计总额超过累计技术改造金.【正确答案】:【解析】:(1)计算n=1.2.3.4.5.6.7即可得到所求结论;(2)考虑1到5年不符题意;n >5时.可得1500+2000[n-5-0.6(1−0.6n−5)1−0.6 ]>1000n.结合n的特殊值.计算可得结论.【解答】:解:(1)新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5 (万元). 可得a 1=0.a 2=150.a 3=300.a 4=450.a 5=600.a 6=2000×(1-0.6)=800.a 7=2000×(1-0.36)=1280>1000.则第7年起.当年新增盈利超过当年的技术改造金;(2)由n=5时.a 1+a 2+…+a 5=1500<5000.可得所求n 超过5.可得1500+2000[n-5- 0.6(1−0.6n−5)1−0.6 ]>1000n.化简可得n+3•0.6n-5>11.5.由于3•0.6n-5随着n 的增大而减小.当n=11时.11+3•0.66<11.5.当n=12时.12+3•0.67>11.5.则第12年起.新增盈利累计总额超过累计技术改造金.【点评】:本题考查数列在实际问题中的运用.考查化简运算能力和推理能力.属于中档题.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.【正确答案】:【解析】:(1)由题意可得数列为等差数列.即可得到所求通项公式;(2)由条件可得a n+1+1=2(a n+1).由等比数列的定义和通项公式、求和公式.计算可得所求;(3)由条件可得a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.结合首项成立.以及二次函数的最值.计算可得所求范围.【解答】:解:(1)λ=0.μ=1.a1=3.可得a n+1=a n+1.即有a n=3+n-1=n+2;(2)若λ=0.μ=2.a1=1.可得a n+1=2a n+1.即有a n+1+1=2(a n+1).可得a n+1=2n.即a n=2n-1.前n项和为S n=(2+4+…+2n)-n= 2(1−2n)1−2-n=2n+1-2-n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立. 可得a n+1=a n2+μa n+1.即有a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.由a1=-1.可得1-(1+μ)+1>0.即有μ<1;又(a n+ 1+μ2)2+1- (1+μ)24≥1- (1+μ)24.可得1- (1+μ)24>0.可得-3<μ<1.综上可得μ的范围是(-3.1).【点评】:本题考查数列的递推式的运用.以及等差数列和等比数列的定义、通项公式和求和公式的运用.考查运算能力和推理能力.属于中档题.。
嘉定区2018学年第一学期期终考试八年级数学试卷一、选择题(本大题共有6题,每小题3分,满分18分)1.下列各式中与是同类二次根式的是是()A. B. C. D.【答案】A【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A. =3与是同类二次根式;B. =2与不是同类二次根式;C. =与不是同类二次根式;D. 与不是同类二次根式;故选:A.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.下列方程中,属于一元二次方程的是()A. B. C. D.【答案】C【解析】【分析】直接利用一元二次方程的定义分析得出答案即可.【详解】解:A、,是无理方程,故此选项错误;B、,是二元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、,是分式方程,故此选项错误.故选:C.【点睛】此题主要考查了一元二次方程的定义,正确把握定义是解题关键.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.3.下列关于的二次三项式中(表示实数),在实数范围内一定能分解因式的是()A. B.C. D.【答案】D【解析】【分析】利用一元二次方程根的情况决定二次三项式的因式分解,进而分析b2-4ac的符号,得出答案.【详解】解:A、x2-2x+2=0时,b2-4ac=4-4×1×2=-4<0,则此二次三项式在实数范围内不能因式分解,故此选项错误;B、时,b2-4ac=-4×2×1=-8,有可能大于0,小于0,等于0,则此二次三项式在实数范围内不一定能因式分解,故此选项错误;C、=0时,b2-4ac=4-4×1=4-4m,有可能大于0,小于0,等于0,则此二次三项式在实数范围内不一定能因式分解,故此选项错误;D、=0时,b2-4ac=-4×1×(-1)=,则此二次三项式在实数范围内一定能因式分解,故此选项正确.故选:D.【点睛】此题主要考查了实数范围内分解因式,正确分析b2-4ac的符号是解题关键.4.正比例函数与反比例函数的大致图像如图所示,那么的取值范围是()A. B. C. D.【答案】B【解析】【分析】分别根据正比例函数与反比例函数的性质及图象的特点解答.【详解】解:正比例函数y=k1x过一、三象限,故k10;反比例函数的图象在二、四象限,故2k2-10 ,即k2.故选:B.【点睛】本题考查反比例函数与正比例函数的图象特点:(1)反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.(2)正比例函数图象的性质:k>0,正比例函数的图象过原点、在第一、三象限;k<0,正比例函数的图象过原点、在第二、四象限.5.下列四个命题:(1)三角形的一条中线把三角形分成面积相等的两部分;(2)有两边及其中一边的对角对应相等的两三角形全等;(3)点关于原点的对称点坐标为;(4)若,则;其中真命题的有()A. (1)、(2)B. (1)、(3)C. (2)、(3)D. (3)、(4)【答案】B【解析】【分析】根据三角形的面积,全等三角形的判定,关于原点对称的点的坐标特征,二次根式的性质对各小题分析判断即可得解【详解】解:(1)三角形的一条中线能将三角形分成面积相等的两部分,正确;(2)有两边和其中一边的对角对应相等的两个三角形全等,错误;(3)点P(1,2)关于原点的对称点坐标为(-1,-2),正确;(4)若,则,错误.综上所述,正确的是(1)、(3).故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉掌握相关的性质定理.6.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB中点,在“①DE=AC;②DE⊥AC;③∠EAF=∠ADE;④∠CAB=30°”这四个结论中,正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据点D是AB的中点,得到AD=,由于AB=2BC,于是得到AD=BC,证得Rt△AED≌Rt△BAC,得到∠E=∠CAB,DE=AC,故①正确;由∠E+∠EDA=90°,得到∠FAD+∠EDA=90°,即可得到DE⊥AC,故②正确;根据同角的余角相等得到∠EAF=∠ADE,故③正确;根据BC是AB的一半,而不是AC的一半,故∠CAB不等于30°,故④错误.【详解】解:点D是AB的中点,则AD=,∵AB=2BC,∴AD=BC,∵EA⊥AB,CB⊥AB,∴∠B=∠EAB=90°,在△AED与△BAC中,,∴△AED≌△BAC,∴∠E=∠CAB,DE=AC,∴①正确;∵∠E+∠EDA=90°,∴∠FAD+∠EDA=90°,∴∠AFD=180°-(∠FAD+∠EDA)=90°,∴DE⊥AC,∴②正确;∵∠EAF与∠ADE都是∠E的余角,∴∠EAF=∠ADE,∴③正确;∵BC是AB的一半,而不是AC的一半,故∠CAB不等于30°,∴④错误;故选:C.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,直角三角形的性质,灵活运用这些定理是解题的关键.二、填空题(本大题共有12题,每小题2分,满分24分)7.计算:.【答案】【解析】试题分析:根据二次根式的乘法法则计算:。
2018-2019 学年第一学期期末考试八年级数学试卷( 考试时间 90 分钟 )2018-2019年 1 月(本试卷全部答案请书写在答题纸规定地点上)一、选择题(共 6 题,共 12 分)1、以下运算中 ,正确的选项是( ▲ )( A ) x 2x 3x (B )32 22 1( C )2+5 =2 5( D ) a x b x ( a b) x2、在以下方程中,整理后是一元二次方程的是(▲ )( A ) 3x 2( x 2)(3x 1) (B ) (x 2)( x 2)40 ( C ) x( x 2 1) 0(D )1x 3 1x 2k,- 1)在 ykx 的图像上,则函数 y 的图像经过( ▲ ). x( A )第一、二象限;(B )第二、三象限 ; ( C )第一、三象限;( D )第二、四象限.4、以下命题中,是假命题的是(▲).( A )对顶角相等( B )互为补角的两个角都是锐角( C )假如两条直线都和第三条直线平行,那么这两条直线也相互平行( D )两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行.5、已知:如图,在 △ ABC 中,C 900,BD均分ABC ,BBC1AB , BD =2,则点 D 到 AB 的距离为(▲ ).2DCA(A )1(B )2( C )3( D ) 35 题图A6、在 Rt △ ABC ,∠ ACB = 90°,CD 、 CE 是斜边上的高和中线,DAC =CE =10cm ,则 BD 长为( ▲ )E( A ) 25cm ; ( B ) 5cm ; (C ) 15cm ;( D ) 10cm. CB第6题图二、填空题(共 12 题,共 36 分)7、把32 (x 0) 化成最简二次根式是▲;8ax8、对于 x 的方程4x2 6x m 0有两个相等的实数根,则m 的值为▲;9、已知正比率函数y (2 3a) x 的图像经过第一、三象限,则a的取值范围是___▲___;10、假如函数f (x) 1,那么 f (2) = ▲;x11、命题:“同角的余角相等”的抗命题是▲;12、到点 A 的距离等于 6cm 的点的轨迹是▲;13、已知直角坐标平面内两点A( 3, - 1)和 B( - 1, 2), E C那么 A、 B 两点间的距离等于▲;F14、如图,将△ ABC 绕点 A 按逆时针方向旋转获得△ ADE ,G DE 交 AC 于 F,交 BC 于 G,若∠ C=35°,∠ EFC =60°, D则此次旋转了▲°;A B15、三角形三边的垂直均分线的交点到▲的距离相第14题图等;16、在 Rt△ ABC 中,∠ C=90 °, AB=18 , BC=9,那么∠ B=▲°;17、如图,C D 90 , 请你再增添一个条件:▲使ABC BAD ; D C18、已知直角三角形的两边长分别为5, 12,那么第三边的长为▲.A三、简答题(共 4 题,共 22 分)第17题图B19(、 5 分)计算:27 2 9 1 (32).3 1 320、(5 分)解方程:解方程:x 1 2 x 1 621、( 6 分)已知一个正比率函数的图像与反比率函数y 9的图像都经过点A(m, 3)。
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
浦东新区2019学年度第一学期期末质量抽测初二数学试卷(完卷时间:100分钟,满分:100分)一、选择题(本大题共5题,每题2分,满分10分)1.下列二次根式中,与a 3属同类二次根式是··································( ) (A)a 9; (B)a 27; (C)218ab ; (D)227ab . 2.下列各数中是方程03522=++x x 的根的是································( ) (A)3-; (B) 1- (C) 1; (D) 3. 3.直线x y 32-=不经过点··················································( ) (A)(0,0) (B)(-2,3) (C)(3,-2) (D)(-3,2) 4.如果反比例函数的图像经过点(-8,3),那么当0〉x 时y 的值随x 的值的增大而··( ) (A) 增大 (B)不变; (C) 减小 (D)无法确定5.在命题:“三角形的一个外角大于三角形的每一个内角”、“底边及一个内角相等的两个等腰三角形全等”、“两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直”中真命题的个数有············································································( )(A )0 (B )1 (C )2; (D )3 二、填空题(本大题共15题,每题2分,满分30分)6.化简=-2)4(π .7.计算:4312-= .8.方程2142=-x x 的解是 .9.如果关于x 的方程032=-+m x x 没有实数根,那么m 的取值范围是 . 10.分解因式232--x x .11.函数12-+x x 的定义域是 12.已知函数53)(-=x xx f ,那么=)(x f . 13.把362+-x x 化成n m x ++2)(的形式是 .14.已知直角坐标平面中两点分别为A (2,-1),B (5,3),那么AB=15.某人从甲地行走到乙地的路程S (千米)与时间t (时)的函数关系如图所示,那么此人行走3千米,所用的时间 (时)16.在Rt △ABC 中,∠C =90°,∠A =60°,AB=14,那么BC= . 17.经过定点A 、B 的圆的圆心的轨迹是 . 18.命题“等腰三角形两底角的平分线相等”的逆命题是 . 19.已知在Rt △ABC 中,P 为斜边AB 上的一点,且,8,2,===AC PA PC PB 那么AB= 20.已知在△ABC 中,CD 是角平分线,5,3,2==∠=∠AC AD B A 那么BC=三、解答题(本大题共8题,满分60分)21.(本题满分6分)已知:,321+=X 求代数式48262++-+x xx x x 的值22.(本题满分6分)已知关于x 的方程42522+=+x x mx 是一元二次方程,试判断关于y 的方程y m my m y y -=+--+12)1(的根的情况,并说明理由。
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为x cm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为x cm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出△Rt ARP≌△Rt ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故(△3)正确,又可推出BRP≌△QSP,故(4)正确.【解答】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴△Rt ARP≌△Rt ASP∴AR=AS,故(2)正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故(1)正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故(3)正确∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP∴△BRP≌△QSP,故(4)正确∴全部正确.故选:D.【点评】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质求解.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5),故答案为:(﹣3,﹣5).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,=×4×2+AC•2=7,∴S△ABC解得AC=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为128.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=16,A4B4=8B1A2=32,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=4,∴A2B1=4,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=16=24,A4B4=8B1A2=32=25,A5B5=16B1A2=64=26,以此类推:△A n B n A n+1的边长为2n+1,∴△A6B6A7的边长为:26+1=128.故答案为:128.【点评】此题主要考查了等边三角形的性质以及直角三角形30度角的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.【分析】分别作∠BAC的平分线和线段AB的中垂线,它们的交点即为所求点P.【解答】解:如图所示,点P即为所求.【点评】此题主要考查了线段垂直平分线的性质与作法以及角平分线的性质与作法,正确掌握相关性质是解题关键.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作A点关于x轴的对应点A″,连接A″C交x轴于点P,利用两点之间线段最短可判断此时P A+PC 最小.【解答】解:(△1)如图,A′B′△C′为所作,A′B′C′三个顶点的坐标分别为A'(4,1),B'(3,3),C'(1,2);(2)如图,点P为所作..【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.【分析】先由三角形外角的性质,求出∠BAC的度数,然后由角平分线的定义即可求出∠BAE的度数,然后再根据外角的性质,即可求∠AEC的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC,∵∠B=40°,∠ACD=106°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠BAC=33°,∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=73°.【点评】此题考查了三角形外角的性质及角平分线的定义,熟记三角形的外角等于与它不相邻的两个内角之和.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.【分析】(1)根据已知条件,用HL公理证:△Rt ABC≌△Rt DCB,从而得证;(2)利用△Rt ABC≌△Rt DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在△Rt ABC与△Rt DCB中,∠A=∠D=90°,,∴△Rt ABC≌△Rt DCB(HL),∴AB=CD;(2)△OBC是等腰三角形,理由如下:∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【分析】(1)根据题意得到∠CAB=∠B,根据等腰三角形的性质得到CB=CA=80,得到答案;(2)作BD⊥CD于点D,求出∠BCD=30°,根据直角三角形的性质计算即可.【解答】解:(1)由题意得,∠CAB=90°﹣40°﹣10°=40°,∠ACB=40°+60°=100°,∴∠B=180°﹣100°﹣40°=40°,∴∠CAB=∠B,∴CB=CA=80(海里),答:此时货轮到小岛B的距离为80海里;(2)轮船向正东方向航行没有触礁危险.理由如下:如图,作BD⊥CD于点D,∵∠BCD=90°﹣60°=30°,∴BD=BC=40,∵40>36,∴轮船向正东方向航行没有触礁危险.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握直角三角形的性质、方向角的概念是解题的关键.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=△CD,只要证明ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE ﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②△S ABE=理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,△S CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设△①成立,则ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(△1)利用等边三角形的性质可证明APC≌△BQA,则可求得∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(2)可用t分别表示出BP和BQ,分∠BPQ=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值;(3)同(△1)可证得PBC≌△QCA,再利用三角形外角的性质可求得∠CMQ=120°.【解答】解:(△1)∵ABC为等边三角形,∴AB=AC,∠B=∠P AC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中,∴△APC≌△BQA(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,∴在P、Q运动的过程中,∠CMQ不变,∠CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,∴4﹣t=2t,解得t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2PB,∴t=2(4﹣t),解得t=,∴当t为s或s时,△PBQ为直角三角形;(3)在等边三角形ABC中,AC=BC,∠ABC=∠BCA=60°,∴∠PBC=∠QCA=120°,且BP=CQ,在△PBC和△QCA中,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=120°,∴在P、Q运动的过程中,∠CMQ的大小不变,∠CMQ=120°.【点评】本题为三角形的综合应用、等边三角形的性质、直角三角形的性质、勾股定理、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
2018-2019 学年上海市浦东新区八年级(上)期末数学试 卷题号 得分一二三总分一、选择题(本大题共 6 小题,共 12.0 分) 1. 下列计算正确的是( )A.B.C.D.2. 下列方程配方正确的是( )A. x2-2x-1=(x+1)2-1B. x2-4x+1=(x-2)2-4C. x2-4x+1=(x-2)2-3D. x2-2x-2=(x-1)2+13. 下列关于 x 的二次三项式中(m 表示实数),在实数范围内一定能分解因式的是()A. x2-2x+2B. 2x2-mx+1C. x2-2x+mD. x2-mx-14. 下列命题的逆命题是真命题的是( )A. 对顶角相等B. 等角对等边C. 同角的余角相等D. 全等三角形对应角相等5. 已知点 A(1,y1),B(2,y2),C(-2,y3)都在反比例函数 y= (k>0)的图象上,则( )A. y1>y2>y3B. y3>y2>y1C. y2>y3>y16. 如图,在△ABC 中,∠B=90°,点 O 是∠CAB、∠ACB 平分线的交点,且 BC=4cm,AC=5cm,则点 O 到边 AB 的距离为( )D. y1>y3>y2A. 1cmB. 2cmC. 3cm二、填空题(本大题共 12 小题,共 36.0 分)7. 计算:=______.8. 方程 x2+2x=0 的根是______.9. 已知函数 f(x)= ,则 f(2)=______.D. 4cm10. 函数 y= 的定义域是______.11. 关于 x 的方程 x2-3x+m=0 有两个不相等的实数根,那么 m 的取值范围是______. 12. 正比例函数 y=kx(k≠0)经过点(2,1),那么 y 随着 x 的增大而______.(填“增大”或“减小”) 13. 平面内到点 O 的距离等于 3 厘米的点的轨迹是______. 14. 已知直角坐标平面内两点 A(-3,1)和 B(3,-1),则 A、B 两点间的距离等于______. 15. 如果直角三角形的面积是 16,斜边上的高是 2,那么斜边上的中线长是______. 16. 如图,△ABC 中,AB=AC,∠BAC=120°,AD⊥AC 交 BC 于点 D,AD=4,则 BC=______.第 1 页,共 12 页17. 把两个同样大小含 45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角 顶点与另一个三角尺的直角顶点重合于点 A,且另外三个锐角顶点 B,C,D 在同 一直线上.若 AB=2,则 CD=______.18. 如图,已知两个反比例函数 C1:y= 和 C2:y= 在第一象 限内的图象,设点 P 在 C1 上,PC⊥x 轴于点 C,交 C2 于 点 A,PD⊥y 轴于点 D,交 C2 于点 B,则四边形 PAOB 的 面积为______.三、解答题(本大题共 8 小题,共 52.0 分) 19. 计算:20. 解方程:2x(x-3)+3(x-3)=021. 已知 y 与 2x-3 成正比例,且当 x=4 时,y=10,求 y 与 x 的函数解析式.第 2 页,共 12 页22. 已知:如图,AB=12cm,AD=13cm,CD=4cm, BC=3cm,∠C=90°.求△ABD 的面积.23. 为了响应“低碳环保,绿色出行”的公益活动,小燕和妈妈决定周日骑自行车去图 书馆借书.她们同时从家出发,小燕先以 150 米/分的速度骑行一段时间,休息了 5 分钟,再以 m 米/分钟的速度到达图书馆,而妈妈始终以 120 米/分钟的速度骑行, 两人行驶的路程 y(米)与时间 x(分钟)的关系如图,请结合图象,解答下列问 题: (1)图书馆到小燕家的距离是______米; (2)a=______,b=______,m=______; (3)妈妈行驶的路程 y(米)关于时间 x(分钟)的函数解析式是______;定义域 是______.24. 已知:如图,∠F=90°,AE⊥OC 于点 E,点 A 在∠FOC 的角平分线上,且点 A 到点 B、点 C 的距离相等.求证:BF=EC.第 3 页,共 12 页25. 已知:如图,在△BCD 中,CE⊥BD 于点 E,点 A 是边 CD 的中点,EF 垂直平分线 AB (1)求证:BE= CD; (2)当 AB=BC,∠ABD=25°时,求∠ACB 的度数.26. 如图,在平面直角坐标系中,OA⊥OB,AB⊥x 轴于点 C, 点 A( ,1)在反比例函数 y= 的图象上. (1)求反比例函数 y= 的表达式; (2)求△AOB 的面积; (3)在坐标轴上是否存在一点 P,使得以 O、B、P 三点为顶点的三角形是等腰三角形若存在,请直接写 出所有符合条件的点 P 的坐标:若不存在,简述你的理由.第 4 页,共 12 页2018-2019 学年上海市浦东新区八年级(上)期末数学试 卷答案和解析【答案】1. B2. C3. D4. B5. A6. A7.8. x1=0,x2=-29.10. x>-0.511.12. 增大 13. 以点 O 为圆心,3 厘米长为半径的圆 14. 2 15. 8 16. 12 17. -18.19. 解:原式=2 + + -=2 + + -3 =3 -2 .20. 解:∵2x(x-3)+3(x-3)=0,∴(x-3)(2x+3)=0, 则 x-3=0 或 2x+3=0,解得:x1=3,x2=- .21. 解:∵y 与 2x-3 成正比例,∴设 y=k(2x-3)(k≠0), 将 x=4,y=10 代入得:10=(2×4-3)×k,解得 k=2, 所以,y=2(2x-3), 所以 y 与 x 的函数表达式为:y=4x-6.22. 解:∵CD=4cm,BC=3cm,∠C=90°,∴BD=cm,∵AB=12cm,AD=13cm, ∴BD2+AB2=AD2, ∴∠ABD=90°,∴.23. 3000 10 15 200 y=120x 0≤x≤25第 5 页,共 12 页24. 证明:∵点 A 在∠FOC 的角平分线上,∠F=90°,AE⊥OC,∴AE=AF, ∵点 A 到点 B、点 C 的距离相等, ∴AB=AC, ∵∠F=∠AEC=90°, ∴Rt△ABF≌Rt△ACE(HL), ∴BF=EC.25. (1)证明:连接 AE,∵CE⊥BD,点 A 是边 CD 的中点,∴AE=AD= CD,∵EF 垂直平分线 AB, ∴EA=EB,∴BE= CD;(2)∵EA=EB, ∴∠EAB=∠ABD=25°, ∴∠AED=∠EAB+∠ABD=50°, ∵EA=AD, ∴∠D=∠AED=50°, ∴∠BAC=∠ABD+∠D=75°, ∵AB=BC, ∴∠ACB=∠BAC=75°.26. 解:(1)将 A( ,1)代入 y= ,得:1= ,解得:k= ,∴反比例函数的表达式为 y= .(2)∵点 A 的坐标为( ,1),AB⊥x 轴于点 C, ∴OC= ,AC=1,∴OA==2=2AC,∴∠AOC=30°. ∵OA⊥OB, ∴∠B=∠AOC=30°,∴∠AOB=90°, ∴AB=2OA=4,∴S△AOB= AB•OC= ×4× =2 .(3)在 Rt△AOB 中,OA=2,∠AOB=90°,∠ABO=30°,∴OB= =2 .分三种情况考虑: 所示, ∵OB=2 , ∴OP=2 , ∴点 P 的坐标为(-2 ,0),(2 ,0),(0,-2 ), (0,2 ); ②当 BP=BO 时,如图 3,过点 B 做 BD⊥y 轴于点 D,则 OD=BC=AB-AC=3, ∵BP=BO,①当 OP=OB 时,如图 2第 6 页,共 12 页∴OP=2OC=2 或 OP=2OD=6, ∴点 P 的坐标为(2 ,0),(0,-6); ③当 PO=PB 时,如图 4 所示. 若点 P 在 x 轴上,∵PO=PB,∠BOP=60°, ∴△BOP 为等边三角形, ∴OP=OB=2 , ∴点 P 的坐标为(2 ,0); 若点 P 在 y 轴上,设 OP=a,则 PD=3-a, ∵PO=PB, ∴PB2=PD2+BD2,即 a2=(3-a)2+12, 解得:a=2, ∴点 P 的坐标为(0,-2). 综上所述:在坐标轴上存在一点 P,使得以 O、B、P 三点 为顶点的三角形是等腰三角形,点 P 的坐标为(-2 ,0), (2 ,0),(0,-2 ),(0,2 ),(0,-6),(0, -2). 【解析】1. 解:(A)原式= + ,故选项 A 错误;(B)原式=a2,故选项 B 正确; (C)原式= + ,故选项 C 错误; (D)原式= + ,故选项 D 错误; 故选:B. 根据二次根式的运算法则即可求出答案. 本题考查二次根式,解题的关键是正确理解二次根式的运算法则,本题属于基础题型.2. 解:A.x2-2x-1=(x+1)2-2,此选项配方错误;B.x2-4x+1=(x-2)2-3,此选项配方错误; C.x2-4x+1=(x-2)2-3,此选项配方正确; D.x2-2x-2=(x-1)2-3,此选项配方错误; 故选:C. 配上一次项系数一半的平方,然后再整理即可得. 本题主要考查解一元二次方程-配方法,解题的关键是熟练掌握完全平方公式.3. 解:选项 A,x2-2x+2=0,△=4-4×2=-4<0,方程没有实数根,即 x2-2x+2 在数范围内不能分解因式; 选项 B,2x2-mx+1=0,△=m2-8 的值有可能小于 0,即 2x2-mx+1 在数范围内不一定能分 解因式; 选项 C,x2-2x+m=0,△=4-4m 的值有可能小于 0,即 x2-2x+m 在数范围内不一定能分解 因式; 选项 D,x2-mx-1=0,△=m2+4>0,方程有两个不相等的实数根,即 x2-mx-1 在数范围内 一定能分解因式. 故选:D. 对每个选项,令其值为 0,得到一元二次方程,计算判别式的值,即可判断实数范围内 一定能分解因式的二次三项式. 本题考查二次三项式在实数范围内的因式分解.解题的关键是把问题转化为一元二次方 程是否有实数根的问题.4. 解:A、逆命题为:相等的角是对顶角,不成立,如位于不同平面上的两个相等的角就不是对顶角,是假命题; B、逆命题为:等边对等角,成立,是真命题; C、逆命题为:相等的角为同一个角的余角,不成立,因为钝角没有余角,是假命题;第 7 页,共 12 页D、逆命题为:对应角相等的三角形全等,不成立,如形状相同的两个大小不一样的三 角板,是假命题; 故选:B. 分别写出各个命题的逆命题,然后判断正误即可. 考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大.5. 解:函数图象如图所示:y1>y2>y3, 故选:A. 画出函数图象,利用图象法即可解决问题. 本题考查反比例函数图象上的点的指标特征,解题的关键是学会利用图象法解决问题, 属于中考常考题型.6. 解:∵点 O 为∠CAB 与∠ACB 的平分线的交点,∴点 O 在∠ACB 的角平分线上,∴点 O 为△ABC 的内心, 过 O 作 OP⊥AB,连接 OB,S△ABC== OP•(AB+BC+AC), 又∵AC=5,BC=4,△ABC 为直角三角形,∠B=90° ∴AB=3,∴ ×3×4= •OP(3+4+5),解得:OP=1. 故选:A. 直接利用内心的定义结合三角形面积求法得出答案. 此题主要考查了角平分线的性质以及三角形面积求法,正确表示出三角形面积是解题关 键.7. 解:=3 =2 . 故答案为:2 . 先将二次根式化为最简,然后合并同类二次根式即可得出答案. 本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.第 8 页,共 12 页8. 解:x(x+2)=0,x=0 或 x+2=0, x1=0,x2=-2, 故答案为 x1=0,x2=-2. 先提公因式,再化为两个一元一次方程即可得出答案. 本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法, 公式法,因式分解法,要根据方程的特点灵活选用合适的方法.9. 解:把 x=2 代入 f(x)= ,可得:f(2)=,故答案为:把 x=2 代入函数解答即可. 此题考查函数的值,关键是把 x=2 代入函数解答.10. 解:函数 y= 的定义域是 2x+1>0,解得:x>-0.5, 故答案为:x>-0.5 根据二次根式的性质和分母不能等于 0 解答即可. 此题考查函数自变量的取值范围,关键是根据二次根式的性质和分母不能等于 0 解答.11. 解:根据题意得△=(-3)2-4m>0,解得 m< .故答案为 m< .根据判别式的意义得到△=(-3)2-4m>0,然后解不等式即可. 本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有 两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12. 解:∵点(2,1)在正比例函数 y=kx(k≠0)的图象上,∴k= ,故 y= x,则 y 随 x 的增大而增大. 故答案为:增大. 直接利用待定系数法求出正比例函数解析式进而得出答案. 此题主要考查了待定系数法求正比例函数解析式以及正比例函数的图象与性质,正确求 出解析式是解题关键.13. 解:平面内到点 O 的距离等于 3 厘米的点的轨迹是以点 O 为圆心,3 厘米长为半径的圆. 故答案为:以点 O 为圆心,3 厘米长为半径的圆. 只需根据圆的定义就可解决问题. 本题主要考查的是圆的定义,其中圆是到定点的距离等于定长的点的集合.14. 解:∵直角坐标平面内两点 A(3,-1)和 B(-1,2),∴A、B 两点间的距离等于=2 ,故答案为 2 .第 9 页,共 12 页根据两点间的距离公式 d=解答即可.本题考查了两点间的距离公式,比较简单.掌握两点间的距离公式是解题的关键件.15. 解:设直角三角形的斜边长为 x,由题意得, ×2×x=16,解得,x=16,则斜边上的中线长= ×16=8,故答案为:8. 根据三角形的面积公式求出斜边长,根据直角三角形的性质解答即可. 本题考查的是直角三角形的性质、三角形的面积计算,掌握在直角三角形中,斜边上的 中线等于斜边的一半是解题的关键.16. 解:∵△ABC 中,AB=AC,∠BAC=120°,∴∠C=∠B=30°, ∵AD⊥AC 交 BC 于点 D, ∴CD=2AD=8,∠BAD=30°=∠B, ∴BD=AD=4, ∴BC=BD+CD=4+8=12. 故答案为:12. 依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据 AD⊥AC 交 BC 于点 D,即可得 到 CD=2AD=8,∠BAD=30°=∠B,进而得出 BC 的长. 本题主要考查了含 30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在 直角三角形中,30°角所对的直角边等于斜边的一半.17. 解:如图,过点 A 作 AF⊥BC 于 F,在 Rt△ABC 中,∠B=45°,∴BC= AB=2 ,BF=AF= AB= ,∵两个同样大小的含 45°角的三角尺, ∴AD=BC=2 ,在 Rt△ADF 中,根据勾股定理得,DF==,∴CD=BF+DF-BC= + -2 = - , 故答案为: - . 先利用等腰直角三角形的性质求出 BC=2 ,BF=AF= ,再利用勾股定理求出 DF, 即可得出结论. 此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.18. 解:∵PC⊥x 轴,PD⊥y 轴,∴S△AOC=S△BOD= •| |= × = ,S 矩形 PCOD=1,∴四边形 PAOB 的面积=1-2× = ,故答案为 .根据反比函数比例系数 k 的几何意义得到 S△AOC=S△BOD= × = ,S 矩形 PCOD=1,然后利用 矩形面积分别减去两个三角形的面积即可得到四边形 PAOB 的面积.第 10 页,共 12 页本题考查了反比函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.19. 先分母有理化,再进行二次根式的乘法运算,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20. 利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21. 根据正比例函数的定义设y-1=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.22. 根据勾股定理的逆定理证明△ABD是直角三角形,即可求解.此题主要是考查了勾股定理及其逆定理.关键是根据勾股定理的逆定理证明△ABD是直角三角形.23. 解:(1)由图象可得,图书馆到小燕家的距离是3000米,故答案为:3000;(2)a=1500÷150=10,b=a+5=10+5=15,m=(3000-1500)÷(22.5-15)=200,故答案为:10,15,200;(3)妈妈行驶的路程y(米)关于时间x(分钟)的函数解析式是y=kx,当y=3000时,x=3000÷120=25,则3000=25k,得k=120,即妈妈行驶的路程y(米)关于时间x(分钟)的函数解析式是y=120x,定义域是0≤x≤25,故答案为:y=120x,0≤x≤25.(1)根据函数图象中的数据可以直接写出图书馆到小燕家的距离;(2)根据题意和函数图象中的数据可以得到a、b、m的值;(3)根据函数图象中的数据可以得到妈妈行驶的路程y(米)关于时间x(分钟)的函数解析式以及定义域.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24. 证明Rt△ABF≌Rt△ACE(HL)即可解决问题.本题考查全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25. (1)连接AE,根据直角三角形的性质得到AE=AD=CD,根据线段垂直平分线的性质得到EA=EB,等量代换证明结论;(2)根据等腰三角形的性质、三角形的外角性质求出∠AED,根据等腰三角形的性质计算,得到答案.本题考查的是直角三角形的性质、线段垂直平分线的性质、三角形的外角性质,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.26. (1)根据点A的坐标,利用待定系数法可求出反比例函数的表达式;(2)由点A的坐标可得出OC,AC的长,利用勾股定理可得出OA=2=2AC,进而可得出∠AOC=30°,结合三角形内角和定理可得出∠B=∠AOC=30°,利用30°角所对的直角边为斜边的一半可求出AB的长,再利用三角形的面积公式即可求出△AOB的面积;(3)通过解直角三角形可求出OB的长,分OP=OB,BP=BO及PO=PB三种情况,利用等腰三角形的性质可求出点P的坐标,此题得解.本题考查了待定系数法求反比例函数解析式、解直角三角形、三角形的面积以及等腰三角形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出反比例函数的关系式;(2)通过解直角三角形,求出AB的长;(3)分OP=OB,BP=BO及PO=PB 三种情况,利用等腰三角形的性质求出点P的坐标.。