同位角、内错角、同旁内角
- 格式:docx
- 大小:36.72 KB
- 文档页数:4
同位角、内错角、同旁内角能量储备●概念:同位角:两个角分别在两条被截线同一方,并且都在截线的同侧,具有这种位置关系的一对角叫做同位角.例如:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8.内错角:两个角都在两条被截线之间,并且分别在截线的两侧,具有这种位置关系的一对角叫做内错角.例如:∠3与∠5,∠4与∠6.同旁内角:两个角都在两条被截线之间,并且在截线的同一旁,具有这种位置关系的一对角叫做同旁内角.例如:∠4与∠5,∠3与∠6.●三线八角两条直线被第三条直线所截,“方位相同(左上、左下、右上、右下)”的角是同位角;位于“内部,两侧”的角是内错角;位于“内部,同侧”的角是同旁内角.简称:三线八角.基本图形通关宝典★基础方法点方法点1.“三线八角”中的相关计算例1:如图所示,如果∠1=40°,∠2=100°,那么∠3的同位角等于________度,∠3的内错角等于________度,∠3的同旁内角等于________度.解析:如图所示,∠3的同位角是∠4,∵∠2+∠4=180°,∴∠4=180°-∠2=180°-100°=80°.∠3的内错角是∠5,∵∠5+∠2=180°,∴∠5=180°-∠2=180°-100°=80°.∠3的同旁内角是∠6,∠6=∠2=100°.答案:8080100★★易混易误点1.识别同位角、内错角和同旁内角时出错:例1:如图所示,请指出∠B的同旁内角.常见错解:∠CAN是∠B的同旁内角.误区分析:没有将∠B的一边当成共线边(截线),导致两角没有共线边,进而使得判断出现错误.正确答案:∠B的同旁内角是∠BAC,∠BAN和∠ACB.蓄势待发考前攻略考查同位角、内错角和同旁内角的识别,题型以选择题为主,难度较小.完胜关卡。
同位角内错角同旁内角概念
同位角、内错角、同旁内角是初中数学中的重要概念,它们在几何学中有着重要的应用。
通过理解这些概念,我们可以更好地理解和解决几何问题。
首先,让我们来了解一下同位角。
同位角是指两条直线被一条截线分成两部分,这两条直线上的对应角。
这两个对应角互为同位角。
同位角的性质是非常重要的,它们的大小相等。
这意味着如果我们知道一个同位角的大小,我们就可以通过同位角的性质来求解其他同位角的大小。
接下来,内错角是指两条平行线被一条截线所截,所形成的一对内角。
内错角的性质是它们的和为180度。
这个性质在解决平行线和截线问题时非常有用,通过利用内错角的性质,我们可以求解出其他角的大小。
最后,同旁内角是指两条平行线被一条截线所截,所形成的一对同位角。
同旁内角的性质是它们的和为180度。
这个性质和内错角的性质有些类似,但是它们所对应的角不同。
通过理解同位角、内错角、同旁内角的概念和性质,我们可以
更好地解决几何问题,特别是涉及到平行线和截线的问题。
这些概
念在数学中有着广泛的应用,不仅可以帮助我们更好地理解几何知识,也可以帮助我们更好地解决实际问题。
因此,掌握这些概念是
非常重要的。
希望大家能够通过学习和练习,更好地掌握这些概念,提高自己的数学水平。
同位角、内错角、同旁内角一、知识归纳1、同位角:∠1和∠8这两个角分别在l2、l3的同一方(上方或下方),并且都在直线l1的同侧,具有这种位置关系的一对角叫做同位角.2、内错角:∠3和∠8这两个角都在直线l2、l3之间,并且分别在直线l1的两侧,具有这种位置关系的一对角叫做内错角.3、同旁内角:∠3和∠5都在直线l2、l3之间,但它们在直线l1的同一旁,具有这种位置关系的一对角叫做同旁内角.二、例题讲解例1、(1)下图中,∠1和∠2不是同位角的是()(2)如图,能与∠α构成同位角的角有()A.4个B.3个C.2个D.1个(3)如图,与∠B是同旁内角的有()A.1个B.2个C.3个D.4个(4)如图所示①AB与BC被AD所截得的内错角有_____________;②DE与AC被AD所截得的内错角有_____________;③DE与AC被BC所截得的同位角有_____________;④∠5、∠7是_____________被_____________直线所截得的_____________角;⑤∠1、∠4是_____________被_____________所截得的_____________角;⑥∠B、∠7是_____________被_____________所截得的_____________角.(5)如图,直线AB、CD、EF两两相交,请指出∠1与其它有标号的角是什么角?例2、(1)如图,下列判断错误的是()A.∠1和∠2是同旁内角B.∠3和∠4是内错角C.∠5和∠6是同旁内角D.∠5和∠8是同位角(2)如图,指出∠1、∠2、∠3、∠4、∠5中是同位角的有__________对,是内错角的有__________对,是同旁内角的有__________对.一、选择题1、如图所示,∠1和∠2是同位角的是()A.②③B.①②③C.④D.①④2、∠1与∠2不是内错角的是()3、如图所示,直线AB,CD,EF两两相交,图中共有同旁内角()A.1对B.3对C.6对D.12对4、如图所示,有以下四种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠2和∠5是同位角,其中正确的说法有()A.1个B.2个C.3个D.4个5、如图所示,AB,BE被AC所截,下列说法不正确的是()A.∠1与∠2是同旁内角B.∠1与∠ACE是内错角C.∠B与∠4是同位角D.不能得到内错角∠1与∠3二、填空题6、如图所示,∠1和∠2是两条直线____________与____________被第三条直线____________所截的____________角;∠5和∠6是两条直线____________与____________被第三条直线____________所截的____________角;∠2和∠6是两条直线____________与____________被第三条直线____________所截的____________角.7、如图所示,∠ABD的同位角有____________,内错角有____________,同旁内角有____________;∠BGH的同位角有____________,内错角有____________,同旁内角有____________.8、如图所示,直线AB,CD被BD所截构成∠3和__________是内错角,AD,BC被BD所截构成的∠1和∠2是___________角,AD,BC被AB所截构成的∠5和∠ABC是___________角,∠6和∠ABC是____________角.三、综合题9、如图所示,∠1和∠E,∠2和∠3,∠3和∠E都是什么角,它们分别是哪两条直线被哪一条直线所截得的?10、如图所示,平行直线EF,MN被相交直线AB,CD所截,请问图中有多少对同旁内角?垂线一、知识归纳1、垂直:当两条直线所有的角为90°时,那么这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,AB与CD相交于O,当交角90°时,称AB与CD垂直,记作AB⊥CD于O. 其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.两直线垂直的位置关系是用角来刻画的.2、在同一平面内,过一点有且只有一条直线与已知直线垂直.3、垂线段最短.4、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:垂线段:是一个几何图形;距离:是一个数量,这个数量是垂线段的长度.5、正确理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念.如上图(1)AB与CD相交,当交角90°时,称AB与CD垂直,其中的一条直线叫做另一条直线的垂线;如图(2)过P到这条直线所引的直线中,点P与垂足E之间的线段PE叫做垂线段;P到垂足E之间的距离叫点到直线的距离;如图3,点M和点N之间的线段的长度叫两点间距离.二、例题讲解例1、(1)下列条件中,位置关系互相垂直的是()A.相邻两角的角平分线B.互为对顶角的两角的角平分线C.互为邻补角的两角的角平分线D.互为补角的两角的平分线(2)甲、乙、丙、丁四个同学在判断时针与分针在某一时刻是否互相垂直时,有下列几种说法,其中完全正确的是()A.甲说3点和3点半B.乙说6点一刻和6点3刻C.丙说9点和12点3刻D.丁说3点和9点例2、如图,根据下列语句画图:(1)过点P画射线AM的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线段AB延长线于Q点.例3、如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的是个数是()①点B到AC的垂线段是线段AB②线段AC是点C到AB的垂线段③线段AD是点D到BC的垂线段④线段BD是点B到AD的垂线段A.1 B.2 C.3 D.4例4、(1)如图,直线AB⊥CD于点O,点M是OC上的一个定点,点P是直线AB上的一个动点,则()A.PM>OM B.PM<OMC.PM≥OM D.PM≤OM(2)到直线l的距离等于2cm的点有()A.0个B.1个C.2个D.无数个(3)直线l上有A、B、C三点,直线l外有一点P,若PA=4cm,PB=3cm,PC=2cm,那么P点到直线l的距离()A.等于2cm B.小于2cmC.不大于2cm D.大于2cm而小于3cm(4)如图,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的取值范围是()A.小于bcmB.大于acmC.大于acm或小于bcmD.大于bcm且小于acm例5、(1)如图,直线AB与CD相交于点O,EO⊥AB于O,则图中∠1与∠2的关系是___________.(2)如图,将一张长方形的白纸折叠,使BD折到BD′处,BE折到BE′处,并且BD′与BE′在同一直线上,那么AB与BC 的位置关系是__________.(3)过一个钝角的顶点分别作这个角两边的垂线,若这两条垂线的夹角为40°,则此钝角为()A.140°B.160°C.120°D.110°例6、(1)如图,点O为直线AB上一点,ON平分∠BOC,OM⊥ON,试说明OM平分∠AOC的理由.(2)如图,AB⊥BC于B,AB=4,BC=3,AC=5,求B到AC的距离.一、选择题1、P为直线l上一点,Q为l外一点,下面画图一定可能的是()A.由P画l的垂线过Q点B.由Q画l的垂线过P点C.连接PQ使PQ⊥l D.过P或Q作l的垂线2、已知直线l外一点P,则点P到直线l的距离是指()A.点P到直线l的垂线的长度 B.点P到l的垂线C.点P到直线l的垂线段的长度 D.点P到l的垂线段3、已知OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数是()A.30°B.150°C.30°或150° D.以上都不对4、点P为直线l外一点,点A,B,C在直线l上,若PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.小于4cmC.不大于4cm D.5cm5、如图所示,OA⊥BC,OM⊥ON,则图中互余的角有()A.1对B.2对C.3对D.4对6、如图所示,∠PQR=138°,SQ⊥QR,QT⊥PQ,则∠SQT等于()A.42°B.64°C.48°D.24°二、填空题7、如图所示,计划把池中的水引到C处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所在的渠道最短,说明这种设计的依据是__________________.8、画图并回答:如图所示,已知点P在∠AOC的边OA上.(1)过点P画OA的垂线交OC于点B;(2)画点P到OB的垂线段PM;(3)指出上述所作的图中,线段___________的长表示P点到OB边的距离;(4)比较PM与OP的大小,并说明理由.三、综合题9、如图所示,O是直线AB上一点,OF,OC,OE是射线,OE⊥OF,若∠BOC=2∠COE,∠AOF比∠COE的4倍小8°,求∠EOC的度数.10、如图所示,∠1和∠2有公共顶点,且∠1的两边与∠2的两边分别垂直,又∠1∶∠2=5∶13,求∠1,∠2的度数.11、如图所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N是分别位于AB两侧的村庄.(1)设汽车行驶到公路AB上点P的位置时,距离村庄M最近;行驶到点Q的位置时,距离村庄N最近,请在图中的公路上分别画出P,Q的位置(保留画图痕迹);(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M,N两村越来越近?在哪一段路上离N村越来越近,而离村庄M却越来越远?(分别用文字表达你的结论,不必证明)。
同位角内错角同旁内角的概念区别和联系1. 引言概述:同位角内错角和同旁内角是平面几何中的重要概念,它们在解决角度关系问题时起着关键作用。
同位角内错角指的是处于平行线之间,同旁内角则是指两条穿过平行线的直线所形成的内部角。
本文将详细介绍同位角内错角和同旁内角的定义、性质以及它们之间的联系和区别。
文章结构:本文主要包括以下几个部分:引言、同位角的概念、内错角的概念、同旁内角的概念及关系以及总结与展望。
首先,我们将对同位角和内错角进行定义并介绍它们的特点和性质。
接下来,我们将探讨同旁内角的定义,并研究不同情况下同旁内角之间的关系。
最后,我们将总结所发现的重点,并展望未来可能的研究方向。
目的:本文旨在全面阐述同位角内错角和同旁内角这两个重要概念,并探索它们之间的区别和联系。
通过深入剖析其定义与性质以及实际应用示例,读者能够更好地理解这些概念在解决角度问题时的应用。
同时,本文也希望能够为未来相关研究提供一定的启示和方向。
致力于大纲中所给目录,本文将首先概述同位角内错角和同旁内角的整体框架,并明确文章结构。
接下来,我们将详细介绍同位角的定义与特点、性质以及举例说明。
然后,我们将深入探讨内错角的定义、性质和实际应用示例。
之后,我们将专注于同旁内角的定义并研究它们之间的关系。
最后,我们将总结所得,并对未来可能的研究方向进行展望。
通过阅读本文,读者将能够对同位角内错角和同旁内角有一个全面而清晰的认识,并能够准确理解它们在平面几何中的重要作用。
2. 同位角的概念:2.1 定义与特点:同位角是指两条平行线被一条截线所交,所形成的内角对。
这两个内角分别位于截线的同一侧,并且它们互为补角。
换句话说,同位角的和等于180度。
同位角具有以下特点:- 同位角都是内角,在两条平行线之间。
- 同位角相互补充,即一个角加上另一个角等于180度。
- 若直线与多组平行线相交,则同位角可以有多对。
2.2 同位角的性质:同位角满足以下性质:- 垂直定理: 若两条直线被一条截线所交,并且其中两个同位角是垂直的(即互为90度),则这两条直线必定是垂直的。
内错角同旁内角同位角的定义
(1)内错角:
内错角是指两条交叉的直线之间的夹角,这个夹角的支边位于两条直线的内部标注点。
如果这两条直线都在平面内,那么这两条线的一点的夹角就叫做内错角,它也是一种平面角。
另一种同类的角是外错角,也是由两条直线组成的,但它的支边位于两条直线的外部标注点。
(2)内角同位角:
内角同位角是指内部角度以及内部角度外围的边形成的角,他们保持着特定的比例。
如果在平面图中,把两个内角同时画出来,就有可能得到一个等腰三角形,或者这两个内角持续不变的情况下,改变其中一个边的值,就会得到一个等腰或等边三角形。
第4讲 同位角、内错角、同旁内角班级 姓名(一) 自主探索独立看书(P6),自学教材,并回答以下问题:1、两条直线相交构成 个角(小于平角),这 个角有着公共 ,其中表示位置关系的角有 和 。
2、三条直线相交(也可以说两条直线被第三条直线所截)构成 个角。
(二) 合作探究前面我们学过两直线相交,所成的四个角有一公共顶点,而今天我们要观察的是“三线八角”中哪些没有公共顶点的两个角的关系。
1、同位角:观察图①中,∠3与∠6的位置关系,说出它们位置上的特点。
(1)∠3与∠6分别在被截取直线AB 、CD 的上方(同方向),截线EF 的右侧(同侧),即它们的 相同,这样的两个角叫做同位角。
(2) 找出图中其余的同位角 。
2、内错角:(1) 观察图中∠4与∠5的位置关系,说出它们位置上的特点,∠4与∠5分别在 这样的两个角叫做内错角。
(2) 找出图中其余的内错角 。
3、同旁内角:(1) 观察图中∠4与∠6的位置关系,说出它们位置上的特点,∠4与∠6分别在 这样的两个角叫做同旁内角。
(2) 找出图中其余的同旁内角 。
[探讨] 同位角、内错角、同旁内角是由几条直线构成?它们之间共顶点吗? [归纳](三) 巩固提高识别同位角、内错角、同旁内角例1、指出图②中所有的同位角、内角角、同旁内角,并说出它们分别是由哪两条直线,被哪条直线所截而成。
②ACDBE123③A BCD12345例2、如图③,∠3与∠4是 角,∠1和∠2是 角,∠3和∠5是直线 和 被直线 所截成的 角。
例3、你能找出图④中的同位角、内错角、同旁内角吗?试试看。
④A12346587(四) 总结反思本节学习的数学知识是同位角、内错角、同旁内角的识别,这三种位置关系的角是怎样识别的,你会了吗?(五) 当堂检测1、如图⑤所示,按各组角的位置,判断错误的是( ) A 、∠1和∠2是同旁内角B 、∠3和∠4是内错角C 、∠5和∠6是同旁内角D 、∠5和∠8是同位角2、下列各图中的∠1与∠2,哪些是同位角?哪些不是?( )ABCD121212123、如图⑥,(1)∠1,∠2,∠3,∠4,∠5,∠6是直线 、 被第三条直线 所截而成的。
5.1.3 同位角、内错角、同旁内角知识点1.同位角:两个角分别在两条被截直线的同一方,并且都在截线的同侧,具有这种位置关系的一对角叫做□17.2.内错角:两个角都在两条被截直线之间,并且分别在截线两侧,即被截线“错开”,具有这种位置关系的一对角叫做□18.3.同旁内角:两个角都在两条被截直线之间,并且在截线的同一旁,具有这种位置关系的一对角叫做□19 .如图,直线AB,CD被直线EF所截,同位角有∠1与∠5,∠2与∠8,∠3与∠7,∠4与∠6,共4对;内错角有∠2与∠6,∠3与∠5,共2对;同旁内角有∠2与∠5,∠3与∠6,共2对. 注意5重点1、两条直线被第三条直线所截,构成的八个角简称“三线八角”.其中同位角、内错角、同旁内角是“三线八角”中没有公共顶点但具有特殊位置关系的三类角.并不是所有没有公共顶点的“三线八角”都可以划分为上述三类,比如∠1与∠7就不属于上述三类角中的任何一类.2、识别同位角、内错角、同旁内角时,主要看其是不是由“两条直线被第三条直线所截”构成的,是不是符合各类角的位置特征.尤其是同位角,不要被其表面“方位相同”的假象所迷惑.基础巩固题型1 同位角1.如图,∠1与∠2不能构成同位角的图形的是()A. B.C. D.2.如图,同位角共有()A.6对B.5对C.8对D.7对题型2 内错角3.如图,下列各组角中,互为内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠3D.∠2和∠54.如图,写出图中∠A的所有内错角:________.题型3 同旁内角5.如图,在用数字表示的角中,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56.已知∠1与∠2是同旁内角,则()A.12∠=∠ B.12180∠+∠=︒C.12∠<∠ D.以上都有可能7.如图,∠B的同旁内角除了∠A还有________.题型4 “三线八角”综合题8.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被藏直线,食指代表截线).下列三幅图依次表示()A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角9.如图,射线DE,DC被直线AB所截得的用数字表示的角中,∠4与________是同位角,∠4与________是内错角,∠4与________是同旁内角.10.如图所示,指出下列各组角是哪两条直线被哪一条直线所截得的,并说出它们是什么角?∠1和∠2;∠2和∠6;∠6和∠A;∠3和∠5;∠3和∠4;∠4和∠7.易错点没有透彻理解“三线八角”的概念而致错11.如图,四边形ABCD的对角线AC,BD交于点O,则下列是∠DAC的内错角的是()A.∠ABDB.∠BDCC.∠ACB或∠AOBD.∠DOC巩固提升1.下图中∠1与∠2是内错角的是()A. B.C. D.2.如图所示,下列说法不正确的是()A.∠ABD与∠ECF是同位角B.∠ABC与∠FCG是同位角C.∠DBC与∠ECG是同位角D.∠FCG与∠DBC是同位角3.如图,∠1的同旁内角共有()A.1个B.2个C.3个D.4个4.如图,下列结论正确的是()A.∠4和∠5是同旁内角B.∠3和∠2是对顶角C.∠3和∠5是内错角D.∠1和∠5是同位角5.如图,直线AB,BC,AC交于A,B,C三点,则图中内错角、同位角、同旁内角的对数分别是()A.6,12,6B.6,10,6C.4,12,4D.4,8,46.如图,已知直线AB与CD相交于点O,且DOB ODB∠=︒,则∠AOC∠=∠,若50ODB的度数为________,∠CAO________(填“是”或“不是”)∠AOC的同旁内角.7.(1)如图,∠1与∠2是直线________和________被直线________所截得的________角.(2)∠5与∠B是直线________和________被直线________所截得的________角.(3)∠D与∠DCB是直线________和________被直线________所截得的________角.8.在我们常见的英文字母中,也存在着同位角、内错角、同旁内角,在如图所示的几个字母中,含有内错角最少的字母是________(填序号).9.四直线两两相交,且任意三条直线不相交于同一点,则四条直线共可构成的同位角有________对.10.请在右图的基础上分别画出符合下列条件的角:(1)∠1与∠BOC 是对顶角.(2)∠2与∠AOB 是同位角.(3)∠3与∠AOC 是内错角.(4)∠4与∠AOB 是同旁内角.拓展培优11.已知:如图是一个跳棋棋盘,其游戏规则是一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如从起始位置∠1跳到终点位置∠3有两种不同路径,路径1:193∠−−−−−→∠−−−−→∠同旁内角内错角;路径2:1126∠−−−−→∠−−−−→∠−−−−→内错角内错角同位角103∠−−−−−→∠同旁内角. 试一试:(1)写出从起始位置∠1跳到终点位置∠8的一种路径;(2)从起始位置∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点位置∠8?答案5.1.3 同位角、内错角、同旁内角知识点1.同位角:两个角分别在两条被截直线的同一方,并且都在截线的同侧,具有这种位置关系的一对角叫做□17.2.内错角:两个角都在两条被截直线之间,并且分别在截线两侧,即被截线“错开”,具有这种位置关系的一对角叫做□18.3.同旁内角:两个角都在两条被截直线之间,并且在截线的同一旁,具有这种位置关系的一对角叫做□19 .如图,直线AB,CD被直线EF所截,同位角有∠1与∠5,∠2与∠8,∠3与∠7,∠4与∠6,共4对;内错角有∠2与∠6,∠3与∠5,共2对;同旁内角有∠2与∠5,∠3与∠6,共2对. 注意5答案□17同位角□18内错角□19同旁内角重点1、两条直线被第三条直线所截,构成的八个角简称“三线八角”.其中同位角、内错角、同旁内角是“三线八角”中没有公共顶点但具有特殊位置关系的三类角.并不是所有没有公共顶点的“三线八角”都可以划分为上述三类,比如∠1与∠7就不属于上述三类角中的任何一类.2、识别同位角、内错角、同旁内角时,主要看其是不是由“两条直线被第三条直线所截”构成的,是不是符合各类角的位置特征.尤其是同位角,不要被其表面“方位相同”的假象所迷惑.基础巩固题型1 同位角1.如图,∠1与∠2不能构成同位角的图形的是()A. B.C. D.1.D【解析】A、B、C选项,∠1与∠2是同位角;D选项,∠1与∠2不是同位角.故选D.2.如图,同位角共有()A.6对B.5对C.8对D.7对2.A【解析】同位角共有6对,∠4与∠7,∠3与∠8,∠1与∠7,∠5与∠6,∠2与∠9,∠1与∠3,故选A.题型2 内错角3.如图,下列各组角中,互为内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠3D.∠2和∠53.B【解析】A选项,∠1和∠2是对顶角,不是内错角,故本选项不符合题意;B选项,∠2和∠3是内错角,故本选项符合题意;C选项,∠1和∠3是同位角,不是内错角,故本选项不符合题意;D选项,∠2和∠5是同旁内角,不是内错角,故本选项不符合题意.故选B.4.如图,写出图中∠A的所有内错角:________.4.∠ACD,∠ACE【解析】根据内错角的定义,图中∠A的所有错角为∠ACD,∠ACE.题型3 同旁内角5.如图,在用数字表示的角中,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠55.A【解析】根据同旁内角的定义,与∠1是同旁内角的是∠2,故选A.6.已知∠1与∠2是同旁内角,则()A.12∠=∠ B.12180∠+∠=︒C.12∠<∠ D.以上都有可能6.D【解析】同旁内角只是一种位置关系,没有一定的大小关系,两角的大小关系哪种情况都有可能,故选D.7.如图,∠B的同旁内角除了∠A还有________.7.∠ACB,∠ECB【解析】由同旁内角的位置特点,知∠B的同旁内角除了∠A还有∠ACB,∠ECB.题型4 “三线八角”综合题8.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被藏直线,食指代表截线).下列三幅图依次表示()A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角8.B【解析】根据同位角、内错角、同旁内角的位置特点,可知第一幅图表示同位角,第二幅图表示内错角,第三幅图表示同旁内角.故选B.9.如图,射线DE,DC被直线AB所截得的用数字表示的角中,∠4与________是同位角,∠4与________是内错角,∠4与________是同旁内角.9.∠1 ∠2 ∠3【解析】根据同位角、内错角、同旁内角的位置特点,可知射线DE,DC被直线AB所截得的用数字表示的角中,∠4与∠1是同位角,∠4与∠2是内错角,∠4与∠3是同旁内角.10.如图所示,指出下列各组角是哪两条直线被哪一条直线所截得的,并说出它们是什么角?∠1和∠2;∠2和∠6;∠6和∠A;∠3和∠5;∠3和∠4;∠4和∠7.10.【解】∠1和∠2是直线ED和直线BD被直线AB所截而产生的同位角;∠2和∠6是直线AB和直线AC被直线BD所截而产生的内错角;∠6和∠A是直线AB和直线BD被直线AC所截而产生的同位角;∠3和∠5是直线ED和直线CD被直线EC所截而产生的同旁内角;∠3和∠4是直线ED和直线BC被直线EC所截而产生的内错角;∠4和∠7是直线BE和直线BC被直线EC所截而产生的同旁内角.易错点没有透彻理解“三线八角”的概念而致错11.如图,四边形ABCD的对角线AC,BD交于点O,则下列是∠DAC的内错角的是()A.∠ABDB.∠BDCC.∠ACB或∠AOBD.∠DOC11.C【解析】如题图,∠DAC的内错角是∠ACB或∠AOB.故选C.易错警示两条直线被第三条直线所截,这是判定同位角、内错角、同旁内角的前提.解答此题时,∠DAC的内错角为∠AOB,∠ACB;∠ABD不是∠DAC的内错角;∠BDC不是∠DAC的内错角;∠DOC不是∠DAC的内错角,是∠DAC的同位角.巩固提升1.下图中∠1与∠2是内错角的是()A. B.C. D.1.A【解析】两个角是内错角,必须位于两条被截直线之间(内),且被截线错开,即位于截线两侧,符合这个要求的只有图A,故选A.2.如图所示,下列说法不正确的是()A.∠ABD与∠ECF是同位角B.∠ABC与∠FCG是同位角C.∠DBC与∠ECG是同位角D.∠FCG与∠DBC是同位角2.A【解析】∠ABD与∠ECF共有四条线段,不符合三线八角图,故选A.3.如图,∠1的同旁内角共有()A.1个B.2个C.3个D.4个3.C 【解析】如图,∠1的同旁内角有∠D ,∠DCE ,∠ACE ,共3个,故选C.4.如图,下列结论正确的是( )A.∠4和∠5是同旁内角B.∠3和∠2是对顶角C.∠3和∠5是内错角D.∠1和∠5是同位角4.C 【解析】A 选项,∠4和∠5是邻补角,不是同旁内角,故本选项错误.B 选项,∠3和()12∠+∠是对顶角,故本选项错误.C 选项,∠3和∠5是内错角,故本选项正确.D 选项,∠5和()12∠+∠是同位角,故本选项错误.故选C.5.如图,直线AB ,BC ,AC 交于A ,B ,C 三点,则图中内错角、同位角、同旁内角的对数分别是( )A.6,12,6B.6,10,6C.4,12,4D.4,8,45.A 【解析】每一条截线两侧都有2对内错角,2对同旁内角,4对同位角,共有3条截线,所以图中内错角、同位角、同旁内角的对数分别是6,12,6,故选A.6.如图,已知直线AB 与CD 相交于点O ,且DOB ODB ∠=∠,若50ODB ∠=︒,则∠AOC 的度数为________,∠CAO ________(填“是”或“不是”)∠AOC 的同旁内角.6.50° 是 【解析】因为50ODB ∠=︒,DOB ODB ∠=∠,所以50DOB ∠=︒,所以50AOC DOB ∠=∠=︒.∠CAO 是∠AOC 的同旁内角.7.(1)如图,∠1与∠2是直线________和________被直线________所截得的________角.(2)∠5与∠B 是直线________和________被直线________所截得的________角.(3)∠D 与∠DCB 是直线________和________被直线________所截得的________角.7.(1)AB CD AC 内错 (2)AD BC AB 同位 (3)AD BC CD 同旁内 【解析】截线是三线八角图中,两个角的公共边所在的直线,此题首先确定截线,然后其余两边所在直线就是被截直线,最后根据同位角、内错角、同旁内角的定义进行判断.8.在我们常见的英文字母中,也存在着同位角、内错角、同旁内角,在如图所示的几个字母中,含有内错角最少的字母是________(填序号).8.③ 【解析】四个字母图形中,内错角数分别为①2对;②2对;③1对;④2对.故填③.9.四直线两两相交,且任意三条直线不相交于同一点,则四条直线共可构成的同位角有________对.9.48 【解析】三条直线两两相交,每一条直线作截线时,都有4对同位角,三条直线两两相交共有4312⨯=(对)同位角.若四条直线两两相交,设这四条直线分别为a ,b ,c ,d ,可以分为①a ,b ,c ;②a ,b ,d ;③a ,c ,d ;④b ,c ,d .每三条直线都构成了12对同位角,所以这四组直线中一共有48对同位角.10.请在右图的基础上分别画出符合下列条件的角:(1)∠1与∠BOC 是对顶角.(2)∠2与∠AOB 是同位角.(3)∠3与∠AOC 是内错角.(4)∠4与∠AOB 是同旁内角.10.【解】如图所示(答案不唯一):拓展培优11.已知:如图是一个跳棋棋盘,其游戏规则是一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如从起始位置∠1跳到终点位置∠3有两种不同路径,路径1:193∠−−−−−→∠−−−−→∠同旁内角内错角;路径2:1126∠−−−−→∠−−−−→∠−−−−→内错角内错角同位角103∠−−−−−→∠同旁内角.试一试:(1)写出从起始位置∠1跳到终点位置∠8的一种路径;(2)从起始位置∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点位置∠8?11.【解】(1)(答案不唯一)路径:1128∠−−−−→∠−−−−−→∠内错角同旁内角. (2)从起始位置∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点位置∠8.其路径为1105∠−−−−→∠−−−−→∠−−−−−→同位角内错角同旁内角118∠−−−−→∠同位角(答案不唯一).。
导学案4 5.1.3同位角、内错角、同旁内角
【学习目标】
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什
么是同位角、内错角、同旁内角.
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特
征,能正确识别图形中的同位角、内错角和同旁内角.
【自学指导】
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗? 若都不是,请自学课本P 6内容后回答它们各是什么关系
的角?
【合作探究】
1.如图(1),将木条,与木条c 钉在一起,若把它们
看成三条直 线则该图可说成“直线 和直线 与直
线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。
其中直线 , 称为两被截线,直线 称为截线。
2. 如图(3)是“直线 , 被直线 所截”形成的图
形
(1)∠1与∠5这对角在两被截线AB,CD 的 ,在
截线EF 的 ,形如“ ” 字型.具有这种关系
的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD 的 ,在
截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。
a b
(3)∠3与∠6这对角在两被截线AB,CD的,在截线EF 的,形如“”字型.具有这种关系的一对角叫同旁内角。
3.找出图(3)中所有的同位角、内错角、同旁内角。
4.讨论与交流:
(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:“F”字型,“同旁同侧”
“三线八角”内错角:“Z”字型,“之间两侧”
同旁内角:“U”字型,“之间同侧”【运用举例】
例1.如图(2)中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两
条直线被哪一条直线所截形成的什么角?
例2.课本P7的例题
【巩固练习】
课本P7练习1,2
【当堂检测】
1.如图(4),下列说法不正确的是()
A、∠1与∠2是同位角
B、∠2与∠3是同位角
C、∠1与∠3是同位角
D、∠1与∠4不是同位角
2.如图(5),直线AB、CD被直线EF所截,∠A和是同位角,
∠A和是内错角,∠A和是同旁内角.
3.如图(6), 直线DE截AB, AC, 构成八个角:
①指出图中所有的同位角、内错角、同旁内角.
②A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条
直线而成的什么角?
4.如图(7),在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)。