第21章二次根式练习题(已整理)
- 格式:doc
- 大小:194.50 KB
- 文档页数:2
第21章 二次根式练习题21.1二次根式一、填空题1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+与()2005_____________a b -=。
二、选择题13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )A. B.C.D.15. 若23a,则等于( )A. 52a -B. 12a -C. 25a -D. 21a -A. 24a +B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1B. ()2C. ()3D. ()4 三、解答题21. 2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20112012a b -的值。
第21章二次根式综合测试题(含答案人教版)第21章二次根式综合测试题(含答案人教版)(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1.函数y=2-x+1x-3中自变量x的取值范围是().A.x≤2B.x=3C.x<2且x≠3D.x≤2且x≠32.小明的作业本上有以下四题:①16a4=4a2;②5a•10a=52a;③a1a =a2•1a;④3a-2a=a.其中做错的题是().A.①B.②C.③D.④3.计算27-1318-12的结果是().A.1B.-1C.3-2D.2-34.下列各式计算正确的是().A.m2•m3=m6B.1613=16•13=433C.323+33=2+3=5D.(a-1)11-a=---a=-1-a(a<1)5.若x=3-22,y=3+22,则x2+y2的值是().A.52B.32C.3D.146.若ab<0,则化简a2b的结果是().A.-abB.-a-bC.a-bD.ab7.化简4x2-4x+1-(2x-3)2的结果为().A.2B.-4x+4C.-2D.4x-48.下列各式计算正确的是().A.6÷(3+2)=63+62=2+3B.(4-23)2=16-(23)2=4C.2+3÷(2+3)=1D.35+2=+-+2=5-28.小亮设计了一种运算程序,其输入、输出如下表所示,若输入的数据是27,则输出的结果应为().输入0149162536…输出-1012345…A.26B.28C.33-1D.32+110.设0<m<1,则在实数m,1m,m,3m中,最小的数是().A.mB.1mC.mD.3m二、填空题(每题3分,共24分)11.计算:-+3=_______.12.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=5.那么12※4=__________.13.如果5+7,5-7的小数部分分别为a,b,那么a+b的值为________.14.若已知一个梯形的上底长为(7-2)cm,下底长为(7+2)cm,高为27cm,则这个梯形的面积为________.15.如图,数轴上表示1,3的对应点分别为点A、B,点B关于点A的对称点为C,设点C所表示的数为x,则x+3x的值为____________.(第15题)16.若a,b为实数,b=a2-9+9-a2a-3+5,则a2+b2=________.17.先阅读,再回答问题:因为12+1=2,且1<2<2,所以12+1的整数部分是1;因为22+2=6,且2<6<3,所以22+2的整数部分是2;因为32+3=12,且3<12<4,所以32+3的整数部分是3.以此类推,我们会发现a2+a(a为正整数)的整数部分是________,理由为___________________________________.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所依据的公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在某次交通事故调查中测得d=24m,f=1.3,则肇事汽车的车速大约是______km/h.三、解答题(第19题16分,第20――23每题6分,24、25题每题8分,共56分)19.计算:(1)50-38+18;(2)5-122+5-12+1;(3)24-1.5+223-53+623;(4).20.先化简,再求值:,其中.21.已知x+y=5,xy=3,求的值.22.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:12+1=-+-=2-12-1=2-1,13+2=-+-=3-23-2=3-2,同理可得14+3=4-3,……从计算结果中找出规律,并利用这一规律计算:23.生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的13,则梯子比较稳定.现有一梯子,稳定摆放时,顶端达到5米的墙头,请问梯子有多长?24.某小区有一块等腰三角形的草地,它的一边长为20m,面积为160m2,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为多少米.25.先观察下列等式,再回答问题.①②③(1)请根据上面三个等式提供的信息,猜想的结果;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式.附加题(共10分,不计入总分)26.宽与长之比为5-12∶1的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,如图所示,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.(第26题)数学家谈祥柏改诗谈祥柏是中国人民解放军军医大学数学教授,在科普领域辛勤耕耘,创作出不少优秀作品,深受广大青少年喜爱,此外,他对文学诗歌很有研究,常将数学与文学诗歌有机地结合在一起,显现了他的非凡才识与创新精神.有一次,他将我国近代著名诗人徐志摩一首很有名的新诗《再别康桥》:轻轻的,我走了……正如我轻轻的来……组成了一个有趣的数学题目,使数趣渗入到了诗歌领域.经改编,上述两句诗文成了如下的等式组:轻轻的=我+走了正-如÷我=轻轻的÷来这里,相同的汉字代表0,1,2,3,…,9中相同的数字,不同的汉字代表不同的数字,开平方得出的数,当然都是整数,这组等式有唯一的解答,你能试着把它解出来吗?这个问题的答案为:225=4+137-8÷4=225÷9第二十一章综合提优测评卷1.D2.D3.C4.D5.A6.A7.A8.D9.C10.A11.212.1213.114.14cm215.8+2316.3417.a理由略18.89.419.(1)22(2)(2)2(3)166-5(4)20.原式.把代入上式,得原式=.21.22.201123.梯子长5.3m24.m或m或m25.(1)(2)26.留下的矩形CDFE是黄金矩形.∵四边形ABEF是正方形,∴AB=DC=AF.∵ABAD=5-12,∴FDDC=AD-AFDC=ADDC-1=ADAB-1=25-1-1=5-12. ∴矩形CDFE是黄金矩形.。
第21章_21.1_二次根式_同步课堂检测考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列各式中,为二次根式的是()A. B.C. D.2.若、是实数,且,则的值是()A.或B.或C.或D.或3.要使二次根式有意义,字母必须满足的条件是()A. B. C. D.4.若,则()A. B. C. D.5.计算,结果是()A. B. C. D.6.若在实数范围内有意义,则的取值范围是()A. B. C. D.7.当的值为最小时,则A. B. C. D.无法确定8.若是二次根式,则下列说法正确的是()A.,B.且C.,同号D.9.下列说法正确的是()A.有意义,则B.在实数范围内不能因式分解C.方程无解D.方程的解为10.下列命题正确的个数是()个.①用四舍五入法按要求对分别取近似值为(精确到);②若代数式有意义,则的取值范围是且;③数据、、、的中位数是;④月球距离地球表面约为米,将这个距离用科学记数法(保留两个有效数字)表示为米.A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若,化简的正确结果是________.12.若,则________.13.当时,二次根式的值是________.14.已知实数满足,则代数式的值为________.15.使有意义的条件是________.16.计算:________.17.把根号外的因式移到根号内:________.18.已知,则的算术平方根是________.19.若是正整数,则正整数的最小值为________.20.设,,…,,则化简的结果用(为整数)的式子表示为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.化简:;;;.22.若时,试化简:.23.小明同学在做“当是何实数时,在实数范围内有意义”时,他把此题转化为“当取什么实数时,是二次根式”,这种转化对吗?请说明理由.24.若满足,求的值.25.已知,均为实数,且,求的值.26.阅读材料,解答下列问题.例:当时,如则,故此时的绝对值是它本身;当时,,故此时的绝对值是零;当时,如则,故此时的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;猜想与的大小关系.答案1.D2.B3.A4.D5.A6.C7.A8.D9.C10.C11.或12.13.14.15.16.17.18.19.20.21.解:原式;原式;原式;原式.22.解:∵,∴,,,则原式.23.解:这种转化对,理由:∵形如,的形式叫二次根式,∴当是何实数时,在实数范围内有意义,可以转化为:当取什么实数时,是二次根式,即这种转化对.24.解:由,得,,平方,得,移项,得.25.解:由题意得,,且,∴且,解得,,∴.26.解:由题意可得;由可得:.21.2_二次根式的乘除_同步课堂检测考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列根式中,最简二次根式为()A. B.C. D.2.下列根式中,最简二次根式是()A. B. C. D.3.下列各数中,与的积为有理数的是()A. B. C. D.4.若,则的取值范围是()A. B.C. D.5.下列根式中,是最简二次根式的是()A. B.C. D.6.一个矩形的长和宽分别是、,则它的面积是()A. B. C. D.7.已知,,则,的关系为()A. B. C. D.8.下列各式中,最简二次根式为()A. B. C. D.9.下列各式中,是最简二次根式的是()A. B. C. D.10.下列等式中,错误的是()①,②,③,④;A.①②B.①②③C.①②④D.②③④二、填空题(共 10 小题,每小题 3 分,共 30 分)11.的有理化因式可以是________.12.将化成最简二次根式的结果为________.13.在二次根式①;②;③;④;⑤;⑥中,最简二次根式有________.(填序号)14.________.15.计算:________.16.下列各式:①②③④是最简二次根式的是________(填序号).17.(江西)计算:________18.观察下列等式:①;②;③,根据以上的规律则第个等式________.19.在下列二次根式,中,最简二次根式的个数有________个.20.将根式,,,化成最简二次根式后,随机抽取其中一个根式,能与的被开方数相同的概率是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.判断下列二次根式是否是最简二次根式,并说明理由.;;;;;.22.计算:;;.23.计算:;.24.已知为奇数,且,求的值.25.观察下列一组式的变形过程,然后回答问题:例,例,,观察下列一组式的变形过程,然后回答问题:例,例,,________;________.请你用含(为正整数)的关系式表示上述各式子的变形规律.利用上面的结论,求下列式子的值..26.观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:,,同理可得:,…从计算结果中找出规律,并利用这一规律计算的值.答案1.B2.C3.A4.B5.B6.B7.A8.D9.C10.B11.12.13.②③⑥14.15.16.②③17.18.19.20.21.解:,不是最简二次根式;,不是最简二次根式;是最简二次根式;,不是最简二次根式;,不是最简二次根式;是最简二次根式.22.解:原式;原式;原式.23.解:,,,;,,.24.解:∵,∴,解得;又∵为奇数,∴,∴.25.26.解:原式.21.3_二次根式的加减法_同步课堂检测考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若最简二次根式与是同类二次根式,则的值为()A. B. C. D.2.下列各组根式是同类二次根式的是()A.和B.和C.与D.与3.下列式子计算正确的是()A. B.C. D.4.下列各式成立的是()A. B.C. D.5.下列计算正确的是()A. B.C. D.6.若,那么的值是()A. B. C. D.7.设,,则的值为()A. B. C. D.8.下列运算正确的是()A. B.C. D.9.将一个边长为的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积()A. B.C. D.10.的两边的长分别为,,则第三边的长度不可能为()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若最简根式和是同类根式,则________.12.下列四个二次根式①,②,③,④,其中与是同类项二次根式的是________(只填序号)13.计算:________.14.当,时,________.15.化简________.16.计算:________.17.________.18.已知:,是两个连续自然数,且.设,则是________.(填:奇数、偶数或无理数)19.已知,,则代数式的值为________.20.如图,正方形被分成两个小正方形和两个长方形,如果两小正方形的面积分别是和,那么两个长方形的面积和为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:;.22.已知和是同类二次根式,求,的值.23.如果与是同类二次根式,求正整数,的值.24.计算:.24.已知,,求的值.25.已知,,求的值;25.已知,,求的值.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中、、为三角形的三边长,为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:…②(其中.)若已知三角形的三边长分别为,,,试分别运用公式①和公式②,计算该三角形的面积;你能否由公式①推导出公式②?请试试.答案1.B2.A3.C4.D5.B6.C7.C8.D9.A10.A11.12.①③13.14.15.16.17.18.奇数19.20.21.解:原式;原式.22.解:由和是同类二次根式,得,解得.23.解:因为与是同类二次根式,可得:,,因为正整数,,解得:,.24.解:原式;∵,,∴,∴.25.解:∵,,∴,,∴原式;∵,∴,∴原式.26.解:,;,又;,,,,∴.(说明:若在整个推导过程中,始终带根号运算当然也正确)。
6212.2A 石B 辰C 屈D 血13 •、aA 屆B 73a 2 3C 肩D V a 4 4 25A 5B V 5C 5 D5 5 9A 3B 3C 3 D81 6 7a 2 b 1 0(a b )2007A 1B 1C 32007 D32007 7A ( 2)0 0B 3 2 9C 晶3 D V 2 73 75 8 J x 1 xA x 1B x lC x 1D x9 PA 、 斤BC 3.2 D1 1 P 1 1 亠 i i i3 2 1O 1 2 3 109 A d 2 46 B v'2C 珂'8 4血D<4 42 <2 11 V20nnA 2B 3C 4 D5 12A 恵昭晁B 恵爲C 784D 7( 3)2 3 1 x ___________ J x 32 侮 ______________3 d 2x 6 x3 .5 4A BC 4 A B7、观察下列各式:8计算:晶 ___________________ :9. 一个三角形的三边长分别为、、8cm,12cm,、、18cm ,则它的周长是 cm 10. 当 1 x<5时,~x 5 ____________________ 。
三、解答题1、计算:(n 1)°屁 的.四.解答题。
1.如图:面积为48cm 2的正方形四个角是面积为3cm 2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子, 求这个长方体的底面边长和高分别是多少?(精确到 0.1 cm,、、3 1.732 )2. 当 1v x V 5 时,化简:.x 2 2x 1 . x 2 10x 253. 若最简二次根式3x 10 2x y 5和. x 3y 11是同类二次根式 ⑴.求x 、y 的值。
⑵.求x 、y 平方和的算术平方根。
n (n > 1)的等式表示出来3、 8+ (- 1)3 — 2X4、110 (3 15 5.. 6) 2 5、(3.6 ^.2 )(3.6 42) & (、. 5 2)2 ( 5 1)(、. 5 3) 8. 48 54 2 1 73请你将发现的规律用含自然数2、 ,12 ,18 ,0.57, 2.12。
第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______.2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: 149=_______;22)7(_______; 32)7(-_______;42)7(--_______; 52)7.0(_______;622])7([- _______. 二、选择题5.下列计算正确的有 .①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是 . A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是 . A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是 .A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义 1;1x -2;2x -3;12+x 4⋅+-xx2110.计算下列各式:1;)23(2 2;)1(22+a3;)43(22-⨯-4.)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是 .A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是 . A .-7B .-5C .3D .7三、解答题17.计算下列各式:1;)π14.3(2- 2;)3(22--3;])32[(21-4.)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除一学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:1=⨯12172_________;2=--)84)(213(__________; 3=⨯-03.027.02___________.3.化简:1=⨯3649______;2=⨯25.081.0 ______;3=-45______. 二、选择题4.下列计算正确的是 . A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么 .A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是 . A .±3 B .3 C .-3 D .9三、解答题7.计算:1;26⨯2);33(35-⨯- 3;8223⨯4;1252735⨯ 5;131aab ⋅6;5252ac c b b a ⋅⋅7;49)7(2⨯-8;51322-9 .7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“”的运算法则为:,4@+=xy y x 则266=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:123_____32;225______34;3-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是 .A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于 . A .11- B .11C .44-D .112三、解答题14.计算:1=⋅x xy 6335_______;2=+222927b a a _______;3=⋅⋅21132212_______; 4=+⋅)123(3_______.15.若x -y +22与2-+y x 互为相反数,求x +y x的值.拓广、探究、思考16.化简:1=-+1110)12()12(________;2=-⋅+)13()13(_________.测试3 二次根式的乘除二学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:1=12______;2=x 18______;3=3548y x ______;4=xy______;5=32______;6=214______;7=+243x x ______;8=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2132与______; 232与______;3a 3与______; 423a 与______; 533a 与______. 二、选择题 3.xxx x -=-11成立的条件是 . A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是 . A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为 . A .3232 B .32321C .281D .241 三、计算题 6.1;2516 2;9723;324 4;1252755÷-5;1525 6;3366÷7;211311÷8.125.02121÷ 综合、运用、诊断一、填空题7.化简二次根式:1=⨯62________2=81_________3=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: 1=51_______2=x 2_________3=322__________4=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.结果精确到0.001 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为 . A .a =b B .ab =1 C .a =-bD .ab =-111.下列各式中,最简二次根式是 .A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:1;3b a ab ab ⨯÷ 2;3212y xy ÷3⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.1=+2271_______;2=+10111_______;3=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减一学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:1=+31312________; 2=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是 .A .10B .12C .21 D .61 4.下列说法正确的是 .A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是 . A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,a +b a的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.填“正确”或“错误” 二、选择题14.在下列二次根式中,与a 是同类二次根式的是 .A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:1判断下列各式是否成立你认为成立的,在括号内画“√”,否则画“×”.①322322=+②833833=+③15441544=+ ④24552455=+2你判断完以上各题后,发现了什么规律请用含有n 的式子将规律表示出来,并写出n 的取值范围.3请你用所学的数学知识说明你在2题中所写式子的正确性.测试5 二次根式的加减二学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:1=-+)18(50________;2=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是 . A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是 . A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于 . A .7 B .223366-+- C .1D .22336-+三、计算题能简算的要简算 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.1规定运算:ab =|a -b |,其中a ,b 为实数,则=+7)3*7(_______.2设5=a ,且b 是a 的小数部分,则=-baa ________.二、选择题14.b a -与a b -的关系是 . A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是 .A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求1x 2-xy +y 2;2x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: 125与______; 2y x 2-与______; 3mn 与______; 432+与______; 5223+与______; 63223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.精确到答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.17; 27; 37; 4-7; 5; 649.5.C . 6.B . 7.D . 8.D .9.1x ≤1;2x =0;3x 是任意实数;4x ≤1且x ≠-2.10.118;2a 2+1;3;23- 46. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.1π-3.14;2-9;3;23 436. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.1;6 224;3-.3.142;2;3.53- 4.B . 5.B . 6.B .7.1;32 245; 324; 4;53 5;3b 6;52 749; 812; 9⋅y xy 263 8..cm 62 9..72 10.210.11.1>;2>;3<. 12.B . 13.D .14.1;245y x 2;332b a + 3 ;34 49. 15.1.16.1;12- 2.2测试31.1;32 2;23x 3;342xy y x 4;xxy 5 ;36 6;223 7;32+x x 8630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.,. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.1.)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.1都画“√”;21122-=-+n nn n nn n ≥2,且n 为整数;3证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.1;22 2 .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.13;2.55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4可以按整式乘法,也可以按因式分解法.20.19; 210. 21.4.22.12; 2y x 2-; 3mn ; 432-; 5223-; 63223+答案不唯一. 23.约.。
第二十一章 二次根式单元测试题一、填空题:(每题2分,共24分)1.函数1-=x xy 的自变量x 的取值范围是______.2.当x ______________时,x x -+-31有意义.3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______.5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______.8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:1)+= ______. 12.已知正数a 和b ,有下列结论: (1)若a =1,b =1,则1≤ab ;(2)若25,21==b a ,则23≤ab ; (3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______.二、选择题:(每题2分,共24分)13.已知xy >0,化简二次根式2x y x -的正确结果为( )(A)y (B)y - (C)y - (D)y --14.若a <0,则||2a a -的值是( )(A)0 (B)-2a(C)2a (D)2a 或-2a 15.下列二次根式中,最简二次根式为( ) (A)x 9 (B)32-x (C)x y x - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3 (B)-3 (C)1 (D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0 (B)1 (C)-1 (D)31 18.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个 (B)1个(C)2个 (D)3个 19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4 (B)2x +2(C)-2x -2 (D)-4 20.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1 (B)1-a (C)1--a (D)a --1 21.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( ) (A)3a 与3b (B)2a 与2b (C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( )(A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠224.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE对应的函数表达式是( )(A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y三、解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算: (1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b a b ab ab a26.若,03|9|22=--++m m n m 求3m +6n 的立方根.27.已知7979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yx y xy y x y x+-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少?(精确到0.1,π取3.14)30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-== ⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.07.6 8.3,91- 9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2008 12.4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B 20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 325 26.3 27.113 28.229- 29.0.9cm 30.85 31.(1)=+-==+=1544415415441544154433 15441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n n n 11)1(1111222232322-+=-+-=-+-=-=--+n n n n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。
第二十一章 二次根式综合练习一、选择题 1、如果-3x+5是二次根式,则x 的取值范围是( ) A 、x≠-5 B 、x>-5 C 、x<-5 D 、x≤-52、等式x 2-1 =x+1 ·x -1 成立的条件是( ) A 、x>1 B 、x<-1 C 、x≥1 D 、x≤-13、已知a=15 -2 ,b=15 +2,则a 2+b 2+7 的值为( ) A 、3 B 、4 C 、5 D 、64、下列二次根式中,x 的取值范围是x≥2的是( ) A 、2-x B 、x+2 C 、x -2 D 、1x -25、在下列根式中,不是最简二次根式的是( ) A 、a 2 +1 B 、2x+1 C 、2b4D 、0.1y 6、下面的等式总能成立的是( )A 、a 2 =aB 、a a 2 =a 2C 、 a ·b =abD 、ab = a ·b 7、m 为实数,则m 2+4m+5 的值一定是( ) A 、整数 B 、正整数 C 、正数 D 、负数 8、已知xy>0,化简二次根式x-yx2 的正确结果为( ) A 、y B 、-y C 、-y D 、--y9、若代数式(2-a)2 +(a -4)2 的值是常数2,则a 的取值范围是( ) A 、a≥4 B 、a≤2 C 、2≤a≤4 D 、a=2或a=4 10、下列根式不能与48 合并的是( ) A 、0.12 B 、18 C 、113D 、-75 11、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( )A 、x≤10B 、x≥10C 、x<10D 、x>10 12、若实数x 、y 满足x 2+y 2-4x -2y+5=0,则x +y 3y -2x的值是( )A 、1B 、32 + 2 C 、3+2 2 D 、3-2 2二、填空题 1、要使x -1 3-x有意义,则x 的取值范围是 。
第二十一章 二次根式训练题21.1 二次根式一、选择题1.下列各式:15,12-b ,22b a +,1202-m ,144-中,二次根式的个数是( ) A. 4个B. 3个C. 2个D. 1个 2.如果x 25-是二次根式,那么x 应满足的条件是( ) A. x ≤2.5B. x ≥2.5C. x <2.5D. x >2.5 3.()2310-等于( ) A. 30B. -300C. 300D. -304.下列各式中,一定能成立的是( )A.()()225.25.2=- B.()22a a =C.1122-=+-x x x D.3392+•-=-x x x5.下列各式中,正确的是( ) A. a a =2 B. a a ±=2C. a a =2D. 22a a =6.计算()()222112a a -+-的结果是( )A. 24-aB. 0C. a 42-D. 24-a 或a 42-7.把a a 1-的a 移入根号内,得到( )A.aB. a -C. a -D. a --8.若0<a <1则414122-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-a a a a ,结果为( ) A. a 2B. a 2-C. a 2D. a 2-9.实数a ,b 在数轴上对应位置如图,化简2a b a --的结果是( )A. -bB. bC. 2a -bD. b -2a 10.若2442=+--a a a ,则实数a 的取值范围是( ) A. a >2B. a <2C. a ≥2D. a ≤2二、填空题11.若11-+-x x 有意义,则x .12.已知522+-+-=x x y ,则=x y .13.()26= ,()26-= ,26= ,由此得出式子()22a a =成立的条件是 .14.当x = 时,19+x 取值最小,这个最小值为 . 15.已知011=-++b a ,那么20062006b a += .16.当-1<a <3时,()()=-++2231a a .17.x x x -=+-636122成立的条件是 .18.若a ,b ,c 为三角形三边,且满足012135=-+-+-c b a ,则△ABC 是 三角形.19.当a <-1时,=+--++2244121a a a a . 20.在实数范围内因式分解:=-44x . 三、解答题21.如果a a a --=++1122,求a 的取值范围.22.如果-3<x <5,求96251022++++-x x x x 的值.23.求231294a a a a -+-+--+的值.24.已知x ,y 满足022132=+-+--y x y x ,求y x 542-的平方根.25.设x ,y 为实数,满足y <2144+-+-x x ,化简11--y y.26.已知:1-=a ,3=b . 求22222221⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-+ab b a ab b a 的值.27.若x <35-. 求证:12253094942922=++-+-x x x x28.已知:实数a 满足0332=++a a a . 化简:1212+++-a a a .29.已知a 、b 、c 为△ABC 三边. 化简()()()()2222b ac c a b c b a c b a --+--+--+++.30.a 、b 为实数,且b <3133+-+-a a . 化简:13442--+-b b b .21.2 二次根式的乘除一、选择题1.化简4125等于( )A.4125 B. 2101±C. 25D. 101212.下列计算错误的是( ) A.542516=B.3836427= C.232924=D. 556517-=-3.计算227818⨯÷得( )A. 649B.66 C. 618D. 6344.若a <0,b <0,下列命题错误的是( ) A. ab 的算术平方根是ab B. b a ab •=C.b a ab •=D.b a ab -•-=5.下列等式成立的是( ) A. b a b a +=+22 B. ab a b a --=-C.ba b a =D.ab b a -=-226.下列式中计算错误的是( )A.2065946.292223.1983.181x x x x x ==••=⨯B. 70514707014141457014570==⨯⨯⨯=C. y x xy y x y x y x xy 22221111-=⎪⎪⎭⎫ ⎝⎛-=- D. ()()()()()()n m n m n m n m n m n m n m n m n m 222-=--+-=-+-7.化简:()xy y x --1得( ) A. y x - B. x y -C. y x --D. x y --8.331++x x 分母有理化,得( )A. 131+xB. 3331+xC. 1+xD. 33-x9.当3323+-=+x x x x 时,x 取值范围是( ) A. x ≤0B. x ≤-3C. x ≥-3D. -3≤x ≤010.当092=-+-y x ,则()=+1x y ( ) A. 33B. 33±C. 33-D. 23二、填空题11.二次根式x 12,a 35,y x 315,24x x +中,最简二次根式是 .12.=⨯1219 ,()()=-⨯-94 ,222425-= .13.12= ,714⨯= .14.化简=⨯83332 ,=-1973 .15.已知一个长方体的长a =6,宽b =15,高c =35,那么这个长方体的体积是 . 16.化简=⨯33832ab b a .17.下列二次根式:①21、②224041-、③28x -、④()1122 x x x +-、⑤5x 、⑥38、⑦22259y x +、⑧()()()b a b a b a +-2中最简二次根式有 (填序号). 18.若根式()y x b a --+86为最简二次根式时,x = ,y = . 19.若3<a <4,化简()()=--2243a a .20.计算=33155 ,=÷4.0324 ,=÷4312122 .三、解答题21.计算下列是中式.(1)⎪⎭⎫ ⎝⎛-••102132531(2)n m n m n m 3233•••(3)1012655÷(4)32643a a ÷22.比较下列各组中两个数的大小. (1)112-和53-(2)7232和32723.已知5=+y x ,3=xy ,求代数式yx x y +的值.24.已知实数a 满足a a a =-+-19931992,求21992-a 的值.25.已知长方形的长是π140(cm ),宽是π35(cm ),求与长方形面积相等的圆的半径.26.已知⎩⎨⎧=+=++13053y x y x 化简:x y -23.27.已知:x =1,先化简再求值334312x x xx +-.28.已知:1011+=+a a . 求221a a +及a a 1-的值.29.已知:3121122+-+-=x x y . 求yx y y x x -++的值.30.设()1123-+++=+++c b a c b a . 求222c b a ++的值.21.3 二次根式的加减一、选择题1.下列计算正确的是( ) A. 2222=+ B. 743=+ C.752863=+D.942188+=+ 2.计算47548213123-+的结果是( )A. 2B. 0C. -3D. 33.计算)93()34(3ab a b a b a a b a b +-+的结果是( )A.abB. 7abC. 0D. 13ab4.若103-=a ,则代数式262--a a 的值为( ) A. 0B. 1C. -1D. 105.若2=a ,则a a a a -+的值是( )A. 223+B. 223-C. 223+-D. 223--6.=--994411( ) A. 114B. 114-C. 0D. 112-7.计算:⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+y x y y x x xy x y x 42933(其中y >0)结果等于( )A. xy 2-B. 0C. xy xyD. xy 38.下列各组中是同类二次根式是( ) A. a a 和32aB. x x 3和xx 42 C.x 2和43xD. 33a 和a 39.已知:1018222=++a a a a ,则a=( )A. 4B. 2±C. 2D. 4±10.把()4222311xy y x x y y x -++--化简的结果是( ) A. x y -34B. y x --32 C . x y -32D. x y --32二、填空题11.二次根式加减时,可以先将二次根式化成 ,再将被开方数 的二次根式合并.12.=+212 ,=+5424 ,=-813953 .13.计算:=-32x xy ;=-21a a a .14.设三角形的三边长分别为a ,b ,c ,周长是l ,已知40=a cm ,160=c cm ,109=l cm ,那么b = . 15.计算:()()=-÷⎥⎦⎤⎢⎣⎡-+303220062736 . 16.计算:=⋅+-x x x 836212739 .17.若最简二次根式14432+a 与1622-a 是同类二次根式,则a 的值是 . 18.下列二次根式①5.0,②81,③18,④243,⑤5527y x ,⑥545,⑦3281,⑧y x 26,⑨y x 3,⑩22242y xy x ++中是同类二次根式的是 .(填序号)19.计算:=---31312231 .20.223+=a ,223-=b ,则=+22ab b a . 三、解答题 21.化简并求值:()()3323472++++x x ,其中32-=x .22.当321+=m 时,求m m m m m m m -+---+-22212121的值.23.已知34+=a ,34-=b ,求代数式ba b aba a +--的值.24.已知5152522=-+-x x ,求221525x x ---的值.25.已知()()0212=-+-x x ,求x x x x x x x x 3643122+-+÷⎪⎭⎫ ⎝⎛----的值.26.化简或计算(1)21431375518132+-+-(2)xy xy y x y x y x xy 123--+(3)()()()()y x y x y x y x 22+---+27.先化简再求值⎪⎪⎭⎫ ⎝⎛--+÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111,其中22=x .28.当91,4==y x 时,求31441y y x y x x ---的值.29.求证:⎪⎩⎪⎨⎧-=+=3232y x 是方程组⎪⎩⎪⎨⎧+=-+=+35223362y x y x 的解.30.最简根式()y x y x --221与()183216+++y x x 能是同类二次根式吗?若能是求x 、y 值;若不能,说明理由.第二十一章 单元测试(一)一、选择题(每题3分,共30分) 1.下列等式中成立的是( ) A. ()32323-=⨯- B. y x y x +=+22 C.532=+D.2332=•x x2.已知a 为实数,下列四个命题中错误的是( ) A. 若1-=aa ,则a <0 B. 若a ≠1,则111-=--a aC. 若aa 112-=-,则a >0D. 若a ≥-2,则12++a a 有意义3.下列各式中,最简二次根式为( ) A. 72B.324 C.ba D. 32b a4.下式中不是二次根式的为( ) A.12+b B. a (a <0) C. 0 D.()2b a -5.当a =1时,计算a a a 7251012-+-得( ) A. 11 B. -11 C. 3D. -36.下列各组中互为有理化因式的是( ) A. x -2和2+xB. 32+x 和x 23-C.y x +与y x --D.x 与32x7.代数式⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ab a b a b a a b a b 93243的值一定是( )A. 正数B. 负数C. 0D. 18.a 12的同类二次根式为( ) A.ab3 B. a 54C. a271-D.248a9.若x <2,化简()()2232x x -+-的正确结论是( )A. -1B. 1C. 52-xD. x 25-10.()()200620052323-+值为( )A. 0B. 23-C. 32-D. 无法确定二、填空题(每题3分,共30分)11.若式子121++-x x 在实数范围内有意义,则x 的取值范围是 ;xx x x --=--4343成立的条件是 . 12.计算:=+123 .13.23-的相反数与12-的倒数的和是 . 14.若a ,b ,c 表示三角形的三边,则()2c b a --= .15.()0332=-++b a ,则=-+11a b .16.=⎪⎭⎫ ⎝⎛+•--20063232 .17.625-的算术平方根是 . 18.化简=--yx y x ,当0<a <1时,=-+2122a a .19.分母有理化:=-2346,251+-的倒数是 . 20.()()=-+-2223323223.三、解答题21.计算(每题2分,共8分) (1)()7512231-(2)61312322÷⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-(3)()()121923121999---⨯-+- (4)261321121824--⨯÷-22.已知等腰三角形的顶角为120°,底边长为64cm ,求这个等腰三角形的面积.(3分)23.已知:,2323,2323-+=+-=y x 求22y x x y +的值.24.化简求值.ba b b a b ab b b a a b b a -÷⎪⎪⎭⎫ ⎝⎛+--++1,其中,53-=a ,53+=b .(3分)25.已知()2234-=x ,()2322-=y ,求(1)x+y 的值;(2)()27+-y x 的值.(4分)26.已知37+=x ,37-=x . 求233++xy y x 的值.27.解方程:()x x 3123=+.(4分)28.化简:(4分)()⎪⎪⎭⎫ ⎝⎛---b a a b a b a a b b a 22329.某船在点O 处测得小岛上的电视塔A 在北偏西60°的方向上,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问向西航行多少海里船离电视塔最近?(5分)30.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m. 假设拖拉机行驶时,周围100m 内会受到噪声影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由. 如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?(5分)第二十一章 单元测试(二)一、选择题(每题3分,共30分)1.以下判断正确的是( )A. 无限小数是无理数B. 平方是3的数是3C. 1的平方根和立方根相等D. 27-无平方根 2.若a <-3,则()212a +-=( )A. a -1B. 1-aC. a +3D. a --3 3.651+与65-的关系是( )A. 互为相反数B. 互为倒数C. 互为有理化因式D. 相等4.把aa 1--根号外因式移到根号内,则原式=( ) A. a B. a - C. a -- D. a -5.计算:()()()2623535+-+-的值为( ) A. 7- B. 327-- C. 347-- D. 346--6.已知35-=+y x ,35+=xy ,则x+y 的值等于( )A. 2B. 5C. 1528-D. 52321528--- 7.若()x x -=-222,则x 是( ) A. x <2B. x >2C. x ≤2D. x ≥2 8.已知-1<x <2()()=--+2223x x ( ) A. 5 B. -5 C. 12--xD. 12+x 9.矩形面积为24,一边长23+,则另一边长是( ) A. ()3224+ B. ()2324- C. ()23724+ D. ()23724- 10.已知x 、y 是正数,且有()()x y y x y x-=-3,则=x y ( ) A. 9 B. 91 C. 1 D. 1或9二、填空题(每小题3分,共30分)11.当x 时,x x 2112-++有意义.12.若最简根式()2334++a b a 和452++b a 是同类根式,则a = ,b = .13.当a <-2时,化简()=++-122a a .14.若a a =2,则a . 若a a -=2,则a . 若a a =2,则a .15.比较大小:①23-,②22+,③52-53-.16.当x = 时,xx -1有意义.17.若25-=x ,25+=x ,则=+÷⎪⎪⎭⎫ ⎝⎛-xy y x y x x y . 18.使式子122---a a 有意义的a 取值范围是 .19.当a >2b >0时,=+-a b ab b a 32244 .20. ()()()=+-+÷++a b b a b ab a 2 .三、解答题21.计算(每小题2分,共6分)(1)⎪⎪⎭⎫⎝⎛----5431813225.024(2)ab b a ab b 3123235÷⎪⎭⎫ ⎝⎛-(a >0,b >0)(3)132121231+-+++22.化简求值(每小题3分,共6分)(1)已知2352+=x . 求⎪⎪⎭⎫⎝⎛-++÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111的值.(2)已知23-=x ,求4434234--++x x x x 的值.23.已知321+=a ,求aa a a a a a -+-+-+-22212121的值.(4分)24.设x a -=8,43+=x b ,2+=x b .(6分)(1)当x 取何实数时,a 、b 、c 均有意义.(2)当a 、b 、c 为直角△ABC 三边,求x 值.25.化简:424242422222-++--++--+-++n n n n n n n n (n >2).(4分)26.已知:32+=-b a ,32-=-c b . 求bc ac ab c b a ---++222的值.(4分)27.已知a a 1=,5=b ,求1025102522222222-+-++a b b a a b b a 的值.(4分)28.已知代数式333--+-x x x ,(1)试确定x 的值;(2)利用(1)的结果求32637522++-x x 的值.(6分)。
九年级数学(上)《二次根式》测试题一、选择题(每小题3分,共30分)1、使式子1-x 2+x 有意义X 的取值范围是( )A 、X ≤1B 、X ≤1且X ≠-2C 、X ≠-2D X <1且X ≠-22、若代数式x x -+212有意义,则x 的取值范围是( )A 、21->x B 、4±≠x C 、0≥x D 、40≠≥x x 且 3、下列运算正确的是( ) A 、15.05.15.05.122=-=-B 、15.025.02=⨯= ≥C 、5)5(2-=-x xD 、x x x 22-=-4、下列根式中,最简二次根式是( )A 、a 25B 、22b a +C 、2aD 、5.05、已知:直角三角形的一条直角边为9,斜边长为10,则另一条直角边长为( )A 1B 19C 19D 296、若x=-3,则 ︳1-(1+X 2) ︳=( )A 1B -1C 3D -37、24n 是整数,则正整数n的最小值是( )A 4B 5C 6D 78、对于二次根式92+x ,以下说法不正确的是( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是39、下列说法错误是………………………………( ) A.962+-a a 是最简二次根式 B.4是二次根式 C.22b a +是一个非负数 D.162+x 的最小值是410、下列各式中与6是同类二次根式的是 ( ) A.36 B.12 C.32D.18二、填空题(每小题3分,共18分)11、使式子4-X 无意义的x取值是12、已知:X=2.5, 化简(X-2)2+ ︳X-4 ︳的结果是13、10xy .30yx (x>0,y>0)= 14、已知4322+-+-=x x y ,则,=xy . 15、三角形的三边长分别是20 ㎝ 45 ㎝ 40 ㎝,则这个三角形的周长为 16、观察下列各式:322322+=⨯;833833+=⨯;15441544+=⨯;……则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。
一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.(2005·岳阳)下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 8.化简6151+的结果为( ) A .3011B .33030C .30330D .11309.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 10.(2005·江西)化简)22(28+-得( ) A .—2 B .22- C .2 D . 224- 二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( 。
12.二次根式31-x 有意义的条件是 。
16.=∙y xy 82 ,=∙2712 。
17.计算3393aa a a-+= 。
18.23231+-与的关系是 。
19.若35-=x ,则562++x x 的值为 。
20.化简⎪⎪⎭⎫⎝⎛--+1083114515的结果是 。
11.若5-x 不是二次根式,则x 的取值范围是 。
12.已知a<2,=-2)2(a 。
13.当x= 时,二次根式1+x 取最小值,其最小值为 。
14.计算:=⨯÷182712 ;=÷-)32274483( 。
16.若433+-+-=x x y ,则=+y x 。
试求:(1)671+的值; (2)17231+的值;下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 1.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=2.若1762+--x x x 的值等于零,则x 的值是( ) A 。
第21章二次根式练习题
一、选择题
1、下列二次根式中与2是同类二次根式的是( ).
A .12
B .23
C .32
D .18
2、
下面与 )
A
.B
C
D
.1
3
、在下列二次根式中,与 )
A
. B
C
D
4、25的算术平方根是( )
A .5
B . 5
C .–5
D .±5
5、9的平方根是( ).
A 、3
B 、-3
C 、±3
D 、81
6、已知01b 2a =-++,那么2007)b a (+的值为( ).
A 、-1
B 、1
C 、20073
D 、20073-
7.下列计算正确的是( )
A .0(2)0-=
B .239-=- C
3= D
.=8
、x 的取值范围是( )
(A )x >1 (B )x ≥l (C )x <1 (D )x ≤1
9、如图,数轴上点P 表示的数可能是( )
A
.B
. C . 3.2- D
.10、下列计算正确的是( ) A .632=⨯ B
.532=+ C .248= D
.224=
-
11n
为(
)
A .2
B .3
C .4
D .5
12、下列计算正确的是( )
A .
=B
= C
4= D .3=-
二、填空题
1、当x ___________时,二次根式
2
、计算:
2=__________.
3、要使二次根式
有意义,x
应满足的条件是
_____________.
4、如图,在数轴上,A B ,两点之间表示整数的点有
个. 5
、计算:1-=_______.
6、在数轴上与表示___________. 第4题
第9题
7、观察下列各式:
==请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________.
8、计算:=___________.
9. 一个三角形的三边长分别为,则它的周长是 cm 。
10. 当15x ≤ 5_____________x -=。
三、解答题
1、计算:0(π1)+
2、3
15.01812+
--
3、8+(-1)3-2×22.
4、)65153(102
1-⨯
5、)2463)(2463(+-
6、)35)(15()25(2+++-
7,
(231⎛+ ⎝
四. 解答题。
1. 如图:面积为482cm 的正方形四个角是面积为32cm 的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,
求这个长方体的底面边长和高分别是多少?(精确到0.1 1.732cm ≈)
2. 当1<x <5时,化简:
3. 若最简二次根式3x
⑴. 求x y 、的值。
⑵. 求x y 、平方和的算术平方根。