2017-2018学年北京市西城区北京师范大学第二附属中学高一上学期期中考试数学试题(解析版)
- 格式:doc
- 大小:3.23 MB
- 文档页数:15
北京师大附中2017-2018学年上学期高一年级期中考试语文试卷本试卷共150分,考试时间为120分钟。
一、基础知识1. 下列各组词语中加点字的读音,全都正确的一组是A. 造诣.(yì)与.会(yù)粳.米(jīng)酩.酊大醉(míng)B. 撰.(zhuàn)写祷.(dǎo)告戮.力(lù)瞠.目结舌(chēn)C. 剽.窃(piáo)愧疚.(jiù)应.届(yìng)戛.然而止(jiá)D. 生肖.(xiào)痉.(jìng)挛纳粹.(cuì)引吭.高歌(háng)【答案】D【解析】试题分析:此题考核识记现代汉语普通话常用字的字音的能力,字音重点考核多音字、形声字、形似字、音近字、方言、生僻字等,多音字注意据义定音,形声字重点记忆“统读字”,形似字注意字形的细微差别。
此题A项,酩酊大醉(mǐng);B项,瞠目结舌(chēng);C项,剽窃(piāo),应届(yīng)。
2. 下列各组词语中加点字的读音,全都正确的一组是A. 症.结(zhēn g)嫉.妒(jí)秸秆.(jiē)呱.呱坠地(gū)B. 解剖.(pāo)脾.脏(pǐ)压轴.戏(zhîu)戛.然而止(jiá)C. 档.案(dǎng)脊.梁(jǐ)刽.子手(kuì)间.不容发(jiān)D. 胡诌.(zōu)炮.制(páo)一沓.纸(tà)暴殄.天物(tiǎn)【答案】A【解析】试题分析:此题考核识记现代汉语普通话常用字的字音的能力,字音重点考核多音字、形声字、形似字、音近字、方言、生僻字等,多音字注意据义定音,形声字重点记忆“统读字”,形似字注意字形的细微差别。
此题B项,解剖(pōu),脾脏(pí);C项,档案(dàng),刽子手(guì),D项,胡诌(zhōu),一沓纸(dá)。
2017-2018学年北京师大附中高一(上)期中数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)已知集合M={0,1,2,3,4},N={﹣2,0,2},则()A.N?M B.M∪N=M C.M∩N={2}D.M∩N={0,2}2.(4分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<33.(4分)下列函数中,在区间(0,+∞)上是增函数的是()A.B.g(x)=﹣2x C.h(x)=﹣3x+1 D.4.(4分)给定四个函数;;y=x3+1;其中是奇函数的个数是()A.1 B.2 C.3 D.45.(4分)函数y=f(x)在R上为增函数,且f(2m)>f(﹣m+9),则实数m 的取值范围是()A.(﹣∞,﹣3)B.(0,+∞)C.(3,+∞)D.(﹣∞,﹣3)∪(3,+∞)6.(4分)函数y=ax2+bx与y=ax+b,(ab≠0)的图象只能是()A.B.C.D.7.(4分)设a=,b=,c=lg,则a,b,c之间的关系是()A.c<a<b B.b<a<c C.c<b<a D.a<b<c8.(4分)函数的零点所在的大致区间是()A.(e,+∞)B. C.(2,3) D.(e,+∞)二、填空题:本大题共6小题,每小题4分,共24分9.(4分)设奇函数f(x)的定义域为[﹣5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是.10.(4分)已知函数f(x)=,则f[f()]的值是.11.(4分)若函数f(x)=x2+px+3在(﹣∞,1]上单调递减,则p的取值范围是.12.(4分)log425﹣2log410+log45?log516的值是.13.(4分)函数f(x)=的定义域为.14.(4分)计算:=.三、解答题:请写出解题步骤(共24分)15.(6分)已知函数的定义域为A,g(x)=x2+1的值域为B.(1)求A,B;(2)设全集U=R,求A∩(?U B)16.(6分)已知集合A={x|2a﹣1<x<2﹣a},B={x|x2﹣x﹣6≥0}(1)若A∩B=?,求a的取值范围;(2)若A∪B=B,求a的取值范围.17.(6分)计算:.18.(6分)已知二次函数f(x)=ax2+bx+c最小值为﹣1,且f(2﹣x)=f(2)+f (x).(1)求f(x)的解析式;(2)若f(x)在区间[2m,m+1]上单调,求m的取值范围.2017-2018学年北京师大附中高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)已知集合M={0,1,2,3,4},N={﹣2,0,2},则()A.N?M B.M∪N=M C.M∩N={2}D.M∩N={0,2}【分析】由M与N求出两集合的并集,交集,并判断出包含关系即可.【解答】解:∵M={0,1,2,3,4},N={﹣2,0,2},∴M∪N={﹣2,0,1,2,3,4};M∩N={0,2},N?M,故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(4分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<3【分析】分类讨论,二次项系数等于0时,二次项系数不等于0时,两种情况进行分析.【解答】解:若a2﹣2a﹣3≠0,则f(x)为二次函数,定义域和值域都为R是不可能的.若a2﹣2a﹣3=0,即a=﹣1或3;当a=3时,f(x)=1不合题意;当a=﹣1时,f(x)=﹣4x+1符合题意.故选:B.【点评】本题考查函数的值域和定义域,体现分类讨论的数学思想方法.3.(4分)下列函数中,在区间(0,+∞)上是增函数的是()A.B.g(x)=﹣2x C.h(x)=﹣3x+1 D.【分析】f(x)=在区间(0,+∞)上是增函数,g(x)=﹣2x、h(x)=﹣3x+1和s(x)在区间(0,+∞)上都是减函数.【解答】解:在A中,f(x)=在区间(0,+∞)上是增函数,故A正确;在B中,g(x)=﹣2x在区间(0,+∞)上是减函数,故B错误;在C中,h(x)=﹣3x+1在区间(0,+∞)上是减函数,故C错误;在D中,s(x)在区间(0,+∞)上是减函数,故D错误.故选:A.【点评】本题考查函数的单调性的判断,考查函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(4分)给定四个函数;;y=x3+1;其中是奇函数的个数是()A.1 B.2 C.3 D.4【分析】利用奇函数的定义,对每个函数进行验证,可得结论.【解答】解:∵,∴是奇函数;∵定义域不关于原点对称,∴不是奇函数;∵(﹣x)3+1≠﹣(x3+1),∴不是奇函数;函数的定义域为{x|x≠0},=,∴是奇函数综上,奇函数的个数为2个故选:B.【点评】本题考查函数奇偶性的判定,考查学生的计算能力,属于基础题.5.(4分)函数y=f(x)在R上为增函数,且f(2m)>f(﹣m+9),则实数m 的取值范围是()A.(﹣∞,﹣3)B.(0,+∞)C.(3,+∞)D.(﹣∞,﹣3)∪(3,+∞)【分析】由题意根据函数的单调性的定义可得2m>﹣m+9,由此解得m的范围.【解答】解:∵函数y=f(x)在R上为增函数,且f(2m)>f(﹣m+9),∴2m>﹣m+9,解得m>3,故选:C.【点评】本题主要考查函数的单调性的应用,属于基础题.6.(4分)函数y=ax2+bx与y=ax+b,(ab≠0)的图象只能是()A.B.C.D.【分析】从直线的斜率与截距入手,找出ab的符号,再验证抛物线的对称轴是否适合.【解答】解:A、B中,从直线上看,a、b为正值,∴抛物线的对称轴为<0,故AB不符合;C、D中,从直线上看,a<0,b>0,∴>0,C,D都适合,但是点(,0)都适合y=ax2+bx与y=ax+b,∴两个函数的图象都过点(,0),只有D适合.故选:D.【点评】本题主要考查函数图象与函数的性质,常见的一次函数与二次函数的性质要熟记.7.(4分)设a=,b=,c=lg,则a,b,c之间的关系是()A.c<a<b B.b<a<c C.c<b<a D.a<b<c【分析】分别根据幂函数的单调性和对数函数的性质计算出a,b,c的取值范围即可得到结论.【解答】解:∵幂函数y=x在定义域上单调递增,∴,即b>a>0,∵c=lg<0,∴c<a<b.故选:A.【点评】本题主要考查函数值的大小比较,利用幂函数的单调性和对数函数的性质是解决本题的关键,比较基础.8.(4分)函数的零点所在的大致区间是()A.(e,+∞)B. C.(2,3) D.(e,+∞)【分析】判断函数的单调性以及函数的连续性,利用零点判定定理推出结果即可.【解答】解:函数是单调增函数,也连续函数,因为f(2)=ln2﹣1<0,f(3)=ln3﹣>0,可得f(2)f(3)<0,所以函数的零点所在区间为(2,3).故选:C.【点评】本题考查函数的零点判定定理的应用,注意函数的单调性与连续性的判断.二、填空题:本大题共6小题,每小题4分,共24分9.(4分)设奇函数f(x)的定义域为[﹣5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是{x|﹣2<x<0或2<x≤5} .【分析】由奇函数图象的特征画出此抽象函数的图象,结合图象解题.【解答】解:由奇函数图象的特征可得f(x)在[﹣5,5]上的图象.由图象可解出结果.故答案为{x|﹣2<x<0或2<x≤5}.【点评】本题是数形结合思想运用的典范,解题要特别注意图中的细节.10.(4分)已知函数f(x)=,则f[f()]的值是.【分析】先求,,故代入x>0时的解析式;求出=﹣2,,再求值即可.【解答】解:,故答案为:【点评】本题考查分段函数的求值问题,属基本题.求f(f(a))形式的值,要由内而外.11.(4分)若函数f(x)=x2+px+3在(﹣∞,1]上单调递减,则p的取值范围是(﹣∞,﹣2] .【分析】求出二次函数的对称轴方程,由二次函数的减区间,可得在对称轴的右边,解不等式即可得到所求范围.【解答】解:函数f(x)=x2+px+3在的对称轴为x=﹣,在(﹣∞,﹣]递减,由题意可得﹣≥1,解得p≤﹣2.故答案为:(﹣∞,﹣2].【点评】本题考查二次函数的性质:单调性,考查运算能力,属于基础题.12.(4分)log425﹣2log410+log45?log516的值是1.【分析】利用对数、运算法则、换底公式直接求解.【解答】解:log425﹣2log410+log45?log516=+=﹣1+2=1.故答案为:1.【点评】本题考查对数式化简求值,考查对数、运算法则等基础知识,考查运算求解能力,考查化归与转化思想、是基础题.13.(4分)函数f(x)=的定义域为{x|0<x≤2且x≠1} .【分析】由根式内部的代数式大于等于0,对数式的真数大于0,且分式的分母不等于0联立不等式组得答案.【解答】解:由,得0<x≤2且x≠1.∴函数f(x)=的定义域为{x|0<x≤2且x≠1}.故答案为:{x|0<x≤2且x≠1}.【点评】本题考查了函数的定义域及其求法,考查了不等式组的解法,是基础题.14.(4分)计算:=5.【分析】利用对数的性质、运算法则直接求解.【解答】解:=4+1=5.故答案为:5.【点评】本题考查对数式化简求值,是基础题,解题时要认真审题,注意对数的性质、运算法则的合理运用.三、解答题:请写出解题步骤(共24分)15.(6分)已知函数的定义域为A,g(x)=x2+1的值域为B.(1)求A,B;(2)设全集U=R,求A∩(?U B)【分析】(1)利用函数的定义域能求出集合A,利用函数g(x)=x2+1的值域能求出集合B.(2)由A={x|﹣1≤x<2},B={y|y≥1},求出C U B={y|y<1},由此能求出A∩(C U B).【解答】解:(1)∵函数的定义域为A,∴A={x|}={x|﹣1≤x<2},∵g(x)=x2+1的值域为B.∴B={y|y=x2+1}={y|y≥1}.(2)∵A={x|﹣1≤x<2},B={y|y≥1}.∴C U B={y|y<1},A∩(C U B)={x|﹣1≤x<1}.【点评】本题考查集合的求法,考查补集、交集的求法,考查函数性质、交集、补集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.16.(6分)已知集合A={x|2a﹣1<x<2﹣a},B={x|x2﹣x﹣6≥0}(1)若A∩B=?,求a的取值范围;(2)若A∪B=B,求a的取值范围.【分析】(1)求出B={x|x≥3或x≤﹣2},由A∩B=?,当A=?时,2a﹣1≥2﹣a,当A≠?时,列出不等式组,由此能求出a的取值范围.(2)由A∪B=B,A?B,当A=?时,2a﹣1≥2﹣a,A≠?时,或,由此能求出a的取值范围.【解答】解:(1)∵集合A={x|2a﹣1<x<2﹣a},B={x|x2﹣x﹣6≥0}={x|x≥3或x≤﹣2},A∩B=?,∴当A=?时,2a﹣1≥2﹣a,解得a≥1,当A≠?时,,解得﹣.综上,a的取值范围是[﹣,+∞).(2)∵A∪B=B,∴A?B,当A=?时,2a﹣1≥2﹣a,解得a≥1,A≠?时,或,解得a≤﹣.综上,a的取值范围是(﹣∞,﹣]∪[1,+∞).【点评】本题考查实数的取值范围的求法,考查交集、并集、补集、子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.17.(6分)计算:.【分析】利用对数的性质、运算法则直接求解.【解答】解:==第11页(共12页)。
北京师大二附中2017-2018学年度高一年级第一学段语文必修1测试题班级:______ 姓名:______ 学号:______一、基础知识与语言理解。
本大题共7小题,每小题3分,共21分。
1.下列各组词语加粗字注音完全正确的一项是()A. 连累.(lèi)一爿.(piàn)B. 间.(jiàn)或欹.(qī)侧C. 菲.(fēi)薄桀骛.(ào)D. 不惮.(dān)居戮.(lù)【答案】B【解析】【详解】本题考查的是识别字音字形的能力。
此类题先认真审题,明确题干要求,再调动知识储备分析识别字音字形。
A项累.读lěi,爿.读pán;C项菲.读fěi;D项惮.读dàn;故选B 【点睛】此类题型主要考查学生识别字音字形的能力,需要学生注意平时的基础知识的积累,审清题目要求,迅速识别字音字形。
2.下列句子中,加点的成语使用不恰当...的一句是()A. 生长在亚马孙河流域的王莲,叫片直径最大达4米,在世界上可谓绝无仅有....。
B. 国庆狂欢之夜,万人空巷....,天安门广场上人如湖涌,形成了一片欢乐的海洋。
C. 学习别人的工作经验,绝不能削足适履....,要结合自身的具体情况,灵活运用。
D. 在课程改革的初始阶段,教师必须严格按课程标准照本宣科....,不能随意改造。
【答案】D【解析】【详解】本题考查考生正确使用成语的能力。
解答此类题目需要考生平时积累成语知识,并熟知成语题目设置的陷阱,比如成语色彩失当、对象误用、不合语境、望文生义等毛病,本题A项,绝无仅有:形容人或物非常珍贵。
形容王莲珍贵正确;B项万人空巷:家家户户的人都出来,多用来形容庆祝、欢迎等盛况。
形容国庆狂欢之夜的庆祝盛况正确;C项削足适履:比喻过分迁就现成条件或生搬硬套。
形容学习别人的工作经验不能生搬硬套正确;D项照本宣科:比喻不能灵活运用,是贬义词,而本句是说教师必须严格遵循课程标准,不能随意改造,用本成语不合语境,可改为中性词“恪守不渝”。
北京师大附中2017-2018学年上学期高一年级期中考试数学试卷本试卷共150分,考试时间120分钟。
一、选择题:共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合,,则集合A. B. C. D.【答案】B【解析】【分析】直接根据并集的运算性质计算即可.【详解】集合,所以集合,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合2.下列函数中,在其定义域内是减函数的是A. B. C. D.【答案】C【解析】【分析】直接根据单调性的定义对选项逐一判断即可.【详解】对于在定义域内是增函数,不满足题意;对于在递减,在递增,不满足题意;对于定义域内是减函数,满足题意;对于在和都单调递减,但在整个定义域没有单调性,不满足题意,故选C.【点睛】本题最主要考查函数单调性的定义,意在考查对基本概念的掌握与应用,属于简单题.3.若,,则有A. B.C. D.【答案】B【分析】令,可排除选项,利用不等式的性质可证明.【详解】令,可排除选项,对,,又,,,,同理,即,,即,故选B.【点睛】利用条件判断不等式是否成立主要从以下几个方面着手:(1)利用不等式的性质直接判断;(2)利用函数式的单调性判断;(3)利用特殊值判断.4.“a=0”是“为奇函数”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】A【解析】【分析】直接根据函数的奇偶性的定义与性质,结合充分条件与必要条件的定义判断即可.【详解】,的图象关于原点对称,所以是奇函数;若为奇函数,则,即不能推出,所以,是为奇函数充分非必要条件,故选A.【点睛】本题主要考查函数的奇偶性的定义与性质、充分条件与必要条件的定义,意在考查对基础知识掌握的熟练程度,属于中档题.5.下列不等式中,不正确的是A. B.C. D. 若,则【解析】【分析】利用特殊值判断;利用判别式判断;利用单调性判断;利用基本不等式判断D.【详解】在中,若,则,故不成立;在中,,不等式的解集为,故成立;在中,,设,在上递增,所以有最小值,故成立;在中,,,当且仅当时取等号,的最小值为5,成立;不正确的结论是,故选A.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立)6.函数满足对任意的x,均有,那么,,的大小关系是A. B.C. D.【答案】C【解析】【分析】根据的图象开口朝上,由可得函数图象以为对称轴,由此可得函数在上为减函数,从而可得结果.【详解】函数对任意的均有,函数的图象开口朝上,且以为对称轴,函数在上为减函数,,故选C.【点睛】本题主要考查二次函数的对称性与二次函数的单调性,意在考查综合应用所学知识解答问题的能力,属于中档题.7.若函数的一个正零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程的一个近似根(精确到0.1)为A. 1.2B. 1.3C. 1.4D. 1.5【答案】C【解析】试题分析:因为,,所以选D.考点:二分法求零点.8.已知为定义在[-1,1]上的奇函数,且在[0,1]上单调递减,则使不等式成立的x的取值范围是A. B. C. D.【答案】B【解析】【分析】根据函数的奇偶性与单调性将不等式再转化为,结合函数的定义域,列不等式组求解即可.【详解】因为为奇函数,且在上单调递减,所以在上单调递减所以化为,,又因为的定义域是,所以,解得,使不等式成立的x的取值范围是,故选B.【点睛】本题主要考查抽象函数的定义域、抽象函数的单调性及抽象函数解不等式,属于难题.根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成后再利用单调性和定义域列不等式组.二、填空题:共6小题,每小题5分,共30分。
北京师大二附中2017-2018学年度高一年级第一学段语文必修1测试题班级:______ 姓名:______ 学号:______一、基础知识与语言理解。
本大题共7小题,每小题3分,共21分。
1.下列各组词语加粗字注音完全正确的一项是()A. 连累.(lèi)一爿.(piàn)B. 间.(jiàn)或欹.(qī)侧C. 菲.(fēi)薄桀骛.(ào)D. 不惮.(dān)居戮.(lù)【答案】B【解析】【详解】本题考查的是识别字音字形的能力。
此类题先认真审题,明确题干要求,再调动知识储备分析识别字音字形。
A项累.读lěi,爿.读pán;C项菲.读fěi;D项惮.读dàn;故选B【点睛】此类题型主要考查学生识别字音字形的能力,需要学生注意平时的基础知识的积累,审清题目要求,迅速识别字音字形。
2.下列句子中,加点的成语使用不恰当...的一句是()A. 生长在亚马孙河流域的王莲,叫片直径最大达4米,在世界上可谓绝无仅有....。
B. 国庆狂欢之夜,万人空巷....,天安门广场上人如湖涌,形成了一片欢乐的海洋。
C. 学习别人的工作经验,绝不能削足适履....,要结合自身的具体情况,灵活运用。
D. 在课程改革的初始阶段,教师必须严格按课程标准照本宣科....,不能随意改造。
【答案】D【解析】【详解】本题考查考生正确使用成语的能力。
解答此类题目需要考生平时积累成语知识,并熟知成语题目设置的陷阱,比如成语色彩失当、对象误用、不合语境、望文生义等毛病,本题A项,绝无仅有:形容人或物非常珍贵。
形容王莲珍贵正确;B项万人空巷:家家户户的人都出来,多用来形容庆祝、欢迎等盛况。
形容国庆狂欢之夜的庆祝盛况正确;C项削足适履:比喻过分迁就现成条件或生搬硬套。
形容学习别人的工作经验不能生搬硬套正确;D项照本宣科:比喻不能灵活运用,是贬义词,而本句是说教师必须严格遵循课程标准,不能随意改造,用本成语不合语境,可改为中性词“恪守不渝”。
首都师大二附中2017—2018学年第一学期期中考试高一物理一、选择题1. 质点是一种理想模型.下列活动中,可将月球视为质点的是()A. 测量月球的自转周期B. 研究月球绕地球的运行轨道C. 观察月相的变化规律D. 选择“嫦娥三号”的落月地点【答案】B【解析】A.测量月球的自转周期时,不能把月球看做一个点,所以不能将月球视为质点,故A错误;B.研究月球绕地球的运行轨道时,月球的体积大小相对于月球和地球和地球之间的距离来说可以忽略,可将月球视为质点,故B正确;C.观察月相的变化规律时,不能忽略月球的大小,不能将月球视为质点,故C错误;D.选择“嫦娥三号”的落月地点时,月球的形状是不能忽略的,不能将月球视为质点,故D 错误.故选B.2. 国际单位制中,力学基本单位是()A. 牛顿、米、秒B. 牛顿、千克、秒C. 千克、米、秒D. 牛顿、千克、米【答案】C【解析】这个单位是根据牛顿第二定律推导得到的导出单位,不属于国际单位制中力学的基本单位,国际单位制中力学的基本单位的是、、,故C正确.故选C.3. 漫画中的大力士用绳子拉动汽车,绳中的拉力为,绳与水平方向的夹角为;若将沿水平和竖直方向分解,则其竖直方向的分力为()A. B. C. D.【答案】A【解析】由平行四边形定则可得,竖直方向上分力F x=Fsinθ.故A正确,B、C、D错误.4. 关于速度与加速度的说法中,正确的是()A. 运动物体的加速度大,速度也一定大B. 运动物体的加速度变小,速度也一定变小C. 物体的速度变化大,加速度也一定大D. 物体的速度变化慢,加速度一定小【答案】D【解析】试题分析:加速度与速度没有直接的关系,加速度越大,速度可能很大,也有可能很小,A错误;如果物体加速度方向与速度方向相同,加速度在减小,速度却在增大,即速度增大得越来越慢,B错误;根据可知加速度a由速度的变化量△v和速度发生改变所需要的时间△t共同决定,虽然△v大,但△t更大时,a可以很小,C错误;加速度是表示速度变化快慢的物理量,物体的速度变化越慢,加速度越小,D正确;故选D。
北京市西城北京师范大学第二附属中学2017-2018学年高一数学上学期期中试题(含解析)一、选择题(共8小题,共40分)1.已知集合{24}A x x =<<,{3B x x =<或5}x >,则A B =().A .{25}x x <<B .{4x x <或5}x >C .{23}x x <<D .{2x x <或5}x >【答案】C【解析】∵集合{24}A x x =<<,集合{3B x x =<或5}x >, ∴集合{23}A B x x =<<. 故选C .2.函数21()lg 1x f x x -=+的定义域是().A .{1x x <-或12x ⎫>⎬⎭ B .12x x ⎧⎫>⎨⎬⎩⎭C .112x x ⎧⎫-<<⎨⎬⎩⎭D .{1}x x >-【答案】A【解析】要使函数有意义,则2101x x ->+,即(21)(1)0x x ->+,解得1x <-或12x >, ∴函数()f x 的定义域是{1x x <-或12x ⎫>⎬⎭.故选A .3.下列函数中是奇函数,又在定义域内为减函数的是().A .12xy ⎛⎫= ⎪⎝⎭B .1y x=C .3y x =-D .3log ()y x =-【答案】C【解析】A 项,12xy ⎛⎫= ⎪⎝⎭是非奇非偶函数,故A 错误;B 项,1y x =是奇函数,在(,0)-∞和(0,)∞+是减函数,但在定义域内不是减函数,故B 错误;C 项,3y x =-是奇函数,且在定义域内是减函数,故C 正确;D 项,3log ()y x =-是非奇非偶函数,故D 错误.故选C .4.设集合{0,1,2,3,4,5}U =,{1,2}A =,2{540}B x x x =∈-<Z +,则()U A B =ð().A .{0,1,2,3}B .{5}C .{1,2,4}D .{0,4,5}【答案】D【解析】∵集合2{540}{14}{2,3}B x x x x x =∈-<=∈<<=Z Z +, ∴{1,2,3}A B =, ∴(){0,4,5}U A B =ð. 故选D .5.函数2log 1y x =-与22x y -=的图象交点为00(,)x y ,则0x 所在区间是().A .(0,1)B .(1,2)C .(2,3)D .(3,4)【答案】C【解析】设函数22()(log 1)2x f x x -=--,则0(2)11210f =--=-<,222213(3)(log 31)log 3log 3log 022f =--=-=-, ∴函数()f x 在区间(2,3)内有零点,即函数2log 1y x =-与22x y -=的图象交点为00(,)x y 时, 0x 所在区间是(2,3).故选C .6.已知定义域为R 的函数()f x 在(8,)∞+上为减函数,且函数(8)y f x =+为偶函数,则().A .(6)(7)f f >B .(6)(9)f f >C .(7)(9)f f >D .(7)(10)f f >【答案】D【解析】∵(8)y f x =+是偶函数,∴(8)(8)f x f x =-++,即()y f x =关于直线8x =对称, ∴(6)(10)f f =,(7)(9)f f =. 又∵()f x 在(8,)∞+为减函数, ∴()f x 在(,8)-∞上为增函数, ∴(6)(7)f f <,即(10)(7)f f <. 故选D .7.已知函数23,0()ln(1),0x x x f x x x ⎧-<=⎨⎩≥++,若|()|f x ax ≥,则a 取值范围是().A .(,0]-∞B .(,1]-∞C .[3,0]-D .[ 3.1]-【答案】C【解析】当0x >时,根据ln(1)0x >+恒成立,则此时0a ≤, 当0x ≤时,根据23x x -+的取值为(,0]-∞,2|()|3f x x x ax =-≥, 当0x =时,不等式恒成立,当0x <时,有3a x -≥,即3a -≥. 综上可得,a 的取值范围是[3,0]-. 故选C .8.若定义在R 上的函数()f x ,其图象是连续不断的,且存在常数()λλ∈R 使得()()0f x f x λλ=++对任意的实数x 都成立,则称()f x 是一个“λ特征函数”则下列结论中正确的个数为().①()0f x =是常数函数中唯一的“λ特征函数”;②()21f x x =+不是“λ特征函数”;③“13特征函数”至少有一个零点; ④()e x f x =是一个“λ特征函数”;.A .1B .2C .3D .4【答案】C【解析】对于①设()f x C =是一个“λ特征函数”,则(1)0C λ=+,当1λ=-时,可以取实数集,因此()0f x =不是唯一一个常数“λ特征函数”,故①错误;对于②,∵()21f x x =+,∴()()2()1(21)0f x f x x x λλλλ==++++++,即1(1)2x λλλ=--+,∴当1λ=-时,()()20f x f x λλ=-≠++;1λ≠-时,()()0f x f x λλ=++有唯一解, ∴不存在常数()λλ∈R 使得()()0f x f x λλ=++对任意实数x 都成立, ∴()21f x x =+不是“λ特征函数”,故②正确;对于③,令0x =得11(0)033f f ⎛⎫= ⎪⎝⎭+,所以11(0)33f f ⎛⎫=- ⎪⎝⎭,若(0)0f =,显然()0f x =有实数根;若()0f x ≠,211(0)[(0)]033f f f ⎛⎫⋅=-< ⎪⎝⎭.又∵()f x 的函数图象是连续不断的,∴()f x 在10,3⎛⎫⎪⎝⎭上必有实数根,因此任意的“λ特征函数”必有根,即任意“13特征函数”至少有一个零点,故③正确;对于④,假设()e x f x =是一个“λ特征函数”,则e e 0x x λλ=++对任意实数x 成立,则有e 0x λ=+,而此式有解,所以()e xf x =是“λ特征函数”,故④正确.综上所述,结论正确的是②③④,共3个. 故选C .二、填空题(共6小题,共30分)9.已知集合{1}A x x =≤,{}B x x a =≥,且A B =R ,则实数a 的取值范围__________. 【答案】(,1]-∞ 【解析】用数轴表示集合A ,B ,若A B =R ,则1a ≤,即实数a 的取值范围是(,1]-∞.10.已知函数()f x ,()g x 分别由下表给出:则当[()]2f g x =时,x =【答案】3【解析】由表格可知:(1)2f =. ∵[()]2f g x =,∴()1g x =. 由表格知(3)1g =,故3x =.11.函数()log (1)1a f x x =-+(0a >且1a ≠)恒过点__________. 【答案】(2,1)【解析】由11x -=得2x =,故函数()log (1)1a f x x =-+恒过定点(2,1).12.已知幂函数()y f x =的图象过点,则(9)f =__________.【答案】【解析】设幂函数为()a f x x =,由于图象过点,得2a =32a =,∴32(9)9f =13.已知函数2()223f x ax x =-+在[1,1]x ∈-上恒小于零,则实数a 的取值范围为___________. 【答案】1,2⎛⎫-∞ ⎪⎝⎭【解析】由题意,22230ax x -<+在[1,1]x ∈-上恒成立. 当0x =时,不等式为30-<恒成立. 当0x ≠时,23111236a x ⎛⎫<-- ⎪⎝⎭.∵1(,1][1,)x ∈-∞-∞+,∴当1x =时,23111236x ⎛⎫-- ⎪⎝⎭取得最小值12,∴12a <.综上所述,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.14.设集合{1,2,.}n P n =,*n ∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. 则(1)(4)f =___________;(2)()f n 的解析式(用n 表示)()f n =___________. 【答案】(1)4;(2)2122,()2,nn n f n n ⎧⎪=⎨⎪⎩为偶数为奇数+【注意有文字】【解析】(1)当4n =时,4{1,2,3,4}P =,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4}, 故(4)4f =.(2)任取偶数n x P ∈,将x 除以2,若商仍为偶数,再除以2,经过k 次后,商必为奇数,此时记商为m ,于是2k x m =⋅,其中,m 为奇数,*k ∈N .由条件可知,若m A ∈,则x A ∈,k ⇔为偶数,若m A ∉,则x A k ∈⇔为奇数,于是x 是否属于A ,由m 是否属于A 确立,设n Q 是n P 中所有的奇数的集合,因此()f n 等于n Q 的子集个数,当n 为偶数时(或奇数时),n P 中奇数的个数是12n (或12n +).∴2122,()2,nn n f n n ⎧⎪=⎨⎪⎩为偶数为奇数+【注意有文字】.三、解答题(共6小题;共80分)15.若集合{24}A x x =-<<,{0}B x x m =-<. (1)若3m =,全集U A B =,试求()U A B ð. (2)若A B A =,求实数m 的取值范围.【答案】【解析】(1)当3m =时,由0x m -<,得3x <, ∴{3}B x x =<, ∴{4}A B x x ==<,则{34}U B x x =<≤ð, ∴(){34}U A B x x =<≤ð.(2)∵{24}A x x =-<<,{0}{}B x x m x x m =-<=<, 由AB A =得A B ⊆,∴4m ≥,即实数m 的取值范围是[4,)∞+.16.已知设函数()log (12)log (12)(0,1)a a f x x x a a =-->≠+. (1)求()f x 的定义域.(2)判断()f x 的奇偶性并予以证明. (3)求使()0f x >的x 的取值范围. 【答案】【解析】(1)要使函数()log (12)log (12)a a f x x x =--+(0a >且1a ≠)有意义, 则120120x x >⎧⎨->⎩+,解得1122x -<<.故函数()f x 的定义域为1122x x ⎧⎫-<<⎨⎬⎩⎭.(2)由(1)可知()f x 的定义域为1122x x ⎧⎫-<<⎨⎬⎩⎭,关于原点对称,又()log (12)log (12)()a a f x x x f x -=--=-+, ∴()f x 为奇函数.(3)()0f x >,即log (12)log (12)0log (12)log (12)a a a a x x x x -->⇒>-++,当1a >时,原不等式等价为1212x x >-+,解得0x >. 当01a <<,原不等式等价为1212x x <-+,记得0x <. 又∵()f x 的定义域为11,22⎛⎫- ⎪⎝⎭,∴当1a >时,使()0f x >的x 的取值范围是10,2⎛⎫⎪⎝⎭.当01a <<时,使()0f x >的x 的取值范围是1,02⎛⎫- ⎪⎝⎭.17.定义在[4,4]-上的奇函数()f x ,已知当[4,0]x ∈-时,1()()43x xaf x a =∈R +. (1)求()f x 在[0,4]上的解析式. (2)若[2,1]x ∈--时,不等式11()23xx m f x --≤恒成立,求实数m 的取值范围. 【答案】【解析】(1)∵()f x 是定义在[4,4]-上的奇函数, ∴(0)10f a ==+,得1a =-. 又∵当[4,0]x ∈-时,111()4343x x x xa f x ==-+, ∴当[0,4]x ∈时,[4,0]x -∈-,11()4343x x x x f x ---=-=-. 又()f x 是奇函数, ∴()()34x x f x f x =--=-.综上,当[0,4]x ∈时,()34x x f x =-. (2)∵[2,1]x ∈--,11()23x x m f x --≤恒成立,即11114323x x x x m ---≤在[2,1]x ∈--恒成立, ∴12432xx x m≤+在[2,1]x ∈--时恒成立. ∵20x >,∴12223x xm ⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭≤+. ∵12()223x xg x ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭+在R 上单调递减,∴[2,1]x ∈--时,12()223xxg x ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭+的最大值为221217(2)2232g --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭+,∴172m ≥. 即实数m 的取值范围是17,2⎡⎫∞⎪⎢⎣⎭+.18.某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设()f t 表示学生注意力指标.该小组发现()f t 随时间t (分钟)的变化规律(()f t 越大,表明学生的注意力越集中)如下:1010060(010)()340(1020)15640(2040)ta t f t t t t ⎧-⎪⎪=<⎨⎪-<⎪⎩≤≤≤≤+(0a >且1a ≠). 若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值.(2)上课后第5分钟和下课前5分钟比较,哪个时间注意力更集中?并请说明理由. (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? 【答案】【解析】(1)由题意得,当5t =时,()140f t =,即10510060140a ⋅-=, 解得4a =.(2)∵(5)140f =,(35)1535640115f =-⨯=+, ∴(5)(35)f f >,故上课后第5分钟时比下课前5分钟时注意力更集中.(3)①当010t <≤时,由(1)知,410()100460140f t =⋅-≥,解得510t ≤≤; ②当1020t <≤时,()340140f t =>恒成立;③当20140t <≤时,()15640140f t t =-≥+,解得100203t <≤. 综上所述,10053t ≤≤. 故学生的注意力指标至少达到140的时间能保持10085533-=分钟.19.设a ∈R ,函数2()||f x x ax =+.(1)若()f x 在[0,1]上单调递增,求a 的取值范围.(2)即()M a 为()f x 在[0,1]上的最大值,求()M a 的最小值. 【答案】【解析】(1)考虑函数()f x 的图象,可知①当0a ≥时,在[0,1]上,2()f x x ax =+,显然()f x 在[0,1]上单调递增; ②当0a <时,在[0,)∞+上,22(),[0,](),[,)x ax x a f x x ax x a ⎧-∈-⎪=⎨∈-∞⎪⎩+++, ∴()f x 在[0,1]上单调递增的充要条件是12a-≥,2a -≤.综上所述,若()f x 在[0,1]上单调递增,则2a -≤或0a ≥. (2)若0a ≥时,2()f x x ax =+,对称轴为2ax =-,()f x 站在[0,1]上递增, ∴()1M a a =+;若0a <,则()f x 在0,2a ⎡⎤-⎢⎥⎣⎦递增,在,2a a ⎛⎫-- ⎪⎝⎭递减,在(,)a -∞+递增;若12a-≤,即2a -≤时,()f x 在[0,1]上递增,此时()1M a a =--;若12a -<≤,即22a -<-≤()f x 的最大值为2()4aM a =;若1>,即2a >-()f x 的最大值()1M a a =+,即有21,2()1,2,224a a M a a a a a ⎧⎪>-⎪⎪=---⎨⎪⎪-<-⎪⎩≤≤+,当2a >-()3M a >- 当2a -≤时,()1M a ≥;当22a -<-≤21()(234M a --=-≥综上可得()M a的最小值为3-20.已知:集合12{(,,,,),{0,1},1,2,,}n i n i X X x x x x x i n Ω==∈=,其中3n ≥.12(,,,,,)i n n X x x x x ∀=∈Ω,称i x 为X 的第i 个坐标分量.若n S ⊆Ω,且满足如下两条性质:①S 中元素个数不少于4个.②X ∀,Y ,Z S ∈,存在{1,2,,}m n ∈,使得X ,Y ,Z 的第m 个坐标分量都是1.则称S 为n Ω的一个好子集.(1)若{,,,}S X Y Z W =为3Ω的一个好子集,且(1,1,0)X =,(1,0,1)Y =,写出Z ,W . (2)若S 为n Ω的一个好子集,求证:S 中元素个数不超过12n -.(3)若S 为n Ω的一个好子集且S 中恰好有12n -个元素,求证:一定存在唯一一个{1,2,,}k n ∈,使得S 中所有元素的第k 个坐标分量都是1. 【答案】【解析】(1)(1,0,0)Z =,(1,1,1)W =.(2)对于n x ⊆Ω,考虑元素12{1,1,,1,1)i n X x x x x '=----;显然n X '∈Ω,X ∀,Y ,X ',对于任意的{1,2,,}i n ∈,i x ,i y ,1i x -不可能都为1, 可得X ,X '不可能都是好子集S 中.又因为取定X ,则X '一定存在且唯一,而且X X '≠, 由x 的定义知道,X ∀,Y ∈Ω,X Y X Y ''=⇔=这样,集合S 中元素的个数一定小于或等于集合n Ω中元素个数的一半,而集合n Ω中元素的个数为2n ,所以S 中元素个数不超过12n -. (3)12{,,}i n X x x x x ∀=,12{,,,}i n n Y y y y y ∀=∈Ω,定义元素X ,Y 的乘积为1122{,,,}i i n n XY x y x y x y x y =,显然n XY ∈Ω.我们证明“对任意的12{,,}i n X x x x x S =∈,12{,}i n Y y y y y S =∈都有XY S ∈.”假设存在X ,Y S ∈使得XY S ∉,则由(2)知,1122()(1,1,1,1)i i n n XY x y x y x y x y S '=----∈. 此时,对于任意的{1,2,}k n ∈,k x ,k y ,1k k x y -不可能同时为1,矛盾,所以XY S ∈.因为S 中只有12n -个元素,我们记12{,,}n Z z z z =为S 中所有元素的成绩,根据上面的结论,我们知道12(,)n Z z z z S =∈,显然这个元素的坐标分量不能都为0,不妨设1k Z =,根据Z 的定义X ,可以知道S 中所有元素的k 坐标分量都为1. 下面再证明k 的唯一性:若还有1t Z =,即S 中所有元素的t 坐标分量都为1. 所以此时集合S 中元素个数至多为22n -个,矛盾. 所以结论成立.。
北京师大附中2017-2018学年上学期高一年级期中考试数学试卷(AP)本试卷满分100分,考试时间为120分钟。
第一部分:中文卷(80分)一、选择题:本大题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合,,则A. B.C. D.【答案】D【解析】集合,,则.故选D.2. 若函数的定义域和值域都为R,则关于实数a的下列说法中正确的是A. 或3B.C. 或D.【答案】B【解析】若函数的定义域和值域都为R,则.解得或3.当时,,满足题意;当时,,值域为{1},不满足题意.故选B.3. 下列函数中,在区间上是增函数的是A. B.C. D.【答案】A【解析】已知函数为上的增函数,,为R上的减函数;在和上单调递减.故选A.4. 给定四个函数:①;②;③;④,其中是奇函数的有A. 1个B. 2个C. 3个D. 4个【答案】B【解析】①函数的定义域为R,则,则函数f(x)是奇函数;②函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;③函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;④函数的定义域为(−∞,0)∪(0,+∞),,则函数f(x)是奇函数,故选B.5. 函数在R上为增函数,且,则实数m的取值范围是A. B.C. D.【答案】C【解析】函数在R上为增函数,且,所以,解得.故选C.6. 函数与的图象可能是A. B. C. D.【答案】D【解析】显然函数过原点,故排除A,二次函数函数的零点为和,一次函数的零点为.两函数图象在x轴上有一个公共点,故排除B,C.D.由一次函数图象可得a<0,b>0,函数函数开口向下,零点,此选项正确.故选D.点睛:二次函数y=ax2+bx+c(a、b、c是常数,a≠0)图象与系数的关系(1)a决定开口方向及开口大小,当a>0时,开口向上;当a<0时,开口向下;(2)c决定二次函数与y轴交点的位置.当x=0时,y=c,所以二次函数与y轴有且只有一个交点(0,c).①当c=0时,抛物线经过原点;②当c>0时,抛物线与y轴交于正半轴;③当c<0时,抛物线与y轴交于负半轴.2、一次函数y=kx+b图象跨越的象限:k>0,b>0,则函数经过一、二、三象限;k>0,b<0,函数经过一、三、四象限;k<0,b>0时,函数经过一、二、四象限;k<0,b<0时,函数经过二、三、四象限.7. 设,,,则a,b,c之间的关系是A. B. C. D.【答案】A【解析】试题分析:由函数的图象可知,又由函数的图象可得该函数在上单调增,因为,则,综上所述选A.考点:1.对数函数;2.幂函数的单调性8. 函数的零点所在的大致区间是A. (1,2)B.C.D. 和(3,4)【答案】C【解析】函数单调递增,且有.所以函数有一个零点在区间内.故选C.点睛:本题主要考查了函数的零点与方程的关系;分段函数的应用等知识点. 函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.二、填空题:本大题共6小题,每小题4分,共24分9. 奇函数的定义域为,若当时,的图象如下图,则不等式的解是_________【答案】【解析】由于奇函数关于原点对称,故函数(x)在定义域为[−5,5]的图象如图由图象知不等式f(x)<0的解集是,故答案为:.10. 函数,则_________【答案】【解析】试题分析:由知.考点:分段函数11. 若函数在(]上单调递减,则p的取值范围是________【答案】【解析】函数为开口向上的抛物线,对称轴为.在(]上单调递减,在单调递增.所以,解得.答案为.12. 的值是_____________。
2018年北京师范大学第二附属中学高一上学期期中考试数学试题一、单选题1.已知集合,或,则().A. B. 或 C. D. 或【答案】C【解析】分析:由已知条件利用交集的定义即可.详解:∵集合,集合或,∴集合.故选.点睛:本题考查交集的求法,解题时要认真审题,注意交集的定义的合理运用. 2.函数的定义域是().A. 或B.C.D.【答案】A【解析】分析:由真数大于0,利用分式不等式的解法即可得到答案.详解:要使函数有意义,则,即,解得或,∴函数的定义域是或.故选.点睛:本题考查函数的定义域及其求法.3.下列函数中是奇函数,又在定义域内为减函数的是().A. B. C. D.【答案】C【解析】是非奇非偶函数,在定义域内为减函数;是奇函数,在定义域内不单调;y=-x 3是奇函数,又在定义域内为减函数;是非奇非偶函数,在定义域内为减函数;故选:C4.设集合,,,则().A. B. C. D.【答案】D【解析】分析:求出集合B中不等式的解集,找出解集中的整数解确定出B,求出A与B的并集,找出全集中不属于并集的元素,即可求出所求.详解:∵集合,∴,∴.故选.点睛:此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.5.函数与的图象交点为,则所在区间是().A. B. C. D.【答案】C【解析】令函数,,由于,所以区间(2,3)必有零点。
6.已知定义域为的函数在上为减函数,且函数为偶函数,则().A. B. C. D.【答案】D【解析】分析:根据为偶函数,则,即关于直线对称,又在为减函数,故在上为增函数,故可得答案.详解:∵是偶函数,∴,即关于直线对称,∴,.又∵在为减函数,∴在上为增函数,∴,即.故选.点睛:应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得方程(组),进而得出参数的值.7.已知函数,若,则取值范围是().A. B. C. D.【答案】C【解析】试题分析:由题意作出函数和的图像(如图),由图象得,函数在图象为经过原点的直线,当直线介于直线和轴之间时符合题意,直线为曲线的切线,且此时在第二象限的解析式为,导数为,因为,所以,故直线的斜率为,所以只需直线的斜率介于与0之间即可,即;故选C.【考点】1.导数的几何意义;2.数形结合思想.8.若定义在上的函数,其图象是连续不断的,且存在常数使得对任意的实数都成立,则称是一个“特征函数”则下列结论中正确的个数为().①是常数函数中唯一的“特征函数”;②不是“特征函数”;③“特征函数”至少有一个零点;④是一个“特征函数”;.A. B. C. D.【答案】C【解析】分析:利用新定义“特征函数”,逐个判断即可得到答案.详解:对于①设是一个“特征函数”,则,当时,可以取实数集,因此不是唯一一个常数“特征函数”,故①错误;对于②,∵,∴,即,∴当时,;时,有唯一解,∴不存在常数使得对任意实数都成立,∴不是“特征函数”,故②正确;对于③,令得,所以,若,显然有实数根;若,.又∵的函数图象是连续不断的,∴在上必有实数根,因此任意的“特征函数”必有根,即任意“特征函数”至少有一个零点,故③正确;对于④,假设是一个“特征函数”,则对任意实数成立,则有,而此式有解,所以是“特征函数”,故④正确.综上所述,结论正确的是②③④,共个.故选.点睛:本题考查函数的概念及构成要素,考查函数的零点,正确理解“特征函数”的概念是关键.二、填空题9.已知集合,,且,则实数的取值范围__________.【答案】.【解析】分析:根据两个集合的并集的定义,结合条件即可.详解:用数轴表示集合,,若,则,即实数的取值范围是.故答案为:.点睛:本题主要考查集合关系中参数的取值范围问题,两个集合的并集的定义和求法. 10.已知函数,分别由下表给出:则当时,___________.【答案】3.【解析】分析:根据表格可知,则,故可得答案.详解:由表格可知:.∵,∴.由表格知,故.故答案为:3.点睛:本题是根据表格求安徽省农户值或自变量的值,看清楚函数关系和自变量对照表格即可求出.11.函数(且)恒过点__________.【答案】.【解析】试题分析:因为,所以恒过定点【考点】对数函数性质12.已知幂函数的图象过点,则__________.【答案】.【解析】分析:先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求的值.详解:设幂函数为,由于图象过点,得,∴,∴.故答案为:.点睛:本题考查幂函数的定义及其应用.13.已知函数在上恒小于零,则实数的取值范围为___________.【答案】.【解析】分析:通过讨论a的值,判断函数是一次函数还是二次函数,分别根据情况即可求出范围.详解:由题意,在上恒成立.当时,不等式为恒成立.当时,.∵,∴当时,取得最小值,∴.综上所述,实数的取值范围是.故答案为:.点睛:本题考查了二次函数的性质,考查分类讨论思想.14.设集合,.记为同时满足下列条件的集合的个数:①;②若,则;③若,则.则()___________;()的解析式(用表示)___________.【答案】 4..【解析】分析:(1)由题意得,符合条件的集合为:,,,,故可求出;(2)任取偶数,将除以,若商仍为偶数,再除以,经过次后,商必为奇数,此时记商为,可知,若,则,为偶数,若,则为奇数,可求.详解:()当时,,符合条件的集合为:,,,,故.()任取偶数,将除以,若商仍为偶数,再除以,经过次后,商必为奇数,此时记商为,于是,其中,为奇数,.由条件可知,若,则,为偶数,若,则为奇数,于是是否属于,由是否属于确立,设是中所有的奇数的集合,因此等于的子集个数,当为偶数时(或奇数时),中奇数的个数是(或).∴.点睛:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义.三、解答题15.若集合,.()若,全集,试求.()若,求实数的取值范围.【答案】(1).(2).【解析】分析:(1)根据集合的基本运算求,即可求出答案;(2)根据,建立条件关系即可求出实数m的取值范围.详解:()当时,由,得,∴,∴,则,∴.()∵,,由得,∴,即实数的取值范围是.点睛:解决集合运算问题的方法在进行集合运算时,要尽可能地利用数形结合的思想使抽象问题直观化.(1)用列举法表示的集合进行交、并、补的运算,常采用Venn图法解决,此时要搞清Venn图中的各部分区域表示的实际意义.(2)用描述法表示的数集进行运算,常采用数轴分析法解决,此时要注意“端点”能否取到.(3)若给定的集合是点集,常采用数形结合法求解.16.已知设函数.()求的定义域.()判断的奇偶性并予以证明.()求使的的取值范围.【答案】(1).(2)为奇函数;证明见解析.(3).【解析】分析:(1)根据对数函数成立的条件即可求出函数的定义域;(2)根据函数奇偶性的定义进行判断和证明;(3)根据对数函数的性质解不等式即可.详解:()要使函数(且)有意义,则,解得.故函数的定义域为.()由()可知的定义域为,关于原点对称,又,∴为奇函数.(),即,当时,原不等式等价为,解得.当,原不等式等价为,记得.又∵的定义域为,∴当时,使的的取值范围是.当时,使的的取值范围是.点睛:本题主要考查函数定义域和函数奇偶性的判断,根据函数奇偶性的定义结合对数函数的性质是解本题的关键.17.定义在上的奇函数,已知当时,.()求在上的解析式.()若时,不等式恒成立,求实数的取值范围.【答案】(1).(2).【解析】分析:(1)根据奇函数的性质即可求出a,设时,,易求,根据奇函数性质可得;(2)分离参数,构造函数,求出函数的最值问题得以解决.详解:()∵是定义在上的奇函数,∴,得.又∵当时,,∴当时,,.又是奇函数,∴.综上,当时,.()∵,恒成立,即在恒成立,∴在时恒成立.∵,∴.∵在上单调递减,∴时,的最大值为,∴.即实数的取值范围是.点睛:本题考查函数的奇偶性及其应用,不等式恒成立问题,考查学生解决问题的能力. 18.某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设表示学生注意力指标.该小组发现随时间(分钟)的变化规律(越大,表明学生的注意力越集中)如下:(且).若上课后第分钟时的注意力指标为,回答下列问题:()求的值.()上课后第分钟和下课前分钟比较,哪个时间注意力更集中?并请说明理由.()在一节课中,学生的注意力指标至少达到的时间能保持多长?【答案】(1).(2)上课后第分钟时比下课前分钟时注意力更集中;理由见解析.(3)学生的注意力指标至少达到的时间能保持分钟.【解析】分析:(1)由题意,,从而求出a的值;(2)上课后第5分钟末时,,下课前5分钟末,从而可得答案;(3)分别讨论三段函数上,从而求出的解,从而求在一节课中,学生的注意力指标至少达到140的时间能保持的时间.详解:()由题意得,当时,,即,解得.()∵,,∴,故上课后第分钟时比下课前分钟时注意力更集中.()①当时,由()知,,解得;②当时,恒成立;③当时,,解得.综上所述,.故学生的注意力指标至少达到的时间能保持分钟.点睛:本题考查了分段函数的应用,同时考查了实际问题转化为数学问题的能力. 19.设,函数.()若在上单调递增,求的取值范围.()即为在上的最大值,求的最小值.【答案】(1) 或.(2).【解析】试题分析:(Ⅰ)分类讨论当a=0时,当a>0时,当a<0时,运用单调性,判断求解;(Ⅱ)对a讨论,分a≥0时,a<0,再分a≤-2时,-2<a≤2-,a>2-,运用单调性,求得最大值;再由分段函数的单调性,求得最小值试题解析:(Ⅰ)考虑函数的图像,可知①当时,在上,,显然在上单调递增;②当时,在上,,故在上单调递增的充要条件是,即.所以在上单调递增的充要条件是或;(Ⅱ)利用(Ⅰ),当或时,在上单调递增,则;当时,,解,得,故当时,综上,,于是的最小值为.【考点】函数的最值及其几何意义;函数单调性的判断与证明20.已知:集合,其中.,称为的第个坐标分量.若,且满足如下两条性质:①中元素个数不少于个.②,,,存在,使得,,的第个坐标分量都是.则称为的一个好子集.()若为的一个好子集,且,,写出,.()若为的一个好子集,求证:中元素个数不超过.()若为的一个好子集且中恰好有个元素,求证:一定存在唯一一个,使得中所有元素的第个坐标分量都是.【答案】(1),.(2) 证明见解析.(3)证明见解析.【解析】分析:(1)根据好子集的定义直接写出Z,W;(2)若S为的一个好子集,考虑元素,进行判断证明即可;(3)根据好子集的定义,证明存在性和唯一性即可得到结论.详解:(),.()对于,考虑元素;显然,,,,对于任意的,,,不可能都为,可得,不可能都是好子集中.又因为取定,则一定存在且唯一,而且,由的定义知道,,,这样,集合中元素的个数一定小于或等于集合中元素个数的一半,而集合中元素的个数为,所以中元素个数不超过.(),,定义元素,的乘积为,显然.我们证明“对任意的,都有.”假设存在,使得,则由()知,.此时,对于任意的,,,不可能同时为,矛盾,所以.因为中只有个元素,我们记为中所有元素的成绩,根据上面的结论,我们知道,显然这个元素的坐标分量不能都为,不妨设,根据的定义,可以知道中所有元素的坐标分量都为.下面再证明的唯一性:若还有,即中所有元素的坐标分量都为.所以此时集合中元素个数至多为个,矛盾.所以结论成立.点睛:解决集合新定义问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.。