第四章数字控制器的直接设计资料
- 格式:ppt
- 大小:5.13 MB
- 文档页数:12
数字控制器的连续化设计步骤-概述说明以及解释1.引言1.1 概述数字控制器的连续化设计步骤是指将传统的离散控制器转化为连续化控制器的过程。
在数字控制领域,离散控制器常常由于采样时间过长或采样频率过低而导致性能不佳,无法满足实际控制需求。
为了克服这一问题,连续化设计步骤被提出,旨在将离散控制器转化为连续时间域的控制器,从而提高控制系统的动态性能。
在连续化设计步骤中,首先需要对系统进行建模和分析,以获得系统的数学模型。
然后,通过使用连续化设计方法,对离散控制器进行调整和改进。
这个过程包括参数调节和滤波器设计等步骤,以获得更高的控制性能。
通过连续化设计,离散控制器可以更好地适应连续时间域的控制系统,从而提高了系统的响应速度和稳定性。
此外,连续化设计还可以有效地减少系统的抖动和震荡现象,使系统更加平稳。
本文将详细介绍数字控制器的连续化设计步骤。
首先,会对连续化设计的概念和背景进行概述,阐明其在数字控制领域的重要性和意义。
接下来,会详细介绍连续化设计的具体步骤,包括系统建模、参数调节和滤波器设计等内容。
最后,对连续化设计的优点和局限性进行总结,并展望其未来的发展方向。
通过本文对数字控制器的连续化设计步骤的详细介绍,读者将能够深入了解如何将离散控制器转化为连续时间域的控制器,并在实际应用中取得更好的控制效果。
同时,本文还将展示连续化设计在控制领域的巨大潜力,并为相关领域的研究和应用提供有益的参考。
1.2 文章结构文章结构部分的内容:本文主要围绕数字控制器的连续化设计步骤展开讨论,分为引言、正文和结论三个主要部分。
引言部分主要对本文的研究背景和意义进行介绍。
首先对数字控制器进行了概述,指出了数字控制器在工业自动化领域的重要性和应用广泛性。
随后介绍了本文的结构,以便读者更好地理解本文的组织框架。
最后明确了本文的目的,即通过对数字控制器的连续化设计步骤进行研究,为相关领域的研究人员提供指导和参考。
正文部分按照步骤进行了详细的介绍。
第四章数字控制器的连续化设计方法模拟控制系统的控制过程是通过传感器把被测的各个模拟参量,比如温度、流量、压力、液位、成份等,变换成电信号(电流、电压) ,再送给模拟调节器。
在调节器中,被测模拟参量转换成的电信号与设定值进行比较后,经过PID控制器送到执行机构,改变进给量,达到自动调节的目的。
系统的控制器是连续模拟环节,也称为模拟调节器。
而在数字控制系统中,用数字控制器来代替模拟调节器。
传感器输出的电信号通过A/D转换器转换成数字信号,送给数字控制器。
控制器按照一定的控制算法进行运算处理后,输出控制量,再经过D/A转换成模拟量,通过执行机构去控制生产过程,使控制参数达到给定值。
在计算机控制系统中,用计算机来控制和调节被控对象,实现数字控制器的功能。
计算机控制系统的设计,是指在给定系统性能指标的条件下,设计出控制器的控制规律和相应的控制算法,并通过控制程序加以实现,对硬件电路、外围设备、执行机构等进行控制,实现控制功能。
为什么要用计算机实现数字控制器的功能?主要是因为它有以下优点:(1) 可以分时控制,实现多回路控制计算机的运行速度比较快,而被控对象变化一般都比较缓慢,因此用一台计算机可以控制多个外围设备。
计算机采用分时控制,轮流为每个外围设备服务,既提高了控制系统的速度,又大大节省了硬件开销。
(2) 控制算法灵活,功能强大,能实现复杂的控制规律使用计算机,通过控制程序实现控制算法,可根据实际需要调节控制参数,不需要修改硬件就可改变控制方案,因此非常灵活。
此外计算机不仅可以实现数字PID控制,而且还可以应用直接数字控制、模糊控制、自适应控制等各种控制方法。
计算机控制系统中,计算机不仅要完成控制任务,还可实现监控、数据采集、显示、报警等各种功能,因此控制系统的功能非常强大,可以节约人力、物力。
(3) 系统的可靠性高,稳定性好用应用软件实现数字控制器的功能,比用硬件组成的调节器具有更高的可靠性和稳定性,而且容易调试,维修方便。