《统计学:思想、方法与应用》第7章 方差分析
- 格式:pptx
- 大小:368.00 KB
- 文档页数:42
旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
方差分析和卡方检验是统计学中两种常用的分析方法,它们在不同的问题领域中有着广泛的应用。
方差分析主要用于比较多个总体均值之间的差异,而卡方检验则用于分析分类数据的关联性和独立性。
方差分析是一种用于比较三个或更多个样本均值的统计方法。
在方差分析中,我们假设总体均值相等,然后通过计算组内变异和组间变异来判断这个假设是否成立。
方差分析的基本思想是将总体方差分解成组内方差和组间方差,进而判断组间方差占总变差的比例是否显著大于组内方差的比例。
通过方差分析,我们可以分析因素对总体均值的影响,并进行多组之间的比较。
方差分析的常见类型有单因素方差分析和多因素方差分析,分别适用于不同的研究设计。
卡方检验是一种常用的非参数检验方法,用于分析分类数据的关联性和独立性。
分类数据是指由频数或频率构成的数据,例如某个班级学生的分数等级、不同城市居民的职业分布等。
卡方检验的基本原理是比较观察频数与期望频数之间的差异,如果差异显著,则我们可以拒绝原假设,认为两个变量之间存在关联性。
卡方检验的应用领域非常广泛,例如医学研究中的药物疗效评价、市场调查中的产品偏好分析等。
尽管方差分析和卡方检验有着不同的应用对象和基本原理,但它们都是统计学中重要的推断方法,具有一定的共性。
首先,方差分析和卡方检验都是基于统计假设检验的思想,通过计算特定统计量来判断样本数据是否支持或反对某个假设。
其次,方差分析和卡方检验都需要明确的研究问题和研究设计,并进行数据收集和处理。
最后,方差分析和卡方检验都可以通过计算显著性水平来进行结果的判断和推断。
在实际应用中,我们需要根据具体问题选择合适的统计方法进行数据分析。
如果我们希望比较多个总体均值的差异,可以选择方差分析方法;如果我们关心分类数据的关联性和独立性,可以选择卡方检验方法。
当然,这只是方差分析和卡方检验的基本应用,实际研究中可能还需要考虑其他因素和方法。
总之,方差分析和卡方检验是统计学中两种常用的分析方法,它们在不同的问题领域中都有着广泛的应用。
精品文档.第一章 导论1、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度的不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
按照统计数据的收集方法,可以将其分为观测数据和实验数据。
按照被描述的现象与时间的关系,可以将统计数据分为截面数据和时间序列数据。
分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
顺序数据是只能归于某一有序类别的非数字型数据。
顺序数据虽然也是类别,但这些类别是有序的,是用文字来表述的。
数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值。
现实中处理的大多数都是数值型数据。
2、解释分类数据、顺序数据和数值数据的意义。
对分类数据,我们通常计算出各组的频数或频率,计算其众数和异众比率,进行列联表分析和x 2检验等;对顺序数据,可以计算其中位数和四分位差,计算等级相关系数等;对数值型数据,可以用更多的统计方法进行分析,如计算各种统计量,进行参数估计和检验等 3、举例说明总体、样本、参数、统计量、变量这几个概念。
总体:是包含所研究的全部个体的集合,它通常由所研究的一些个体组成。
如多个企业构成的集合,多个居民户构成的集合,多个人构成的集合样本:是从总体中抽出的一部分元素的集合。
如从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。
参数:是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。
在统计中,总体参数通常用希腊字母表示,如,总体平均数用u (miu )表示,总体标准差用(sigma )表示,总体比例用(pai )表示,等。
统计量:是用来描述样本特征的概括性数字度量,它是根据样本数据计算出来的一个量,由于抽样是随机的,因此统计量是样本的函数。
样本统计量通常用英文字母来表示。
如,样本平均数用(x-bar )表示,样本标准车用s 表示,样本比例用p 表示,等。
变量:是说明现象某种特征的概念。
方差分析与协方差分析方差分析 (Analysis of Variance, ANOVA) 和协方差分析 (Analysis of Covariance, ANCOVA) 是统计学中常用的两种数据分析方法。
它们在比较多个组或处理之间的差异时非常有用,并且可以探究因素对观察结果的影响。
本文将详细介绍方差分析和协方差分析的概念、原理和应用。
一、方差分析的概念和原理方差分析是一种用于比较多个组之间均值差异的统计方法。
它基于对总体方差的分解,将观察结果的变异分解成不同的来源,如组内变异和组间变异。
方差分析的目标是确定组间变异是否显著大于组内变异,进而判断不同组均值之间的差异是否具有统计学意义。
方差分析通常基于以下假设:1. 观察结果服从正态分布;2. 不同组之间的观察结果具有同方差性;3. 观察结果是相互独立的。
方差分析的原理是通过计算不同组之间的均方差(Mean Square, MS)和F统计量来进行推断。
F统计量是组间均方差与组内均方差的比值,如果F值显著大于1,则说明不同组之间存在显著差异。
方差分析可以分为单因素方差分析和多因素方差分析,其中单因素方差分析适用于只有一个自变量的情况,而多因素方差分析则适用于有多个自变量的情况。
二、方差分析的应用方差分析在科学研究和实际应用中广泛应用,以下是一些常见的应用场景:1. 实验比较:方差分析可用于比较不同处理、不同实验条件下的实验结果。
例如,在农业领域,可以利用方差分析比较不同肥料、不同温度等对作物产量的影响。
2. 组间比较:方差分析可用于比较不同组别、不同样本间的差异。
例如,在医学研究中,可以利用方差分析比较不同药物对疾病治疗效果的差异。
3. 教育评估:方差分析可用于教育研究中,比较不同学校或不同教学方法对学生学习成绩的影响。
三、协方差分析的概念和原理协方差分析是一种结合方差分析和线性回归分析的方法。
它用于比较多个组别或处理之间的差异,同时控制一个或多个协变量的影响。
统计学中的方差分析和多元统计方法统计学是一门研究数据收集、处理和分析的学科,它在各个领域都有着广泛的应用。
方差分析和多元统计方法是统计学中两个重要的技术工具,它们在数据分析和研究中发挥着重要的作用。
本文将分别介绍方差分析和多元统计方法的基本概念和应用,并对其在实际研究中的意义进行讨论。
一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或更多个样本平均值差异的统计方法。
它的基本思想是通过比较组间方差和组内方差来判断不同样本之间的平均值是否有显著差异。
方差分析通常用于分析实验数据和观察数据,常见的有单因素方差分析和多因素方差分析。
在单因素方差分析中,我们只考虑一个因素对观测结果的影响,例如研究不同教育水平对学生成绩的影响。
我们将样本按照教育水平分组,并通过计算组间方差和组内方差来判断教育水平对学生成绩的影响是否显著。
而在多因素方差分析中,我们考虑多个因素对观测结果的影响,例如研究不同教育水平和不同性别对学生成绩的综合影响。
我们除了计算组间方差和组内方差外,还需要考虑不同因素之间的交互作用,以综合判断各个因素对学生成绩的影响程度。
方差分析的结果通常通过计算F值和p值进行判断,其中F值表示组间方差与组内方差之比,而p值则表示差异的显著性程度。
通过方差分析,我们可以得出结论,确定不同因素对观测结果的影响是否具有统计学意义。
二、多元统计方法多元统计方法是一种处理多个变量间相互关系的统计方法,它能够同时考虑多个变量对观测结果的综合影响。
多元统计方法包括相关分析、回归分析、主成分分析等多种技术手段,它们在统计学和实际研究中被广泛应用。
相关分析是研究变量间线性相关关系的方法,通过计算相关系数来描述变量之间的相关性强度和方向。
例如,我们可以通过相关分析来探究身高和体重之间的关系,以及年龄和工作经验之间的关系。
回归分析是一种用于建立变量之间数学关系的方法,它能够通过一组自变量预测因变量的数值。
统计学中的方差分析方法方差分析(Analysis of Variance,简称ANOVA)是统计学中常用的一种假设检验方法,用于比较两个或更多个样本均值是否存在差异。
它通过分析不同组之间的方差来评估组内和组间的变异情况,进而得出结论。
一、方差分析的基本思想方差分析基于以下两个基本假设:1. 原假设(H0):各总体均值相等,即样本所来自的总体没有差异;2. 备择假设(H1):各总体均值不相等,即至少存在一个样本来自于与其他样本不同的总体。
二、一元方差分析(One-way ANOVA)一元方差分析适用于只有一个自变量的情况,它将样本根据自变量分为两个或多个组,然后比较这些组之间的均值差异。
下面以一个简单的案例来说明一元方差分析。
假设我们要研究三种不同肥料对植物生长的影响,我们将随机选取三个试验区,分别施用A、B和C三种不同的肥料,每个试验区都观察到了相应植物的生长情况(例如植物的高度)。
我们的目标是通过方差分析来判断这些不同肥料是否对植物的生长有显著的影响。
在执行一元方差分析之前,我们首先需要验证方差齐性的假设。
如果各组样本的方差相等,我们就可以继续使用方差分析进行比较。
常用的方差齐性检验方法有Bartlett检验和Levene检验。
在通过方差齐性检验后,我们可以进行一元方差分析。
分析结果将提供两个重要的统计量:F值和P值。
F值表示组间均方与组内均方的比值,P值则表示了接受原假设的概率。
如果P值较小,则说明组间的差异是显著的,我们可以拒绝原假设,接受备择假设,即不同肥料对植物生长有显著影响。
三、多元方差分析(Two-way ANOVA)多元方差分析适用于有两个以上自变量的情况,分析对象的均值差异可以归因于两个或多个自变量的相互作用。
这种分析方法常用于研究两个或多个因素对实验结果的影响情况。
以品牌和价格对手机销量的影响为例,我们假设品牌和价格是两个自变量,手机销量是因变量。
我们可以将样本分成不同的组合,比如将不同品牌的手机按不同的价格段进行分类。
第九章方差分析第一节方差分析的一般问题一、方差分析的意义在工农业生产和科学研究中,经常要搞一些试验活动。
比如,为了解某个新品种的种植效果,需要在土壤条件、温度、湿度、施肥、灌溉等因素相同的情况下,将新品种与其他同类品种的种植结果作比较。
商品的包装方式和在商场里的摆放位置,对吸引顾客是有帮助的,那么为确定某商品合适的包装和销售位置,也可以进行观察试验。
在化工生产中,原料的成分、反应温度、压力、时间、催化剂、设备水平、操作规程等,对产品的得率和质量有很大的影响,通过实验研究,可以帮助我们找到一个最优的生产方案。
在试验基础上取得的数据,称为试验数据。
方差分析技术是对试验数据进行分析的一种比较有效的统计方法。
方差分析是费暄在马铃薯种植试验中首先提出来的,当初他采用的处理方法是,把观察数据看作是马铃薯品种与试验误差共同影响的总和,然后把条件(马铃薯品种)变异和随机试验误差进行比较,以此分析马铃薯品种之间是否存在显著的差异。
后来费暄给出的总结性意见是,方差分析是在若干个能够互相比较的资料组中,把产生变异的原因(主要是条件因素和随机因素)加以明确区分的方法和技术。
二十世纪二十年代,费暄又对方差分析作了系统的研究,并把他的研究成果写在《供研究人员用统计方法》等著作中。
关于单个总体均值和两总体均值差的检验内容,我们在前面已作了比较系统的介绍。
从形式上看,方差分析把这一类检验问题向前拓展了一步,它能够同时对若干个总体均值是否相等的假设进行检验,从而大大提高了统计分析的效率。
另外,方差分析对样本的大小没有更多的限制。
无论是大样本还是小样本,均可以使用方差分析方法。
方差分析方法的最大好处在于,在资料分析过程中所带来的种种便利性,其一,它能够使资料的层次结构清晰有序,其二,它能把一切需要进行的假设检验归结成一种共同格式。
有鉴于此,方差分析的思想逐渐渗透到统计学的许多方法之中。
比如,我们在相关与回归分析一章中所述的总离差平方和的分解,实际上就是方差分析思想的应用。
方差分析的概念与应用方差分析(Analysis of Variance,简称ANOVA)是一种统计分析方法,用于比较两个或两个以上样本均值是否存在显著差异。
通过对不同组之间的方差进行比较,判断样本均值之间是否存在显著性差异。
方差分析广泛应用于实验设计和数据分析中,是一种重要的统计工具。
一、方差分析的基本概念方差分析是一种用于比较多个总体均值是否相等的统计方法。
在进行方差分析时,我们通常将数据分为不同的组别,然后比较这些组别之间的均值差异是否显著。
方差分析的基本思想是通过比较组间变异与组内变异的大小,来判断总体均值是否存在显著差异。
在方差分析中,有三种不同的方差:1. 总体方差(Total Variance):所有数据点与总体均值之间的离差平方和。
2. 组间方差(Between-group Variance):各组均值与总体均值之间的离差平方和,反映了不同组别之间的差异。
3. 组内方差(Within-group Variance):各组内部数据点与各自组均值之间的离差平方和,反映了组内数据的离散程度。
二、方差分析的应用领域1. 实验设计:方差分析广泛应用于实验设计中,用于比较不同处理组之间的均值差异,判断实验处理是否显著。
2. 医学研究:在医学研究中,方差分析常用于比较不同药物治疗组的疗效差异,评估治疗效果的显著性。
3. 市场调研:在市场调研中,方差分析可用于比较不同产品或广告策略对消费者行为的影响,帮助企业制定营销策略。
4. 教育评估:在教育领域,方差分析可用于比较不同教学方法或教育政策对学生成绩的影响,评估教育改革效果。
三、方差分析的步骤进行方差分析时,通常需要按照以下步骤进行:1. 提出假设:明确研究问题,提出原假设(各组均值相等)和备择假设(至少有一组均值不相等)。
2. 收集数据:根据研究设计,收集各组数据。
3. 方差分析:计算总体方差、组间方差和组内方差,进行方差分析。
4. 判断显著性:通过计算F值,比较P值与显著性水平,判断各组均值是否存在显著差异。
第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。
将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。