统计学第6章 方差分析法
- 格式:ppt
- 大小:609.50 KB
- 文档页数:57
第六章方差分析(五)[测量实验设计的方差分析一、重复测量的方差分析(一)重复测量实验设计的相关含义⑴重复测量实验设计的定义又叫:被试内设计、受试者内设计、单组实验设计、相关样本设计。
是每个被试或每组被试必须接受自变量的所有情况的处理(每个被试接受所有的实验处理水平或处理水平的结合)。
由于被试的行为是重复测量的,所以被试内实验设计也称重复测量实验设计。
(2)重复测量设计的基本原理每个被试者参与所有的实验处理,然后比较相同被试者在不同处理下的行为变化。
这种实验设计下的同一被试者既为实验组提供数据,也为控制组提供数据。
因此,被试者内设计无需另找控制组的被试者。
被试内设计不但节省了被试人数,而且不同组的被试个体差异也得到了最好的控制,被试内设计比被试间设计更有力,能更好的考察实验组和控制组之间的差异,这个优点使得许多研究者更倾向于使用被试内设计。
和被试间设计相反,被试内设计不会受到来自被试个体差异的困扰但却必需面对实验处理之间相互污染的问题。
可以采用平衡技术来控制这些差异。
(3)使用重复测量设计的主要目的重复测量实验设计的目的是所有被试自已做控制,使被试的各方面特点在该因素所有水平上保持恒定,克服被试间设计中存在的被试不同质的问题,以最大限度地控制由被试的个体差异带来的变异。
如果实验者主要想研究一个被试者对实验处理所引起的行为上的变化,一般可以考虑采用被试者内设计。
(二)重复测量实验设计的方差分析的条件重复测量实验设计方差分析是一般方差分析的深化,也具有正态性、变异的可加性和方差齐性等先决条件,还要求各重复测量数据组成的协方差矩阵满足球形性假设。
博克斯指出,若球状性假设得不到满足,则方差分析的F值是有偏的,会增加犯I类错误的可能。
(三)重复测量实验设计的方差分析的过程①建立检验假设;②计算离差平方和与均方;③进行F检验;④列出方差分析表。
二、单因素重复测量的方差分析(一)重复测量实验设计的基本方法实验中每个被试接受所有的处理水平。
第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
第六章方差分析(六)第五节多因素方差分析一、多因素方差分析的定义多因素方差分析是用来研究两个及两个以上控制变量是否会对观测变量产生显著影响。
多因素方差分析不仅能够分析多个因素对观测变量 的独立影响,更能够分析多个控制因素的交互作用是否对观测变量的分布产生显著影响,进而最终找到利于观测变量的最优组合。
多因素 方差分析包括完全随机设出随机区组设计。
二、平均数差异检验、单因素方差分析、多因素方差分析比较当需要比较两个以上平均数的差异时,要使用单因素方差分析,而不进行多次平均数差异检验,这样就可以降低统计误差。
如果单次进行 平均数比较率,即显著性水平是a ,进行两两平均数比较的次数是N ,多次两两平均数差异的错误率:P N =l-(l-a)n o 同理多因素方差由于 同时进行两个因素以上的方差分析,亦能降低统计误差,同时,也能处理交互作用。
第六节事后检验(多个平均数之间的比较)一、事后检验[事后多重比较]事后检验的定义:方差分析所要检验的零假设是所有k 个处理的总体平均数没有显著性差异,相应的备择假设是k 个处理中至少有2个处 理的总体平均数之间存在显著差异。
但方差分析不拒绝零假设时,表明至少有2个处理的总体平均数不等,若方差分析F 检验的结果表明 差异显著就必须对各实验处理组的多对平均数进一步分析,做深入比较,判断究竟哪一对或哪几对的差异显著,确定两变量关系的本质。
事后检验也被称作事后多重比较,在这也叫做多个平均数之间的比较。
事后检验的目的:当方差分析表明一个主效应显著时,它只能提供几个变量之间是否存在显著差异的结果,又因为多重t 检验会使得I 型 错误发生的概率大大增加[吃1-Q :业L 因而我们只能采取事后检验。
二、事后检验的方法[1]N-K 法,也叫q 检验法;[2]HSD 检验(又叫Turkey 真实检验,更敏感,统计检验力更强,要求各组容量相等);[3]Scheffe 检验(匕啜保守,适用于样本容量不等,最大限降低了第一类误差a 水平,可能最安全);⑷费舍的最小显著差异法(LSD);一、协方差分析协方差分析的定义:协方差表示的是交互效应项,将处理引起的变异分解为处理在变量x 上引起的变异、在变量y 上引起的变异和在交互效应项xy 上引起的 变异。
统计学中的方差分析方法方差分析(Analysis of Variance,简称ANOVA)是统计学中常用的一种假设检验方法,用于比较两个或更多个样本均值是否存在差异。
它通过分析不同组之间的方差来评估组内和组间的变异情况,进而得出结论。
一、方差分析的基本思想方差分析基于以下两个基本假设:1. 原假设(H0):各总体均值相等,即样本所来自的总体没有差异;2. 备择假设(H1):各总体均值不相等,即至少存在一个样本来自于与其他样本不同的总体。
二、一元方差分析(One-way ANOVA)一元方差分析适用于只有一个自变量的情况,它将样本根据自变量分为两个或多个组,然后比较这些组之间的均值差异。
下面以一个简单的案例来说明一元方差分析。
假设我们要研究三种不同肥料对植物生长的影响,我们将随机选取三个试验区,分别施用A、B和C三种不同的肥料,每个试验区都观察到了相应植物的生长情况(例如植物的高度)。
我们的目标是通过方差分析来判断这些不同肥料是否对植物的生长有显著的影响。
在执行一元方差分析之前,我们首先需要验证方差齐性的假设。
如果各组样本的方差相等,我们就可以继续使用方差分析进行比较。
常用的方差齐性检验方法有Bartlett检验和Levene检验。
在通过方差齐性检验后,我们可以进行一元方差分析。
分析结果将提供两个重要的统计量:F值和P值。
F值表示组间均方与组内均方的比值,P值则表示了接受原假设的概率。
如果P值较小,则说明组间的差异是显著的,我们可以拒绝原假设,接受备择假设,即不同肥料对植物生长有显著影响。
三、多元方差分析(Two-way ANOVA)多元方差分析适用于有两个以上自变量的情况,分析对象的均值差异可以归因于两个或多个自变量的相互作用。
这种分析方法常用于研究两个或多个因素对实验结果的影响情况。
以品牌和价格对手机销量的影响为例,我们假设品牌和价格是两个自变量,手机销量是因变量。
我们可以将样本分成不同的组合,比如将不同品牌的手机按不同的价格段进行分类。