第五章 统计学习题集 假设检验 第六章 方差分析
- 格式:doc
- 大小:28.00 KB
- 文档页数:1
生物统计学姓名:班级:学号:第一章概论一、填空1 变量按其性质可以分为_______变量和_______变量。
2 样本统计数是总体_______的估计量。
3 生物统计学是研究生命过程中以样本来推断_______的一门学科。
4 生物统计学的基本内容包括_______、_______两大部分。
5 统计学的发展过程经历了_______、_______、_______3个阶段。
6 生物学研究中,一般将样本容量_______称为大样本。
7 试验误差可以分为_______、_______两类。
二、判断()1 对于有限总体不必用统计推断方法。
()2 资料的精确性高,其准确性也一定高。
( ) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
()4 统计学上的试验误差,通常指随机误差。
三、名词解释样本总体连续变量非连续变量准确性精确性第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为_______变量和_______变量。
2 直方图适合于表示_______资料的次数分布。
3 变量的分布具有两个明显基本特征,即_______和______。
4 反映变量集中性的特征数是_______,反映变量离散性的特征数是_______。
5 样本标准差的计算公式s=_______。
二、判断( ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
( ) 2 条形图和多边形图均适合于表示计数资料的次数分布。
()3 离均差平方和为最小。
()4 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
()5 变异系数是样本变量的绝对变异量。
三、名词解释资料数量性状资料质量性状资料计数资料计量资料普查抽样调查全距(极差)组中值算数平均数中位数众数几何平均数方差标准差变异系数四、单项选择( )1 下面变量中属于非连续性变量的是_______。
A 身高 B 体重 C 血型 D 血压( )2 对某鱼塘不同年龄鱼的尾数进行统计分析时,可做成_______图来表示。
第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
第五章方差分析思考与练习参考答案1.试述方差分析的基本思想。
解答:方差分析的基本思想是,将观察值之间的总变差分解为由所研究的因素引起的变差和由随机误差项引起的变差,通过对这两类变差的比较做出接受或拒绝原假设的判断的。
2.方差分析有哪些基本假设条件?如何检验这些假设条件?解答:(1)在各个总体中因变量都服从正态分布;(2)在各个总体中因变量的方差都相等;(3)各个观测值之间是相互独立的。
正态性检验:各组数据的直方图/峰度系数、偏度系数/Q-Q图,K-S检验*等方差齐性检验:计算各组数据的标准差,如果最大值与最小值的比例小于2:1,则可认为是同方差的。
最大值和最小值的比例等于1.83<2。
也可以采用Levene检验方法。
独立性检验:检查样本数据获取的方式,确定样本之间无相关性。
3.对三个不同专业的学生的统计学成绩进行比较研究,每个专业随机抽取6人。
根据数据得到的方差分析表的部分内容如表5-21。
请完成该表格。
如果显著性水平α=0.05,能认为三个专业的考试成绩有显著差异吗?表5-21 不同专业考试成绩的方差分析表差异源SS df MS F组间193.0 ________ ________ ________组内819.5 ________ ________总计1012.5 ________解答:表5-21 不同专业考试成绩的方差分析表差异源SS df MS F组间193.0 ____2_ __ ____96.5____ 1.766321组内819.5 ____15____ 54.63333总计1012.5 __ 17____查f为三个专业的成绩无显著差异。
根据以下背景资料和数据回答4-7题。
为测试A、B、C、D、E五种节食方案,一位营养学家选择了50名志愿者随机分成五组,每组采用一种方案测量两个月后每个人的降低的体重,得到的实验数据如表5-22。
表5-22 不同节食方案的降低的体重(公斤)序号 方案A 方案B 方案C 方案D 方案E 1 6.5 2.9 8 5.1 11.5 2 11.6 5.5 11.9 2.5 13.2 3 7.7 4.3 8.5 1.5 11 4 8.7 3.6 8.9 2.2 13.1 5 8.4 3.9 9.1 1.4 13.8 6 4.1 6.7 11.4 3.1 12.8 7 8.7 4.5 12.6 5.4 12 8 6.6 1.7 12.4 1.9 11.5 9 7.1 6.5 9.4 4.1 14.6 10 8.9 5.4 10.6 3.6 13.74.不同节食方案的实验效果的描述统计资料如表5-23。
医学统计学第七版课后答案及解析医学统计学第七版课后答案及解析目录第一章医学统计中的基本概念 (1)第二章集中趋势的统计描述 (2)第三章离散程度的统计描述 (5)第四章抽样误差与假设检验 (8)第五章 t检验 (10)第六章方差分析 (14)第七章相对数及其应用 (19)第八章2检验 (22)第九章非参数检验 (26)第一章医学统计中的基本概念练习题一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。
要尽量查明其原因,必须克服。
(2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。
譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差。
对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。
《统计学》(第8版)笔记和课后习题详解统计学 (第8版) 笔记和课后题详解
1. 简介
本文档为《统计学》第8版的笔记和课后题详解。
主要内容包括统计学的基本概念、统计学的应用和解决问题的方法等。
2. 章节概述
第一章:统计学导论
该章节介绍了统计学的基本定义和应用领域,以及统计学在科学研究中的作用。
第二章:数据描述
该章节重点介绍了统计学中常用的数据描述方法,包括数据的图形展示、数据的中心趋势和数据的离散程度等。
第三章:概率与概率分布
该章节讲解了概率的概念和性质,以及常见的概率分布如二项分布、正态分布等。
第四章:统计推断的基本原理
该章节介绍了统计推断的基本原理,包括参数估计和假设检验等内容。
第五章:单因素方差分析
该章节讲解了单因素方差分析的原理和应用,以及一些统计学中常见的假设检验方法。
第六章:相关与回归分析
该章节重点介绍了相关与回归分析的原理和应用,包括线性回归和多元回归等内容。
3. 课后题详解
本文档还包含了每章的课后题详解,帮助读者巩固所学知识。
针对题中的难点和常见错误,给出了详细的解答和解题思路。
4. 结语
通过阅读本文档的《统计学》笔记和课后题详解,读者将更好地理解统计学的基本概念和方法,掌握统计分析的基本技能。
以上是《统计学》(第8版)笔记和课后习题详解的概述。
希望对您有所帮助!。
统计学中的方差分析与假设检验方差分析(Analysis of Variance,简称ANOVA)是统计学中一种常用的假设检验方法,用于比较两个或多个样本的均值是否存在显著差异。
方差分析通过对不同组之间的方差进行比较,判断样本均值是否有统计学上的差异。
本文将介绍方差分析的基本原理和假设检验的步骤。
一、方差分析的基本原理方差分析是一种多个总体均值比较的方法,它通过计算组间离散度与组内离散度的比值来判断样本均值是否有显著差异。
方差分析的基本原理可以用以下公式表示:$$F=\frac{MS_{\text{between}}}{MS_{\text{within}}}$$其中,F为方差比值,$MS_{\text{between}}$为组间均方,$MS_{\text{within}}$为组内均方。
方差比值F的值越大,说明组间差异相对于组内差异的贡献越大,即样本均值之间的差异越显著。
通过查找F分布表,可以确定F值对应的显著性水平,从而判断样本均值是否有显著差异。
二、假设检验的步骤方差分析的假设检验可以分为以下几个步骤:1. 建立假设- 零假设(H0):各组样本的均值相等,即$\mu_1=\mu_2=...=\mu_k$- 备择假设(H1):至少有两个组样本的均值不相等,即$\mu_i\neq\mu_j$2. 计算组间均方- 组间均方$MS_{\text{between}}$的计算公式为:$MS_{\text{between}}=\frac{SS_{\text{between}}}{df_{\text{between}}}$ - 其中,$SS_{\text{between}}$为组间平方和,$df_{\text{between}}$为组间自由度。
3. 计算组内均方- 组内均方$MS_{\text{within}}$的计算公式为:$MS_{\text{within}}=\frac{SS_{\text{within}}}{df_{\text{within}}}$ - 其中,$SS_{\text{within}}$为组内平方和,$df_{\text{within}}$为组内自由度。
第5章 假设检验课后练习答案5.1 研究者想要寻找证据予以支持的假设是“新型弦线的平均抗拉强度相对于以前提高了”,所以原假设与备择假设应为:5.2 65:0=μH ,65:1≠μH 。
5.3 (1)第一类错误是该供应商提供的这批炸土豆片的平均重量的确大于等于60克,但检验结果却提供证据支持店方倾向于认为其重量少于60克;(2)第二类错误是该供应商提供的这批炸土豆片的平均重量其实少于60克,但检验结果却没有提供足够的证据支持店方发现这一点,从而拒收这批产品;(3)连锁店的顾客们自然看重第二类错误,而供应商更看重第一类错误。
5.4 (1)检验统计量n s x z /μ-=,在大样本情形下近似服从标准正态分布; (2)如果05.0z z >,就拒绝0H ;(3)检验统计量z =2.94>1.645,所以应该拒绝0H 。
5.5 z =3.11,拒绝0H 。
5.6 2χ=206.22,拒绝0H 。
5.7 z =-5.145,拒绝0H 。
5.8 t =1.36,不拒绝0H 。
5.9 z =-4.05,拒绝0H 。
5.10 F =8.28,拒绝0H 。
5.11 (1)检验结果如下:t -检验: 双样本等方差假设变量 1 变量 2 平均 100.7 109.9方差 24.11578947 33.35789474观测值 20 20合并方差 28.73684211假设平均差 0df 38t Stat -5.427106029P (T ≤t ) 单尾 1.73712E-06t 单尾临界 1.685953066P (T ≤t ) 双尾 3.47424E-06t 双尾临界 2.024394234t -检验: 双样本异方差假设变量 1 变量 2平均100.7 109.9方差24.11578947 33.35789474 观测值20 20假设平均差0df 37t Stat -5.427106029P(T≤t) 单尾 1.87355E-06t单尾临界 1.687094482P(T≤t) 双尾 3.74709E-06t双尾临界 2.026190487(2)方差检验结果如下:F-检验双样本方差分析变量1 变量2 平均100.7 109.9方差24.11578947 33.35789474 观测值20 20df 19 19F 0.722940991P(F≤f) 单尾0.243109655F单尾临界0.395811384。
第5章假设检验一、学习指导假设检验是推断统计的另一项重要内容,它是利用样本信息判断假设是否成立的一种统计方法。
本章首先介绍有关假设检验的一些基本问题,然后介绍一个总体参数的检验方法。
本章各节的主要内容和学习要点如下表所。
二、主要术语和公式(一)主要术语1. 假设:对总体参数的具体数值所做的陈述。
2. 假设检验:先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。
3. 备择假设:也称研究假设,是研究者想收集证据予以支持的假设,用1H 或a H 表示。
4. 原假设:也称零假设,是研究者想收集证据予以反对的假设,用0H 表示。
5. 单侧检验:也称单尾检验,是指备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验。
6. 双侧检验:也称双尾检验,是指备择假设没有特定的方向性,并含有符号“≠”的假设检验。
7. 第Ⅰ类错误:当原假设为正确时拒绝原假设,犯第Ⅰ类错误的概率记为α。
8. 第Ⅱ类错误:当原假设为错误时没有拒绝原假设,犯第Ⅱ类错误的概率通常记为β。
9. 显著性水平:假设检验中发生第Ⅰ类错误的概率,记为α。
10. 检验统计量:根据样本观测结果计算得到的,并据以对原假设和备择假设做出决策的某个样本统计量。
11. 拒绝域:能够拒绝原假设的检验统计量的所有可能取值的集合。
12. 临界值:根据给定的显著性水平确定的拒绝域的边界值。
13. P 值:也称观察到的显著性水平,如果原假设0H 是正确的,那么所得的样本结果出现实际观测结果那么极端的概率。
四、习题答案1. A2. D3. C4. A5. B6. C7. A8. B9. A10. B11. A12. C13. A14. C15. D16. C17. A18. B19. A20. B21. B22. A23. B24. B25. A26. D27. D28. D29. A30. B31. B32. C33. B 34. A35. C36. B37. A38. D39. D40. C41. C42. C43. C44. A45. B46. A47. B48. D49. A50. A51. B52. D53. C54. A55. B56. C57. A58. C59. D60. C61. C62. A63. D64. B65. A66. D67. D68. A69. C70. D71. A72. C73. B74. A75. A76. B77. C78. D79. A80. C81. D82. B83. A84. A85. C86. B87. A88. C89. A90. A91. A92. A93. A94. B95. C96. B97. A98. A99. A100.B101.D102.C103.B104.D105.B106.B107.A108.A109.B110.A111.B112.A113.A114.B115.B116.B117.B118.A119.B120.B121.B122.D123.A第6章方差分析一、学习指导本章主要介绍检验多个总体均值是否相等的一种统计方法,即方差分析。
第五章 假设检验 第六章 方差分析
1、某厂生产一种产品,原月产量服从)14,75(N 。
设备更新后,为了考察产量是否提高,抽查了6个月的产量,其平均产量为78。
问在显著水平5%条件下,设备是否值得更新?
2、某工厂对所生产的产品进行质量检验,规定:次品率不得超过0.01,方可出厂。
现从一批产品中随机抽查80件,发现次品2件。
试问在0.05的显著水平下,这批产品是否可以出厂?
3、已知某种电子元件的使用寿命服从标准差为100小时的正态分布,要求平均寿命不得低于1000小时。
现在从一批这种电子元件中随机抽取25件,测得平均寿命为950小时。
试在0.02 的显著性水平下,检验这批元件是否合格.
4、在正常生产情况下,某厂生产的无缝钢管的内径服从均值为54mm 、 标准差为0.9mm 的正态分布。
某日从当天生产的产品中随机抽取10根,测得内径分别为:53.8,54.0,55.1,54.2,52.1,54.2,55.0,55.8,55.4,55.5(单位:mm )。
试检验该日产品生产是否正常(α=5%)。
5、某专家认为A 地男孩入学率明显高于女孩,小学男女学生比例至少是6:4。
从A 地小学中随机抽取400个学生的调查结果是:男生258人,女生142人.问当α=5%时,调查结果是否支持该专家的观点?
6、某饮料厂生产一种新型饮料,其颜色有四种分别为:橘黃色、粉色、绿色、和无色透明。
随机从5家商场收集了前一期其销售量,数据如下表:
数据计算结果如下:
组间平方和为76.8445,组内平方和为39.084。
问饮料的颜色是否对产品的销售量产生显著的影响?
{66.8)3,16(05.0=F ,24.3)16,3(05.0=F ,29.5)16,3(01.0=F ,69.26)3,16(01.0=F }。