第一型线面积分
- 格式:pptx
- 大小:271.85 KB
- 文档页数:50
《数学分析》教学大纲一、课程性质、地位和作用《数学分析》是数学与应用数学专业、信息与计算科学专业的最重要的专业基础课和核心必修课。
本课程理论严谨、系统性强。
通过本课程的学习,要使学生掌握数学分析的基本概念、基本理论和基本方法,为学习后继的所有专业课程奠定必要的数学基础。
要通过各个教学环节逐步培养学生严格的逻辑思维能力与推理论证能力,具备熟练的运算能力和技巧,提高建立数学模型,并应用微积分学这一工具解决实际应用问题的能力,为今后从事基础数学和应用数学方面的研究打下扎实的理论基础。
二、课程教学对象、目的和要求本课程适用于数学与应用数学、信息与计算科学等本科专业。
课程教学目的、要求:了解微积分学的基础理论;充分理解微积分学的历史背景及数学思想.掌握微积分学的基本理论, 方法和技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决实际问题。
1、重视微积分学理论的产生离不开物理学,天文学,几何学等学科的发展。
在教学实践中应强化微积分学与相邻学科的联系,强调应用背景。
2、重视相关知识的整合,将一元函数与多元函数的极限,连续及求导(微分)整合,将不定积分与定积分的计算方法整合,将重积分和线面积分整合,将反常级数与反常积分的收敛性整合, 将函数列, 函数项级数和含参量反常积分的一致收敛性整合。
3、除体现本课程严格的逻辑体系外, 要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法。
4、为了提高学生的数学修养,应重视基本定理的论证。
用ε-δ的思想贯穿于极限的存在性,定积分的存在性,(一致)收敛性及(一致)连续性等理论的论证中。
5、以课堂教学为主, 重视习题课对学生理解掌握所学知识的作用.6、重视实数理论体系对学习微积分学理论和建立现代数学观点的不可或缺的作用。
三、相关课程及关系本课程在大学本科第一、二、三学期开设,是数学与应用数学、信息与计算科学等本科专业的最重要的专业基础课,是所有后继专业课程(如:微分方程、概率论与数理统计、复变函数、实变函数、泛函分析、计算方法、微分方程数值解等等)的基础。
一.第一类线面积分的简化充分利用积分曲线与曲面的方程与对称性.例.求(22LI x x y ds ⎡⎤=++⎣⎦⎰ ,其中()22:11L x y +-=.解.(((22222LLLI y ds yds ds π⎤=+=+=+=+⎦⎰⎰⎰. 例.求()I xy z ds Γ=+⎰ ,其中2221:0x y z x y z ⎧++=Γ⎨++=⎩. 解.()()()1233I xyds x y ds xy yz zx ds x y z ds ΓΓΓΓ=-+=++-++=⎰⎰⎰⎰ ()()22221110663x y z x y z ds ds πΓΓ⎡⎤++-++-=-=-⎣⎦⎰⎰ . 注.求()23I x y z ds Γ=++⎰ ,其中2221:0x y z x y ⎧++=Γ⎨+=⎩. 解.()()32333002I x y z ds xds zds x y ds ΓΓΓΓ=++=+=++=⎰⎰⎰⎰ . 例.求()2I x dS ∑=⎰⎰ ,其中222:2x y z y ∑++=.解.()()()222222222342222I x y z dS x y dS x y z dS ∑∑∑=++=+=++=⎰⎰⎰⎰⎰⎰()441416ydS y dS dS π∑∑∑=-+=⎰⎰⎰⎰⎰⎰ .二.第二类线面积分的估值例.设()33cos :02sin x a t L t y a t π⎧=≤≤⎨=⎩,逆时针方向,()()222L ydx xdy F a x xy y -=++⎰ , 证明:()lim 0a aF a →+∞=. 解.设()222yP xxy y=++,()222xQ xxy y-=++,则()LF a Pdx Qdy =+=⎰(),max 6n LLLP Q e ds ds a ⋅≤≤=⋅⎰⎰⎰,而22222x y x xy y +++≥()3322222432a x xy y x y =≤≤+++,故 ()2192F a a ≤,因此()lim 0a aF a →+∞=.例.设∑为圆柱体()()()2200413x x y y z -+-≤≤≤的外表面,证明:()()22cos sin 2x y dydz xy dzdx dxdy ∑+++≤⎰⎰ . 证.()n n A dS A e dS A e dS A dS dS ∑∑∑∑∑⋅=⋅≤⋅≤≤⎰⎰⎰⎰⎰⎰⎰⎰,证毕.注.第二类线面积分的估值除了转化为第一类线面积分,也可以 用格林公式和高斯公式转化为重积分.例.设22:0L x y x y +++=,逆时针,证明:22cos sin Lx y dy y x dx -≤⎰证.左式()()2222cos sin cos sin 2DDy x d x x d πσσ=+=+≤⎰⎰⎰⎰,证毕.例.设22:1L x y +=,逆时针,证明:sin sin 222545y x Lxe dy ye dx x y π--≥+⎰. 证.左式sin sin sin sin sin sin 222254545y x y x y xL D D xe ye e e e e dy dx d y x y x σ---⎛⎫+=-=+≥= ⎪-+-+⎝⎭⎰⎰⎰⎰⎰ ()sin sin 122555x xD D e e d d σσπ-+≥=⎰⎰⎰⎰,即得,证毕. 三.第二类线积分的计算 例.求224Lxdy ydxI x y-=+⎰,其中L 从()1,0A -沿y =到()1,0B ,然后 再沿直线到()1,2D -的有向曲线.解一. cos :sin x tAB y t=⎧⎨=⎩,:0t π-→,:1BD y x =-+,:11x →-,故12221374cos sin 521288dt dx I t t x x ππππ---=+=+=+-+⎰⎰; 解二.由于Q Px y ∂∂=∂∂,故取()1,1C --,()1,1E -,()1,2F ,则 ACCEEBBFFDI =++++⎰⎰⎰⎰⎰;解三.除原点,Q Px y ∂∂=∂∂,取222:4C x y r +=,逆时针,则L DA DAI +=-=⎰⎰ 222222241172488CDAx y r xdy ydx dy dxdy r r y πππ+≤---=-=-=+⎰⎰⎰⎰⎰. 注.若在区域D 内Q Px y ∂∂=∂∂,则(1)当D 单连通时,0CPdx Qdy +=⎰ ; (2)当D 内有洞时,对所有绕洞的闭曲线C ,CPdx Qdy +=⎰ 常数.例.求()()()()22222222222222L y y x xI dx dy x y x y x y x y ⎡⎤⎡⎤-+=++-⎢⎥⎢⎥-+++-+++⎢⎥⎢⎥⎣⎦⎣⎦⎰ , 其中22:9L x y +=,取逆时针方向.解.取()2221:2L x y r -+=,()2222:2L x y r ++=,均为逆时针方向,则12L L I =+⎰⎰ ,而()()112222222222222r L L B y y x x dx dy d r r r x y x y σπ⎡⎤⎡⎤-+-=++-==-⎢⎥⎢++++⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ , 类似地,22L π=-⎰ ,故224I πππ=--=-.例.求x y z dx y z x dy z x y dz I +-++-++-=,其中的Γ为曲线22211x y z x y z ⎧++=⎨++=⎩上逆时针从()1,0,0A 到()0,0,1B 的一段弧.解一.2221:1x y z x y z ⎧++=Γ⎨++=⎩在xOy 上的投影为22:0x xy y x y 'Γ++--=,22223x y x xy y ξηξηξη=-⎧⎨=+⎩++=+,故2222032x xy y x y ξηξ++--=⇒+-=2211333ξη⎛⎫-+= ⎪⎝⎭,令11cos 3311cos 1133cos 33121cos 33x t t t y t t tz x y tξη⎧=+-⎪⎧⎪=+⎪⎪⎪⇒=++⎨⎨⎪⎪=⎪⎪⎩=--=-⎪⎩,又:013z t ππ→⇒=-→,故3I dt ππ==⎰. 解二.()()()12121212BABAI z dx x dy y dz I I ΓΓ+=-+-+-=-=-⎰⎰⎰,其中()11,1,1rot 12,12,12121212n ijkI z x y e dS x y z z x y∑∑∂∂∂=---⋅==∂∂∂---⎰⎰⎰⎰()11,1,12122,2,23332I dS ππ∑∑⎡⎤⎛⎫=---==--⎥ ⎪ ⎪⎥⎝⎭⎦⎰⎰, ()()()112001211221I x dx d x x dx =--+-=-=-⎡⎤⎣⎦⎰⎰,故I =.注.∑是边长为的等边三角形的外接圆减去一个小圆缺. 解三.代入1z x y =--,则()()221I x y dx x y dy 'Γ=+---=⎰()()1042216216196D OAOA x dx d x dx σπ'Γ+⎛⎫--=---=-+= ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰ . 注.求()()()22222223I y z dx z x dy x y dz Γ=-+-+-⎰,其中1:2x y x y z ⎧+=Γ⎨++=⎩,从z 轴正向看为逆时针方向.解.代入2z x y =--,则()()2222223242I x y z dx x y z dy 'Γ=-+-+-++=⎰()12221224xyxyD D x y d d σσ--+=-=-⎰⎰⎰⎰.例.求()22222ydx xdy z x y dzI x y Γ--+=+⎰,其中22221:1x y a b x y z ⎧+=⎪Γ⎨⎪++=⎩,从z 轴正向 看逆时针. 解.2222rot ,,20y xz x y x y ⎛⎫-=⎪++⎝⎭,但是Γ张成的曲面均与z 轴有交点, 故不能直接用斯托克斯公式,注意到对所有逆时针围绕z 轴的1Γ,Γ与1-Γ均张成一个围绕z 轴的曲面,故()111I Γ+-Γ-ΓΓ=-=⎰⎰⎰ ,于是取2211:0x y z ⎧+=Γ⎨=⎩,则122DI ydx xdy d σπΓ=-=-=-⎰⎰⎰ . 四.第二类面积分的计算注.若12∑=∑+∑关于xOy 面对称,1∑与2∑在xOy 面上的投影相反, 则当()(),,,,R x y z R x y z -=时,(),,0R x y z dxdy ∑=⎰⎰;当()(),,,,R x y z R x y z -=-时,()()1,,2,,R x y z dxdy R x y z dxdy ∑∑=⎰⎰⎰⎰.例.求()()()I y z dydz z x dzdx x y dxdy ∑=-+-+-⎰⎰,其中∑为半球面z =222x y x +=截下部分的上侧.解.由于∑关于xOz 面对称,故()()I y z dydz x y dxdy ∑=-+-⎰⎰,又22222424220x x y x zz x x y z x z y zz z +=⎧-++=⇒⇒=⎨+=⎩,y yz z -=,故 ()()()22,0,,,1x y x I y z x y dxdy y z x y dxdy z z z ∑∑---⎛⎫⎡⎤=--⋅--=-+-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰(()22222xy D x y x y x y d d σσπ+≤⎡⎤+-=⋅=⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰.例.求2222cos cos cos dydz dzdx dxdyI x x y z z∑=+-⎰⎰,其中2222:x y z R ∑++=外侧. 解.()222,,211,,cos cos cos x y z I dS x x y z z R ∑⎛⎫=-⋅=⎪⎝⎭⎰⎰ 2222221211211cos cos cos cos cos cos y dSdS dS R x y z R x z R z∑∑∑⎛⎫⎛⎫+-=-== ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰22224tan x y R R π+≤=⎰⎰.例.求()32222xdydz ydzdx zdxdyI xy z∑++=++⎰⎰,其中()()()22211:1025167x y z z --∑++=≥ 上侧.解.取1:z ∑=()()22222211:0,12516x y z x y r ⎛⎫--∑=+≥+≤ ⎪ ⎪⎝⎭,均取下侧,则12121312I xdydz ydzdx zdxdy r π∑+∑+∑∑∑-∑=--=++=⎰⎰⎰⎰⎰⎰⎰⎰ . 注.若()22:212z x y z ∑=+--≤≤外侧,可取()221:24z x y ∑=+≤上侧,()222:11z x y ∑=-+≤下侧,22223:x y z r ∑++=外侧,则 ()121231231=I xdydz ydzdx zdxdy r ∑+∑+∑∑∑∑∑∑=--=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰换曲面,再用高斯公式.。
一 基本要求1. 理解两类线面积分的概念,掌握两类线面积分的性质。
2. 掌握两类线积分以及两类面积分之间的联系和区别,会计算两类线面积分。
3. 熟练掌握格林(Green)公式,会用平面曲线积分与路径无关的条件。
4. 熟练掌握高斯(Gauss)公式,斯托克斯(Stokes)公式,会计算空间曲线积分5. 会用两类线面积分求一些几何量与物理量(如曲面面积,弧长,质量,重心,转动惯量,功等)。
6. 了解散度,旋度以及场论的概念及其计算方法.二 学习指导【11-1】第一型曲线积分的要点是什么? 答 第一型曲线积分是关于曲线弧长的积分(22)()(dy dx ds +=),计算时应根据不同的曲线方程变换相应的,转换成定积分. ds 【11-2】关于第一型曲线积分的对称性.1.设L 为光滑曲线,且关于轴对称,为曲线y 1L L 位于轴右侧的弧段, 在y (,)f x y L 上的连续,则10(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩∫∫为的奇函数为的偶函数2. 设L 为光滑曲线,L 的方程关于y x ,具有轮换性,为(,)f x y L 上的连续函数,则(,)(,)LLf x y ds f y x ds =∫∫,3. 设为光滑的空间曲线,ΓΓ的方程关于z y x ,,具有轮换性,为上的连续函数,则(f Γ∫∫∫ΓΓΓ==ds z f ds y f ds x f )()()(222)()()(dz dy dx ds ++=)4.当被积函数1),(=y x f 时,(弧长计算公式)∫=LLds ds y x f ),(∫……………………………………………………………………………… 【11-3】第二型曲线积分的主要计算方法.(1) 将曲线方程(直角坐标,参数方程,极坐标方程)代入后化定积分计算. (2) 用格林(Green)公式化二重积分计算. (3) 用平面曲线积分与路径无关的条件计算.………………………………………………………………………………………… 【11-4】第一型曲面积分的要点是什么?计算应注意什么?答 第一型曲面积分是关于曲面面积的积分。
凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学强化复习:高数典型题型归纳在考研强化复习阶段,考研数学学科的复习相信大家对于基本的概念、知识点都已经掌握了,接下来进入到进行题目的练习。
但是做题并不意味着题海战术,决不能陷进题海战术。
建议大家在复习的时候,边做题、边总结、边思考。
下面,凯程考研小编就给大家整理分享一下高等数学的各章节的常见题型:函数、极限与连续求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
一元函数微分学求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足....。
”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
一元函数积分学计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
向量代数和空间解析几何计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
多元函数的微分学判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。