2019-2020学年畅优新课堂八年级数学下册 第17章 变量与函数 17.4.1 反比例函数教案 华东师大版.doc
- 格式:doc
- 大小:177.00 KB
- 文档页数:4
C勾股定理一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是(A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.C三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
勾股定理教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用.教学过程一.复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据. 22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示n (n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.二.课堂展示例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.三.随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521C .3,4,5D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B .2倍C .3倍D .4倍3.三个正方形的面积如图1,正方形A 的面积为( )A . 6B . 36C . 64D . 84.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cmD .1360cm 5.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角?四.课后练习1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm2.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.8cm B.10cm C.12cm D.14cm3.在△ABC中,∠C=90°,若a=5,b=12,则c=___4.等腰△ABC的面积为12cm2,底上的高AD=3cm,则它的周长为___.5.等边△ABC的高为3cm,以AB为边的正方形面积为___.6.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是__。
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
函数应用题【知识与技能】1.通过对一次函数性质、一次函数与一次方程、一次不等式联系的探索,提高自主学习和对知识综合应用的能力.2.让学生用简单的已知函数来拟合实际问题中变量的函数关系.【过程与方法】让学生在探索过程中,体会“问题情境—建立模型—解释应用—回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值【情感态度】让学生结合自身的生活经历,模仿尝试解决一些身边的函数应用问题【教学重点】应用函数的知识解决实际问题【教学难点】应用函数的知识解决实际问题一、情境导入,初步认识问题:为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数据如下:能否据此求出V和t的函数关系?【教学说明】通过实际问题的引入,提高学生的学习兴趣,通过解决问题的能力.二、思考探究,获取新知对于上面这个问题,我们可以将这些数值所对应的点在坐标系中作出.我们发现,这些点大致位于一条直线上,可知V和t近似地符合一次函数关系.我们可以用一条直线去尽可能地与这些点相符合,求出近似的函数关系式.如下图所示的就是一条这样的直线,较近似的点应该是(10,1000.3)和(60,1002.3).设V=kt+b(k≠0),把(10,1000.3)和(60,1002.3)代入,可得k=0.04,b=999.7.V=0.04t+999.7.你也可以将直线稍稍挪动一下,不取这两点,换上更适当的两点.【归纳结论】我们曾采用待定系数法求得一次函数和反比例函数的关系式.但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究.三、运用新知,深化理解1.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.解:(1)设一次函数为y=kx+b(k≠0),将表中数据任取两组,不妨取(37.0,70.0)和(42.0,78.0)代入,得70377842k bk b=+=+⎧⎨⎩,.解得16108kb==⎧⎨⎩.,.一次函数关系式是y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4≠77.答:一次函数关系式是y=1.6x+10.8,小明家里的写字台和凳子不配套.2.某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所买的水果量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.解:(1)y甲=9x(x≥3000);y乙=8x+5000(x≥3000).(2)当y甲=y乙,即9x=8x+5000时,解得x=5000.所以当x=5000时,两种付款一样;当y甲<y乙时,有3000 985000 xx x≥⎨<+⎧⎩,.解得3000≤x<5000.所以当3000≤x<5000时,选择甲方案付款最少;当y甲>y乙时,有9x>8x+5000.解得x>5000.所以当x>5000时,选择乙方案付款最少.【教学说明】应用相关知识解决实际问题.激发学生学习兴趣.四、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?1.布置作业:教材“习题17.5”中第6、7题.2.完成本课时对应练习.1.现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究;2.把实际问题数学化,运用数学的方法进行分析和研究,是常用的、有效的一种方法.。
一元二次方程(时间:90分钟,满分:100分) 一、选择题(每小题3分,共30分) 1. 要使方程+是关于的一元二次方程,则( )A .B .C .且D .且2. 方程(x -2)(x +3)=0的解是() A.x =2B.x =-3C.x 1=-2,x 2=3D.x 1=2,x 2=-33. 下面关于的方程中:①;②;③;④();⑤1x +=-1.一元二次方程的个数是( )A .1B .2C .3D .44. 据调查,2011年5月某某市的房价均价为7 600元/,2013年同期将达到8 200元/,假设这两年某某市房价的平均增长率为x ,根据题意,所列方程为( ) A.7 600=8 200 B.7 600=8 200 C.7 600=8 200 D.7 600=8 2005. 关于的一元二次方程()220x mx m -+-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定6.已知实数a ,b 分别满足a 2-6a +4=0,b 2-6b +4=0,且a ≠b ,则的值是( )B.-77. 下列方程中,一定有实数根的是( )A.210x += B.2(21)0x += C.2(21)30x ++= D.8. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值X 围是( ) A.14k >-B.14k >-且0k ≠C.14k <-D.14k ≥-且0k ≠9. 一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数 为( ) A. B.C.D.10. 一元二次方程2210x x --=的根的情况为( )二、填空题(每小题3分,共24分) 11.若是关于的一元二次方程,则不等式的解集是________.12.已知关于的方程的一个根是,则_______.13.若|b -1|+=0,且一元二次方程k +ax +b =0有实数根,则k 的取值X 围是.14.若(是关于的一元二次方程,则的值是________.15.若且,则一元二次方程必有一个定根,它是_______.16. 若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个符合题意的一元二次方程 .17.若两个连续偶数的积是224,则这两个数的和是__________.18.关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一个根为 . 三、解答题(共46分)19.(6分)已知关于x 的一元二次方程-(2k +1)x ++k =0. (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是方程的两个实数根,第三边BC △ABC 是等腰三角形时,求k 的值 20.(6分)选择适当方法解下列方程:(1)0152=+-x x (用配方法);(2)()()2232-=-x x x ;(3)052222=--x x(4)()()22132-=+y y . 21.(6分)在长为,宽为的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长..为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100X ,商场要想平均每天盈利120元,每X 贺年卡应降价多少元?23.(7分)关于x 的方程04)2(2=+++k x k kx 有两个不相等的实数根.(1)求k 的取值X 围.(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.24.(7分)李先生乘出租车去某公司办事,下车时,打出的电子收费单为“里程•千米,应收元”.该城市的出租车收费标准按下表计算,其中N 是起步价,且N <12,请求出起步价是多少元.里程(千米)价格(元)25.(7分)已知下列n (n 为正整数)个关于x 的一元二次方程:(1)请解上述一元二次方程;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可.().,,,0103202012222=--+=-+=-+=-n x n x x x x x x ……第21题图第17章 一元二次方程检测题参考答案 1. B 解析:由,得.2. D 解析:由(x -2)(x +3)=0,得x -2=0或x +3=0,解得=2,=-3.3. B 解析:方程①与的取值有关;方程②经过整理后,二次项系数为2,是一元二次方程;方程③不是整式方程;方程④的二次项系数经过配方后可化为,不论取何值,都不为0,所以方程④是一元二次方程;方程⑤不是整式方程,也可排除.故一元二次方程仅有2个.4. C 解析:第一年提价后的价格为7 600(1+x )元, 第二年提价后的价格为7 600(1+x )(1+x )元, 所以7 600=8 200.5. A 解析:因为所以方程有两个不相等的实数根.6.A 解析:本题考查一元二次方程根与系数的关系. 可以把a 和b 看作是方程-6x +4=0的两个实数根, ∴a +b =6,ab =4,∴7.点拨:一元二次方程根与系数的关系常见的应用有:验根、确定根的符号;求与根相关的代数式的值;由根求出新方程等. 7. B 解析:D 选项中当时方程无实数根,只有B 正确.8. B 解析:依题意,得解得14k >-且0k ≠.故选B . 9. C 解析:设这个两位数的十位数字为x ,则个位数字为3x +.依题意,得2103(3)x x x ++=+,解得122,3x x ==.∴ 这个两位数为.故选.10. B 解析:∵224(2)41(1)80b ac -=--⨯⨯-=>,∴ 方程有两个不相等的实数根. 11.解析:不可忘记.12.±2 解析:把代入方程,得,则,所以.13. k≤4且k≠0 解析:因为|b-1|≥0,≥0,又因为|b-1|+=0,所以|b-1|=0,=0,即b-1=0,a-4=0,所以b=1,a=4.所以一元二次方程k+ax+b=0变为k+4x+1=0.因为一元二次方程k+4x+1=0有实数根,所以Δ=16-4k≥0,解得k≤4.又因为k≠0,所以k≤4且k≠0.14.解析:由得或.15.1 解析:由,得,原方程可化为,解得.16.x2-5x+6=0(答案不唯一)解析:设Rt△ABC的两条直角边长分别为a,b.因为S=3,所以aba,b(a>0,b>0),所以符合条件的一元二次方程为(x-2)(x-3)=0,(x-△ABC1)(x-6)=0等,即x2-5x+6=0或x2-7x+6=0等.17.解析:设其中的一个偶数为,则.解得•则另一个偶数为.这两个数的和是.18.解析:把代入化为19. 分析:(1)证明这个一元二次方程的根的判别式大于0,根据一元二次方程的根的判别式的性质得到这个方程有两个不相等的实数根;(2)求出方程的根,根据等腰三角形的判定分类求解.(1)证明:∵关于x的一元二次方程-(2k+1)x++k=0中,a=1,b=-(2k+1),c=+k,∴Δ=-4ac=-4×1×(+k)=1>0.∴方程有两个不相等的实数根.(2)解:∵由-(2k+1)x++k=0,得(x-k)[x-(k+1)]=0,∴ 方程的两个不相等的实数根为=k ,=k +1.∵△ABC 的两边AB ,AC 的长是方程的两个实数根,第三边BC 的长为5,△ABC 是等腰三角形,∴ 有如下两种情况:情况1:=k =5,此时k =5,满足三角形构成条件; 情况2:=k +1=5,此时k =4,满足三角形构成条件. 综上所述,k =4或k =5.点拨:一元二次方程根的情况与判别式Δ的关系 (1)Δ>0方程有两个不相等的实数根; (2)Δ=0方程有两个相等的实数根; (3)Δ<0方程没有实数根.20. 解:(1)42142552=+-x x ,配方得,421252=⎪⎭⎫ ⎝⎛-x 解得22151+=x ,22152-=x .(2)()()02232=---x x x ,分解因式得()(),0632=---x x x 解得3221==x x ,. (3)因为,所以2248221⨯+=x ,2248222⨯-=x ,即2322+=x 或2322-=x .(4)移项得()()013222=--+y y ,分解因式得()()02314=-+y y ,解得234121=-=y y ,.21. 解:设小正方形的边长为.由题意得,解得所以截去的小正方形的边长为.22.分析:总利润=每件利润×总件数.设每X 贺年卡应降价x x )元,总件数应是(500+0.1x ×100).解:设每X 贺年卡应降价x 元.x )(500+1000.1x )=120,整理,得21002030x x +-=,解得120.1,0.3x x ==-(不合题意,舍去). ∴0.1x =.答:每X 贺年卡应降价0.1元. 23. 解:(1)由Δ=(k +2)2-4k ·4k>0,解得k >-1. 又∵k ≠0,∴k 的取值X 围是k >-1,且k ≠0. (2)不存在符合条件的实数k .理由如下:设方程k x 2+(k +2)x +4k=0的两根分别为1x 、2x ,由根与系数的关系有:122k x x k ++=-,1214x x ⋅=, 又01121=+x x ,则kk 2+-=0.∴2-=k . 由(1)知,2-=k 时,Δ<0,原方程无实根. ∴不存在符合条件的实数k 的值. 24. 解:依题意,22N 25N,整理,得,解得.由于,所以(舍去), 所以.答:起步价是10元.25. 解:(1)()()01112=-+=-x x x ,所以x x 1211=-=,.()()01222=-+=-+x x x x ,所以x x 1221=-=,. ()()013322=-+=-+x x x x ,所以x x 1231=-=,.……()()()0112=-+=--+x n x n x n x ,所以x n x 121=-=,.(2)答案不唯一,比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等.。
函数及其图象3.一次函数的性质【知识与技能】1.掌握一次函数y=kx+b(k≠0)的性质.2.能根据k与b的值说出函数的有关性质.【过程与方法】经历探索一次函数图象性质的过程,感受一次函数中k与b的值对函数性质的影响【情感态度】观察图象,体会一次函数k、b的取值和直线位置的关系,提高学生数形结合能力【教学重点】掌握一次函数y=kx+b(k≠0)的性质【教学难点】利用一次函数的有关性质解决有关问题一、情境导入,初步认识1.一次函数的图象是什么形状呢?2.正比例函数y=kx(k≠0)的图象是经过哪一点的一条直线?3.画一次函数图象时,只要取几点?4.在同一直角坐标系中画出下列函数的图象.并说出它们有什么关系.y=4x y=4x+2【教学说明】对相关知识进行复习,为本节课的教学做准备.二、思考探究,获取新知探究:一次函数的性质1.在同一直角坐标系中,画出函数y=23x+1和y=3x-2的图象.观察图象,回答下列问题:(1)在你所画的一次函数图象中,直线经过几个象限?(2)直线y=23x+1的图象上,当一个点在直线上从左向右移动时,(即自变量x从小到大时),点的位置也在逐步从低到高变化,那么函数y的值是如何变化的?(3)函数y=3x-2的图象是否也有这种变化?2.在同一坐标系中,画出函数y=-x+2和y=-23x-1的图象(图略).根据上面分析的过程,请同学们研究这两个函数图象是否也有相应的变化?你能发现什么规律?【归纳结论】一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.【教学说明】通过观察,总结结论.提高学生观察能力和概括能力.三、运用新知,深化理解1.已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小?分析:一次函数y=kx+b(k≠0),若k<0,则y随x的增大而减小.解:因为一次函数y=(2m-1)x+m+5,函数值y随x的增大而减小.所以,2m-1<0,即m<12.2.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.分析:一次函数y=kx+b(k≠0),若函数y随x的增大而减小,则k<0,若函数的图象经过二、三、四象限,则k<0,b<0.解:由题意得: 1-2m<0m-1<0,解得,12<m<13.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.(1)求m的值;(2)当x取何值时,0<y<4?分析:一次函数y=kx+b(k≠0)与y轴的交点坐标是(0,b),而交点在x轴下方,则b<0,而y随x的增大而减小,则k<0.解:(1)由题意得: 3m-8<01-m<0,解之得,1<m<83,又因为m为整数,所以m=2.(2)当m=2时,y=-2x-1.又由于0<y<4.所以0<-2x-1<4.解得:-52<x<-12.4.画出函数y=-2x+2的图象,结合图象回答下列问题:(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y>0?分析:(1)由于k=-2<0,y随着x的增大而减小.(2)y=0,即图象上纵坐标为0的点,所以这个点在x轴上.(3)y>0,即图象上纵坐标为正的点,这些点在x轴的上方.解:(1)由于k=-2<0,所以随着x的增大,y将减小.当一个点在直线上从左向右移动时,点的位置也在逐步从高到低变化,即图象从左到右呈下降趋势.(2)当x=1时,y=0.(3)当x<1时,y>0.【教学说明】通过实际问题的应用,加深学生对本节知识的巩固.提高学生解决问题的能力.四、师生互动,课堂小结1.(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.当b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴;当b=0时,直线与y 轴交于坐标原点.2.k>0,b>0时,直线经过一、二、三象限;k>0,b<0时,直线经过一、三、四象限;k<0,b>0时,直线经过一、二、四象限;k<0,b<0时,直线经过二、三、四象限.1.布置作业:教材P50“练习”.2.完成本课时对应练习.本节课的难点是性质的应用,学生都能记住一次函数的性质,但在应用中不能灵活的应用,所以,课后还应该在性质的应用上多花时间,多做练习,使学生都能够掌握.。
勾股定理一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2; D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___. 16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 . 18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?AB3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.观测点7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角. 8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5. 答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12.解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s . 15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了.。
勾股定理17.2.2 勾股定理的逆定理一、内容及其分析本节课学习的主要内容是用勾股定理及逆定理解决实际问题。
进一步加深性质定理与判定定理之间关系的认识。
二、目标及其解析目标定位:灵活应用勾股定理及逆定理解决实际问题。
目标解析:应用勾股定理及逆定理解决实际问题。
沟股定理及其逆定理是我们解直角三角形的重要方法,所以要让学生养成利用勾股定理的逆定理解决实际问题的意识。
三、问题诊断与分析P33例题2,学生可能不大理解方位角,方位词,所以要根据题目意思来画图分析可能有些难度,大多数同学可能画不出图形,更不会用勾股定理的逆定理来解决,但在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
四、教学支持条件分析板书教学。
要让学生体会如何根据题目的方位角和方位词画出正确的图形,运用沟股定理及其逆定理来解决实际问题。
五、教学过程问题与例题:问题一P32例题1判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.意图分析:根据沟股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的和。
问题二 P33例题2某港口位于东西方向的海岸线上。
“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。
它们离开港口一个半小时后相距30海里。
如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗? 设计意图:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24, QR=30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR -∠QPS=45°。
让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
2019-2020学年畅优新课堂八年级数学下册第17章变量与函数
17.4.1 反比例函数教案华东师大版
17.4反比例函数
1.反比例函数
【知识与技能】
1.理解反比例函数的概念,根据实际问题能列出反比例函数关系式.
2.利用正比例函数和反比例函数的概念求解简单的函数式.
【过程与方法】
经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力
【情感态度】
培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值. 【教学重点】
理解反比例函数的概念,能根据已知条件写出函数解析式
【教学难点】
能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
一、情境导入,初步认识
1.复习小学已学过的反比例关系,例如:
(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)
(2)当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)
2.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时.请你用含R的代数式表示I 吗?
【教学说明】对相关知识的复习,为本节课的学习打下基础.
二、思考探究,获取新知
探究:反比例函数的概念
问题1:小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了.假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系.
分析:和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.
设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以t=15/v
从这个关系式中发现:
1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.
2.自变量v的取值是v>0.
问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.
分析:根据矩形面积可知
xy=24,
即y=24/x
从这个关系中发现:
1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;
2.自变量的取值是x >0.观察上述两个函数解析式,它们有什么共同点?与前面学的一次函数有什么不同?
【归纳结论】
一般地,形如y=k/x(k 是常数,k ≠0)的函数叫做反比例函数.
【教学说明】
反比例函数与正比例函数定义相比较,本质上,正比例函数y=kx ,即x(y)=k ,k 是常数,且k ≠0;反比例函数y=x(k),则xy=k ,k 是常数,且k ≠0.可利用定义判断两个量x 和y 满足哪一种比例关系?
三、运用新知,深化理解
1.下列函数关系中,哪些是反比例函数?
(1)已知平行四边形的面积是12cm 2,它的一边是acm ,这边上的高是hcm ,则a 与h 的函数
关系;
(2)压强p 一定时,压力F 与受力面积s 的关系;
(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.
(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x(人)的函数关系式.
分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.
解:(1)a=12h
,是反比例函数; (2)F=ps ,是正比例函数;
(3)F=W/s ,是反比例函数;
(4)y=m/x ,是反比例函数.
2.当m 为何值时,函数 224
m y x -=是反比例函数,并求出其函数解析式.分析:由反比
例函数的定义易求出m 的值.
解:由反比例函数的定义可知:2m -2=1,m=
32.所以反比例函数的解析式为y=4/x . 3.将下列各题中y 与x 的函数关系写出来.
(1)y=1/z ,z 与x 成正比例;
(2)y 与z 成反比例,z 与3x 成反比例;
(3)y 与2z 成反比例,z 与12
x 成正比例.
4.已知y 与x 2成反比例,并且当x =3时,y =2.求x =1.5时y 的值.
分析:因为y 与x 2成反比例,所以设y =kx 2,再用待定系数法就可以求出k ,进而再求出y
的值.
解:设y =kx 2.因为当x =3时,y=2,所以2=
9k ,k =18. 当x =1.5时,y =218x =()
2181.5=8. 5.已知y=y 1+y 2,y 1与x 成正比例,y 2与x+成反比例,且x=2与x=3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y 1=k 1x ,y 2与x 2成反比例,则y 2=
22k x ,又由y=y 1+y 2,可知,y=k 1x+22k x
,只要求出k 1和k 2即可求出y 与x 间的函数关系式. 解:因为y1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x
,而y=y 1+y 2,所以y=k 1x+22
k x ,
【教学说明】
加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.
四、师生互动,课堂小结
本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如y=k
x
(k是常数,k≠
0)的函数叫做反比例函数.
要求反比例函数的解析式,可通过待定系数法求出k值,即可确定.
1.布置作业:教材“习题17.4”中第1、2题.
2.完成本课时对应练习.
学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.。