人教版八年级数学下册《变量与函数》练习.docx
- 格式:docx
- 大小:42.26 KB
- 文档页数:6
变量和函数练习题1.某种树木的分枝生长规律如图所示,则其变量是()A年份 B分枝数 C生长规律 D年份和分枝数2.自由下落物体下落的高度h与下落的时间t之间的关系为A. h, tB. h, gC. t, gD. t3.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,变量是():A销量 B定价 C成本价 D销量和定价4.某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结果如下:你认为其自变量为( )A成本价B定价 C销量 D以上说法都不正确5.如果用总长为120m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为C(m),一边边长为a(m),那么S,C,a中是自变量的是( )A. SB. aC. C和aD.C6.小树的高度h(cm)和树龄x(年)之间的关系是h=20x+40,当树龄为5年时,小树的高度h为______cm.7.某公司的年生产值=2013年的生产值+增长的部分,已知2013年的生产值为15万元,公司计划从2014年开始,每年增加2万元,则年产值(从2013年开始)y (万元)与年数x (年),那么到2019年公司生产值是______万元.8.已知某一银行本息和=本金+利息,现存款100元,存款月利率为0.225%,利息=月利率×期数×本金,则本息和y(元)与存期x(月),当存款10个月,本息和为______元。
9.如果三角形的底边长为x,底边上的高为12,那么三角形的面积y可以表示为( )A.y=3xB.y=6xC.y=9xD.y=12x10.如图,△ABC的边BC长是8,BC边上的高AD′是4,点D在BC运动,设BD长为x,请写出△ACD的面积y与x之间的函数关系式y=______.11.如图,一块长为200m,宽为150m的长方形花园,中间白色部分是硬化的地面,四周是草坪,草坪是由四个完全相同的正方形和两个一样的半圆组成,当半圆的半径r(m)变化时,花园中间硬化的地面的面积S(m2)也随着发生变化.则S(m2)与r(m)的表达式为S=______.(按r的降幂排列)12.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是y= ______13.公路上依次有A,B,C三个汽车站,上午8:00时,小明骑自行车从A,B两站之间距离A站8km处出发,向C站匀速前进,他骑车的速度是16.5km/h,若A,B两站间的路程是26km,B,C两站的路程是15km.小明在上午9:00是否已经经过了B站?答:_____(填入“是”或“否”)14.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表(1)如果汽车油箱中剩余油量为46L,则汽车行驶了______h;(2)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶,能不能中途不加油的情况下能从高速公路起点开到高速公路终点,答:______(填入“能”或“不能”)15. 某学校团委“五四青年节”组织全校1640名师生为山区学校捐赠图书,全校共30个班,每班学生人数不少于48人且不超过52人,经宣传动员,其中教师平均每人捐赠图书2本,学生平均每人捐赠图书1本,平均每本图书价值25元.设该学校有x名教师,捐赠图书总价值为y元。
19.1 函数19.1.1 变量与函数第1课时《常量和变量》习题含答案1、一种练习本每本0.5元,x本共付y元钱,那么0.5和y分别是()A、常量、常量B、常量、变量C、变量、常量D、变量、变量2、在圆的周长公式C=2πr中,下列说法正确的是()A、π,r是变量,2是常量B、 C是变量,2,π,r是常量C、 r是变量,2,π,C是常量D、 C,r是变量,2,π是常量3、一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A、xB、h、xC、V 、xD、x、h、V均为变量4、以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t 秒之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、常量是4.9,变量是t,hB、常量是v0,2,变量是t,hC、常量是-4.9,v0,变量是t,h5、三角形的一边长为6cm,三角形的面积S(cm2)与这边上的高h(cm)之间的关系式为 .6、表格列出了一项实验的统计数据,表示小球从高度x(m)落下时,弹跳高度y(m)与小球高度x(m)的关系,据表写出y与x的关系式是 ,其中变量为,常量为 .7、一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离S(米),由下面式子S=10t+2t2,假如滑到坡底的时间为8秒,斜坡长为米,其中式子中的变量是,常量是.8、如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合.试求出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.第8题图x 50 80 100 150y 25 40 50 759、由图形列表如下,设图形的周长为L,梯形的个数为n,回答问题:梯形个数n 1 2 3 4图形的周长L 5 9 13 17(1)写出L与n的关系式.(2)在这个变化过程中,变量、常量各是什么?(3)有11个梯形时,图形的周长是多少?10、在一个半径为20cm的圆上,从中挖去一个圆,当挖去圆半径由小变大时,剩下的一个圆环面积也随之发生变化,若挖去的圆的半径为x(cm),圆环的面积y(cm2).(1)在这个变化过程中,变量、常量各是什么?(2)写出y与x的关系式;(3)当挖去的圆的半径由1cm变化到10cm时,圆环的面积将发生怎样的变化?参考答案1、B2、D3、D4、C5、S=3h6、y=0.5x,变量是x,y,常量是0.57、208,变量是s,t,常量是10,28、由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM=xcm.∵∠BAC=45°,∴S阴影=12·AM·h=12AM2=12x2,则y=12x2,0≤x≤10.其中的常量为12,变量为重叠部分的面积ycm2与MA的长度xcm.9、(1)L=4n+1(2)变量是L,n,常量是4,1(3)4510、(1)变量是:挖去的圆的半径x,圆的面积y;(2)y=400π-πx2(3)圆环的面积将由399πcm2减小到300πcm2.。
2019年八年级数学下册变量与函数课后练习一、选择题:1、变量x,y有如下关系:①x+y=10;②y=;③y=|x-3;④y2=8x.其中y是x的函数的是( ).A.①②②③④B.①②③C.①②D.①2、在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量3、小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如图所示.小明选择的物体可能是()4、下列曲线中,不能表示y是x的函数的是( )5、下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①6、根据如图的程序,计算当输入值x=-2时,输出结果y为()A.1;B.5;C.7;D.以上都有可能;7、小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是()8、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x 之间的关系的大致图象是()9、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()10、清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校.图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系.下列说法错误的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分二、填空题:11、在函数y=中,自变量x的取值范围是.12、小明根据某个一次函数关系式填写了下面的这张表, 其中有一格不慎被墨迹遮住了,想想看,表中空格原来填的数是 .13、一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧剩下的高度h(cm)随燃烧时间t(时)变化,请写出函数关系式14、明星中学计划投资8万元购买学生用电脑,则所购电脑的台数n(台)与单价x(万元)之间的关系是,其中________是常量,_______是变量.15、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.16、如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.三、解答题:17、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?18、写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)某市居民用电价格是0.58元/度,居民生活应付电费y(元)与用电量x(度)之间满足y=0.58x.19、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?20、已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.21、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
人教版八年级下册数学变量与函数练习题最新Word 19.1.1 变量与函数练题一、单选题1.下列关系式中,不是 x 的函数的是()B。
y = x^22.下列关系式中,变量 x = -1 时,变量 y = 6 的是()B。
y = -3x + 33.在以 x 为自变量,y 为函数的关系式y = 5πx 中,常量为()B。
π4.已知两个变量之间的关系满足 y = -x + 2,则当 x = -1 时,对应的 y 的值()A。
35.长方形的周长是 12cm,其中一条边为 x cm (x。
0),面积为 y cm²,则这个长方形的面积 y 与边长 x 的关系可以表示为()C。
y = x(6 - x)6.关于函数 y = (x - 5),下列说法正确的是()A。
自变量 x 的取值范围是x ≥ 57.设路程 s (km),速度 v (km/h),时间 t (h),当 s = 50 时,t = ____。
B。
路程是常量,t 是 s 的函数8.弹簧挂上物体后会伸长,若一弹簧长度 (cm) 与所挂物体质量 (kg) 之间的关系如下表:物体的质量 (kg) 1 2 3 4 5弹簧的长度 (cm) 12 12.5 13 13.5 14则下列说法错误的是()C。
在弹簧能承受的范围内,当物体的质量为 7kg 时,弹簧的长度为 16cm9.如果一盒圆珠笔有 12 支,售价 18 元,用 y (元) 表示圆珠笔的售价,x 表示圆珠笔的支数,那么 y 与 x 之间的解析式为()。
D。
y = 1.5x10.弹簧挂上物体后会伸长,测得一弹簧的长度 y (cm) 与所挂重物的质量 x (kg) 有下面的关系,那么弹簧总长 y (cm) 与所挂重物 x (kg) 之间的关系式为()C。
y = 0.5x + 12二、填空题略。
11.在函数y= x+4中,自变量x的取值范围是所有实数。
12.某等腰三角形的周长是50cm,底边长是x cm,腰长是y cm,则根据等腰三角形的性质,可以得到y=25-x/2.13.函数y= (x+1)/(2x+1)中,自变量x的取值范围是所有实数除了x=-1/2.14.变量y与x之间的函数关系式是y=1/(2x-1),当自变量x=-2时,函数y=2.15.f(3)=10.16.老人系数为0.6的人的年龄是68岁。
八年级数学下册《第十九章变量与函数》练习题及答案(人教版)一、选择题1. 某辆速度为v(km/ℎ)的车从甲地开往相距s(km)的乙地,全程所用的时间为t(ℎ),在这个变化过程中,( )A. s是变量B. t是常量C. v是常量D. s是常量3. 2005年第一期国债存期3年,年利率规定为p%,不计复利,若购买x元这一期国债,三年后可得利息y=3px%元.在这里y,p,x中,变量有( )A. 0个B. 1个C. 2个D. 3个4. 已知y与x之间有下列关系:y=x2−1.显然,当x=1时y=0;当x=2时,y=3.在这个等式中( )A. x是变量,y是常量B. x是变量,y是常量C. x是常量,y是变量D. x是变量,y是变量6. 某电影放映厅周六放映一部电影,当天的场次、售票量、售票收入的变化情况如表所示.在该变化过程中,常量是( )场次售票量(张)售票收入(元)15020002100400031506000415060005150600061506000A. 场次B. 售票量C. 票价D. 售票收入二、填空题7. 在一个过程中,固定不变的量称为______ ,可以取不同的值的量称为______ .8. 谚语“冰冻三尺非一日之寒”体现了冰的厚度随时间变化的一个变化过程,在该变化过程中因变量是______.9. 饮食店里快餐每盒5元,买n盒需付S元,则其中常量是______ ,变量是______ .10. 正方形的面积S与边a之间的关系式为______ ,其中变量是______ .11. 在圆的面积和半径之间的关系式S=πr2中,S随着r的变化而变化.其中,______ 是常量,______ 是变量.12. 每个同学购买一本课本,课本的单价是4.5元,总金额为y(元),学生数为n(个),则变量是______ ,常量是______ .13. 已知摄氏温度C与华氏温度F之间的对应关系为C=59(F−32)℃,则其中的变量是,常量是.14. 在△ABC中,它的底边为a,底边上的高为ℎ,则三角形的面积S=12aℎ.若ℎ为定长,则此式中,变量是______ ,常量是______ .15. 在扇形的弧长公式l=nπR180中,当圆心角n一定时,变量是______ .16. 某公司2007年年终财务报表显示,该公司2007年年终每股净利润为m元.年报公布后的某日,该公司的股票收盘价为x元,所以这天收盘后该股票的市盈率为y=xm,在这三个字母中其中常量是______ ,变量是______ .17. 在利用电热水壶烧水的过程中,电热水壶里的水的温度随烧水时间的长短而变化,这个问题中因变量是______,自变量是______.18. 阅读并完成下面一段叙述:(1)某人持续以a米/分的速度经t分时间跑了s米,其中常量是______ ,变量是______ .(2)在t分内,不同的人以不同的速度a米/分跑了s米,其中常量是______ ,变量是______ .(3)s米的路程不同的人以不同的速度a米/分各需跑的时间为t分,其中常量是______ ,变量是______ .(4)根据以上三句叙述,写出一句关于常量与变量的结论:______ .三、解答题19. 已知每千克化工原料的售价为120元,若x(元)表示购买m千克化工原料的总价钱.(1)写出m与x的函数关系式;(2)说出其中的变量与常量.20. 我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?21. 齿轮每分钟120转,如果n 表示转数,t 表示转动时间.(1)用n 的代数式表示t ; (2)说出其中的变量与常量.22. 写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n =6t ;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s =40t .23. 海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T 表示时刻,ℎ表示水深. T(时) 0 3 6 9 12 ℎ(米)57.45.12.64.524. 某电信公司提供了一种移动通讯服务的收费标准,如下表:项目 月基本服务费 月免费通话时间 超出后每分收费 标准 40元150分0.6元则每月话费y(元)与每月通话时间x(分)之间有关系式y ={40(0≤x ≤150)0.6x −50(x >150),在这个关系式中,常量是什么?变量是什么?参考答案1.【答案】D2.【答案】B3.【答案】C4.【答案】D5.【答案】C6.【答案】C7.【答案】常量;变量8.【答案】冰的厚度23.【答案】解:字母T,ℎ表示的是变量.因为水深ℎ随着时间T的变化而变化.24.【答案】解:在0≤x≤150中,y,40是常量,x是变量;在x>150时,0.6,50是常量,x,y是变量.。
八年级数学:变量与函数练习(含答案)一、选择题:1.下列关于圆的面积S与半径R之间的函数关系式S=πR2中,有关常量和变量的说法正确的是()A.S,R2是变量,π是常量 B.S,R是变量,2是常量C.S,R是变量,π是常量 D.S,R是变量,π和2是常量2.据调查,北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0.1x+800(0≤x≤4000) B.y=0.1x+1200(0≤x≤4000)C.y=-0.1x+800(0≤x≤4000) D.y=-0.1x+1200(0≤x≤4000)3.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集的数据如下:请你根据上述数据分析判断,水银柱的长度L(mm)与体温计的读数t℃(35≤t≤42)之间存在的函数关系式为()A.L=110t-66 B.L=11370t C.L=6t-3072D.L=39552t二、填空题4.小明带10元钱去文具商店买日记本,已知每本日记本定价2元,则小明剩余的钱y(元)与所买日记本的本数x(元)之间的关系可表示为y=10-2x.在这个问题中______是变量,_______是常量.5.在函数y=12x-中,自变量x的取值范围是______.6.某种活期储蓄的月利率是0.16%,存入10000元本金,按国家规定,取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y(元)与所存月数x之间的函数关系式为________.三、解答题7.求下列函数中自变量x的取值范围;(1)y=2x2+1;(2)y=13x.8.写出下列各问题中的函数关系式(不需标明自变量的取值范围):(1)小明绕着一圈为400m的跑道跑步,求小明跑的路程s(m)与圈数n之间的函数关系式;(2)已知等腰三角形的周长为36,腰长是x,底边上的高是6,若把面积y看作腰长x的函数,试写出它们的函数关系式.四、思考题9.某旅客带了30公斤的行李乘飞机,按规定,旅客最多可免费携带20公斤的行李,超重部分每公斤按飞机票价的1.5%购买行李票,现该旅客购买了120元的行李费,求他的飞机票价格.B卷:提高题一、七彩题1.(一题多解题)按如图所示堆放钢管.(1)填表:(2)当堆到x层时,求钢管总数y关于层数x的函数关系式.二、知识交叉题2.(科外交叉题)一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米,到达坡底时,小球速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求几秒时小球的速度为16米/秒.三、实际应用题3.山东省是水资源比较贫乏的省份之一,为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定用水收费标准如下:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年3,4月份的用水量和水费如下表所示:用水量(立方米)水费(元)月份3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费为y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的函数关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?四、经典中考题4.(2008,齐齐哈尔,4分),函数中,自变量x的取值范围是_______.C卷:课标新型题一、探究题1.(结论探究题)某商场计划投入一笔资金采购一批商品并转手出售,经市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获得10%;如果月末出售可获利30%,但要付出仓储费用700元.请问根据商场的资金状况,如何购销获利较多?二、说理题2.某移动通讯公司开设两种业务,“全球通”:先缴50元月租费,然后每通话1跳次,再付0.4元;“神州行”:不缴月租费,每通话1跳次,付话费0.6元(本题的通话均指市内通话).若设一个月内通话x跳次,两种方式的费用分别为y1和y2元.(跳次:1min为1跳次,不足1min按1跳次计算,如3.2min为4跳次)(1)分别写出y1,y2与x之间的函数关系式;(2)一个月内通话多少跳次时,两种方式的费用相同?(3)某人估计一个月内通话300跳次,应选择哪种合算?参考答案A卷一、1.C 点拨:解题的关键是对π和R2中的指数如何处理.判断变量和常量的根据就是看它们是否可改变,显然π是不改变的,是常量,圆的面积是随半径R的变化而变化的,故S和R 为变量,当R变化时R2也变化,R2中的指数2与变量和常量无关.2.D 点拨:存车费总收入y=电动车存车总费用+普通车存车总费用=0.3×(4000-x)+0. 2x=-0.1x+1200,其中0≤x≤4000.故应选D.3.C 点拨:由图表可知L随t的变化而变化,通过变化规律,可以得到L与t之间的关系式为L=56.5+6(t-35),即L=6t-3072(35≤t≤42).二、4.x,y;10,2 点拨:因为所买日记本数x是可以变化的,小明余下的钱y也是变化的,故y与x是变量,而10和2是保持不变的,故它们是常量.5.x≠2 点拨:分式12x-有意义,须令x-2≠2,得x≠2.6.y=10000+12.8x(x≥0且x为整数)点拨:本息和=本金+利润,本金=10000元,利息=本金×月利率×月数×(1-20%)=10000×0.16%·x·0.8=12.8x,所以y=10000+12.8x.三、7.解:(1)自变量x的取值范围是全体实数;(2)因为3-x≠0,所以x≠3,即自变量x的取值范围是x≠3.8.解:(1)s=400n.(2)y=-6x+108.点拨:(1)总路程=一圈的长度×圈数;(2)由题意可知,等腰三角形的底边长为(36-2x),所以y=12×(36-2x)×6,即y=-6x+108.四、9.解法一:(从方程的角度解)设他的飞机票价格为x元,根据题意,得(30-20)·x·1.5%=120,所以x=800.解法二:(从函数的角度解)设飞机票价格为k元,则行李票的价格y(元)与所带行李的公斤数x(公斤,x>20)之间的函数关系为y=(x-20)·k·1.5%,已知x=30时,y=120,代入关系式,得120=(30-20)·k·1.5%,解得k=800.答:略.点拨:解法一和解法二实质上是一致的,只不过考虑问题的角度不同,解法一是解法二的特殊情况.B卷一、1.解法一:(1)当x=1时,y=1;当x=2时,y=1+2=3;当x=3时,y=1+2+3=6;当x=4时,y=1+2+3+4=10;…;当x=x时,y=1+2+3+4+…+x=12x(x+1).(2)y=12x(x+1)=12x2+x12(x≥1且为整数).解法二:如图所示,将原题图倒置过来与原图一起拼成平行四边形,利用其面积计算公式可得到结论y=12x(x+1),即y=12x2+12x.(1)题表中依次填为:1,3,6,10,12x2+12x.(2)y=12x·(x+1)=12x2+12x.(x≥1且为整数)点拨:仔细分析总数与层数之间的关系是解决这类图形问题常用方法之一.二、2.解:(1)v=2t;(2)当t=3.5时,v=2×3.5=7,即3.5秒时小球的速度为7米/秒;(3)当v=16时,16=2t,t=8,即8秒时小球的速度为16米/秒.点拨:本题是函数关系式与物理学科的知识交叉题,也就是函数关系式在物理学科中的实际应用.三、3.解:(1)当x≤6时,y=ax;当x>6时,y=6a+c(x-6).将x=5,y=7.5代入y=ax,得7.5=5a,将x=9,y=27代入y=6a+c(x-6),得27=6a+3c.解得a=1.5,c=6.所以y=1.5x(x≤6),y=6x-27(x>6);(2)将x=8代入y=6x-27,得y=21,所以5月份的水费是21元.四、4.x≤3且x≠1C卷一、1.解:设商场投资x元,在月初出售可获利y1元,到月末出售出获利y2元.根据题意,得y1=15%x+10%(1+15%)x=0.265x,y2=30%x-700=0.3x-700.(1)当y1=y2时,0.265x=0.3x-700,所以x=20000;(2)当y1<y2时,0.265x<0.3x-700,所以x>20000;(3)当y1>y2时,0.265x>0.3x-700,所以x<20000.所以当商场投资20000元时,两种销售方法获利相同;当商场投资超过20000元时,第二种销售方式获利较多;当商场投资不足20000元时,第一种销售方式获利较多.点拨:要求哪种销售方式获利较多,关键是比较在自变量的相同取值范围内,两个函数值的大小,除上述方法外,也可以采用作差的方法解决.二、2.解:(1)y1=50+0.4x,y2=0.6x;(2)两种方式的费用相同时,y1=y2,即50+0.4x=0.6x,解得x=250.即一个月内通话250跳次,两种方式的费用相同;(3)某人一个月估计通话300跳次,则全球通的费用为:y1=50+0.4×300=170(元),神州行的费用为:y2=0.6×300=180(元),因为y1<y2,所以选择“全球通”合算.点拨:“话费问题”是日常生活中常见的问题,电话费与通话时间也是一种函数关系,要用函数的思想来加以说理解决.本题体现了分类思想,分两种情况来分析问题是解决此题的关键.。
精品基础教育教学资料,仅供参考,需要可下载使用!19.1.1 变量与函数知识要点:1. 一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.2.常量:其值在变化过程中始终保持不变的量叫常量.3.变量:其值在变化过程中会发生变化的量叫变量 一、单选题1.对圆的周长公式2C r π=的说法正确的是( ) A .π,r 是变量,2是常量 B .C ,r 是变量,π,2是常量 C .r 是变量,2,π,C 是常量D .C 是变量,2,π,r 是常量2.一辆汽车以50 km/h 的速度行驶,行驶的路程s km 与行驶的时间t h 之间的关系式为s =50 t ,其中变量是( ) A .速度与路程B .速度与时间C .路程与时间D .三者均为变量3.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )A .B .C .D .4.某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( ) 数量x(千克 )1 2 3 4 ··· 售价y(元)8+0.416+0.824+1.232+1.6··· A .y=8.4xB .y=8x+0.4C .y=0.4x+8D .y=8x5.矩形的周长为18cm ,则它的面积S (2cm )与它的一边长x (cm )之间的函数关系式是( )A .S=x(9-x)(0<x<9)B .S=x(9+x)(0<x≤9)C .S=x(18-x)(0<x≤9)D .S=x(18+x)(0<x<9)6.变量x 与y 之间的关系式y =12x 2﹣2,当自变量x =2时,因变量y 的值是( ) A .﹣2 B .﹣1C .0D .17.函数y=12x -的自变量x 的取值范围是( ) A .x≠2B .x <2C .x≥2D .x >28.一辆汽车以50/km h 的速度行驶,行驶的路程()s km 与行驶的时间t(h)之间的关系式为50s t =,其中变量是( ) A .速度与路程 B .速度与时间C .路程与时间D .速度9.函数2015y x= 中,自变量x 的取值范围是( ) A .x >0B .x <0C .x ≠0的一切实数D .x 取任意实数10.根据图示的程序计算计算函数值,若输入的x 值为3/2,则输出的结果为( )A .7/2B .9/4C .1/2D .9/2二、填空题11.图书馆现有1500本图书供学生借阅,如果每个学生一次借3本,则剩下的数y (本)和借书学生人数x (人)之间的函数关系式是_____________.12.圆的面积公式2S R π=中,变量是________ ,常量是________.13.齿轮每分钟转120转,如果用n 表示转数,t(min)表示时间,那么用t 表示n 的关系式为n =________. 14.长方形的周长为24cm ,其中一边长为()x cm ,面积为()2y cm ,则y 与x 的关系可表示为___.三、解答题15.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x/kg0 1 2 3 4 5弹簧长度y/cm18 20 22 24 26 28①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?16.已知池中有600m3的水,每小时抽50m3.(1)写出剩余水的体积Vm3与时间th之间的函数表达式;(2)写出自变量t的取值范围;(3)8h后,池中还剩多少水?(4)多长时间后,池中剩余100m3的水?17.求出下列函数中自变量x的取值范围(1)114y x=+(2)31xyx+=+(3)21y x=+(4)531yx-=-18.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.19.如图所示,正方形ABCD的边长为4 ,E、F分别是BC、DC边上一动点,E、F同时从点C 均以1 的速度分别向点B、点D运动,当点E与点B重合时,运动停止.设运动时间为(),运动过程中△AEF的面积为,请写出用表示的函数关系式,并写出自变量的取值范围.答案1.B2.C3.C4.A5.A6.C7.D8.C9.C 10.C 11.y=1500-3x 12.S 、R π 13.120t14.()12y x x =-15.(1)上表反映了弹簧长度与所挂物体质量之间的关系; 其中所挂物体质量是自变量;(2)当所挂物体重量为3千克时,弹簧长24厘米; 当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32(厘米). 16.解:(1)由已知条件知,每小时抽50立方米水, 则t 小时后放水50t 立方米, 而水池中总共有600立方米的水, 那么经过t 时后,剩余的水为600﹣50t ,故剩余水的体积V 立方米与时间t (时)之间的函数关系式为:V=600﹣50t ; (2)由于t 为时间变量,所以 t≥0 又因为当t=12时将水池的水全部抽完了. 故自变量t 的取值范围为:0≤t≤12; (3)根据(1)式,当t=8时,V=200 故8小时后,池中还剩200立方米水; (4)当V=100时,根据(1)式解得 t=10. 故10小时后,池中还有100立方米的水. 17.(1)114y x =+, 自变量x 的取值范围是全体实数;(2)y 根据题意得,3010x x +≥⎧⎨+≠⎩∴3x ≥-,且1x ≠-.∴自变量x 的取值范围是3x ≥-,且1x ≠-.(3)y =根据题意得,2x+1≥0,解得,21x ≥-; ∴自变量x 的取值范围是21x ≥-; (4)531y x -=- 根据题意得,310x -≠, ∴13x ≠, ∴自变量x 的取值范围是13x ≠. 18.解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米), ∴行驶路程x (千米)与剩余油量Q (升)的关系式为Q=35﹣0.125x ; (2)当x=60时,Q=35﹣0.125×60=27.5(升), 答:当x=60(千米)时,剩余油量Q 的值为27.5升; (3)他们能在汽车报警前回到家, (35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家. 19.设运动时间为x (s ),∵点E ,F 同时从点C 出发,以每秒21cm 的速度分别向点B ,D 运动, ∴CE=x ,CF=x ,BE=4-x ,DF=4-x ,∴△AEF 的面积=正方形ABCD 的面积-△ABE 的面积-△ADF 的面积-△ECF 的面积, 即:y=16-•AB•BE -•AD•DF -•EC•FC=16-•4•(4-x )-•4•(4-x )-•x•x =.。
《变量与函数》练习一、选择——基础知识运用1.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A.x B.h C.V D.x、h、V均为变量3.设路程s,速度v,时间t,在关系式s=vt中,说法正确的是()A.当s一定时,v是常量,t是变量B.当v一定时,t是常量,s是变量C.当t一定时,t是常量,s,v是变量D.当t一定时,s是常量,v是变量4.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量。
上述判断正确的有()A.1个B.2个C.3个D.4个5.已知y与x之间有下列关系:y=x2-1.显然,当x=1时,y=0;当x=2时,y=3。
在这个等式中()A.x是变量,y是常量B.x是变量,y是常量C.x是常量,y是变量D.x是变量,y是变量二、解答——知识提高运用6.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是,变量是。
7.汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt。
如果汽车以每时60km 的速度行驶,那么在s=vt中,变量是,常量是;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是,常量是;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是,常量是。
8.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐。
潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,h表示水深。
上述问题中,字母T,h表示的是变量还是常量,简述你的理由。
9.写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s=40t。
初中数学试卷
桑水出品
《变量与函数》练习
一、选择——基础知识运用
1.下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x的函数的是()A.(1)B.(2)C.(3)D.(4)
2.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为()
A.y=10x B.y=25x C.y= 2
5
x D.y=
5
2
x
3.如图,y是x的函数图像的是()A.
B.
C.
D.
4.下列说法正确的是()
A.变量x、y满足y2=x,则y是x的函数
B.变量x、y满足x+3y=1,则y是x的函数
C .代数式4
3πr 3是它所含字母r 的函数
D .在V=43
πr 3中,4
3
是常量,r 是自变量,V 是r 的函数
5.已知x=3-k ,y=2+k ,则y 与x 的关系是( )
A .y=x-5
B .x+y=1
C .x-y=1
D .x+y=5
6.已知两个变量x 和y ,它们之间的3组对应值如下表,则y 与x 之间的函数关系式可能是( ) x -1 0 1 y
-3
-4
-3
A .y=3x
B .y=x-4
C .y=x2-4
D .y=3
x
二、解答——知识提高运用
7.圆柱的底面半径为10cm ,当圆柱的高变化时圆柱的体积也随之变化,
(1)在这个变化过程中自变量是什么?因变量是什么?
(2)设圆柱的体积为V ,圆柱的高为h ,则V 与h 的关系是什么? (3)当h 每增加2,V 如何变化? 8.某镇居民生活用水的收费标准如表。
月用水量x (立方米)
0<x ≤8
8<x ≤16 x >16 收费标准y (元/立方米) 1.50
2.5
4
(1)y 是关于x 的函数吗?为什么?
(2)小王同学家9月份用水10立方米,10月份用水8立方米,两个月合计应付水费多少元? 9.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式,并写出自变量x 的取值范围。
10.如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y 。
(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围; (2)点P 在什么位置时,阴影部分的面积等于20?
11.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为x cm ,它的面积为y cm 2。
(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内? (2)用表格表示当x 从1变到9时(每次增加1),y 的相应值; (3)从上面的表格中,你能看出什么规律?
(4)猜想一下,怎样围能使得到的长方形的面积最大?最大是多少?
(5)估计一下,当围成的长方形的面积是22cm 2时,x 的值应在哪两个相邻整数之间?
12.直角三角形ABC 中,∠ABC=90°,AC=10,BC=6,AB=8.P 是AC 上的一个动点,当P 在AC 上运动时,设PC=x ,△ABP 的面积为y 。
(1)求y 与x 之间的关系式。
(2)点P 在什么位置时,△ABP 的面积等于△ABC 的面积的1
3。
参考答案
一、选择——基础知识运用
1.【答案】D
【解析】根据对于x 的每一个取值,y 都有唯一确定的值与之对应, (1)y=x ,(2)y=x 2,(3)y=x 3满足函数的定义,y 是x 的函数, (4)|y|=x ,当x 取值时,y 不是有唯一的值对应,y 不是x 的函数, 故选:D 。
2.【答案】D
【解析】25÷10= 5
2(元)
所以购买钢笔的总钱数y (元)与支数x 之间的关系式为: y= 5
2x 。
故选:D 。
3.【答案】C
【解析】∵对于x 的每一个取值,y 都有唯一确定的值,
而A 、B 、D 的图像上两个或三个点的横坐标相同,也就是说对于x 的每一个取值,y 的值不唯一, 故选:C 。
4.【答案】B
【解析】A 、y 与x 不是唯一的值对应,所以A 错误; B 、当x 取一值时,y 有唯一的值与之对应,所以B 正确; C 、代数式,故错误;
D 、在V=4
3
πr 3中,4
3
π是常量,r 是自变量,V 是r 的函数,故错误。
故选B 。
5.【答案】D
【解析】∵x=3-k ,y=2+k , ∴x+y=3-k+2+k=5. 故选:D 。
6.【答案】C
【解析】A .y=3x ,根据表格对应数据代入得出y ≠3x ,故此选项错误; B .y=x-4,根据表格对应数据代入得出y ≠x-4,故此选项错误; C .y=x2-4,根据表格对应数据代入得出y=x2-4,故此选项正确;
D.y= 3
x
,根据表格对应数据代入得出y≠
3
x
,故此选项错误。
故选:C。
二、解答——知识提高运用
7.【答案】(1)由于圆柱的高变化时圆柱的体积也随之变化,所以自变量是圆柱的高h,因变量是圆柱的体积V;
(2)圆柱的体积V与圆柱的高的关系式是:V=100πh;
(3)由于V=100π(h+2)=100πh+200π;所以当h每增加2时,V增加200πcm3。
8.【答案】(1)存在两个变量:用水量x和收费标准y(单价),对于x每取一个值,都有唯一确定的y值与之相对应,符合函数的定义,
∴y是关于x的函数。
(2)1.5×8+(10-8)×2.5+1.5×8=29(元)。
答:两个月合计应付水费29元。
9.【答案】填表如下:
依题意得:y=1+2+3+…+x= x(x+1)
2
(x≥1)。
10.【答案】(1)设PB=x,长方形ABCD中,AB=4,BC=8,
则图中阴影部分的面积为:y= 1
2
(4-x+4)×8=32-4x(0<x≤4)。
(2)当y=20时,20=32-4x,
解得x=3,
即PB=3。
11.【答案】(1)y=(20÷2-x)×x=(10-x)×x=10x-x2;
x是自变量,0<x<10;
(2)当x从1变到9时(每次增加1),y的相应值列表如下:
(3)从上面的表格中,可以看出的规律:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来,y的值在由大变小的过程中,变小的速度越来越块;③当x取距5等距离的两数时,得到的两个y值相等;
(4)当长方形的长与宽相等即x为5时,y的值最大,最大值为25cm2;
(5)由表格可知,当围成的长方形的面积是22cm2时,x 的值应在3~4之间或6~7之间. 12.【答案】解:(1)如图,作PD ⊥AB ,
∴△ADP ∽△ABC , ∴
PD BC
= AP AC
,即PD 6
= 10-x 10
,
解得,PD=
30-3x 5,
∴S △ABP= 12
AB×PD=12
×8×30-3x 5 = -12
5
x+24,
∴y 与x 之间的关系式为:y=-125
x+24; (2)由题意,S △ABC= 1
2×6×8=24,
∵△ABP 的面积等于△ABC 的面积的1
3
,
∴S △ABP=13
S △ABC=1
3
×24=8,
即-12
5
x+24=8,
解得,x=20
3
,
∴点P 在距点C 20
3
处。