浙教版八年级上册 第五章 一次函数竞赛题(学生版)
- 格式:doc
- 大小:140.57 KB
- 文档页数:3
浙教版数学八上第五章一次函数测试一、选择题(每小题3分,共30分)1.一次函数24y x =-的图象与x 轴交点的坐标是……( )A .(2,0)B .(0,2)C .(0,2)-D .(2,0)-2.已知正比例函数y =(k +5)x ,且y 随x 的增大而减小,则k 的取值范围是……( ) A .k >5 B .k <5 C .k >-5 D .k <-53.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y (cm)与燃烧时间x (小时)的函数关系用图象表示为下图中的( )4.若正比例函数的图象经过点(1,2)-,则这个图象必经过点……( ) A .(1,2) B .(1,2)-- C .(2,1)- D .(1,2)- 5.已知直线y =-x +3a 和直线y =x +a 的交点坐标为(m ,8),则m 的值为……( ) A .4 B .8 C .16 D .24 6.一次函数y =2x ﹣3的图象不经过……( )A .第一象限B .第二象限C .第三象限D .第四象限7.如图所示,直线y =kx +b 与x 轴交于点(-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0第7题图8.已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则函数y =kx -k 的图象大致是( )9.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是……( )A .31x y =⎧⎨=-⎩B .31x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .31x y =⎧⎨=⎩10.如图所示,已知直线1y x =+与x 、y 轴交于B 、C 两点,A (0,0),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第n 个等边三角形的边长等于( )ABC .12nD二、填空题(每小题3分,共24分)11.已知一次函数y =2x +4的图象经过点(m ,8),则m =________.第10题图第9题图10)12.已知函数y =2x 2a +3+a +2b 是正比例函数,则a =,b = .13.放学后,小明骑车回家,他经过的路程s (千米)与所用时间t (分钟)的函 数关系如图所示,则小明的骑车速度是____千米/分钟.14.将一次函数31y x =+的图象向上平移1个单位,所得图像对应的函数表达式为 .15.一次函数 y =x ﹣1 与 y =2x ﹣1 的交点坐标是 . 16.一次函数443y x =-+的图象与x 轴、y 轴分别交于A ,B 两点,则线段AB 的长为 . 17.已知直线2(3)y x a =+-与x 轴的交点在A (2,0),B (3,0)之间(包括A 、B 两点)则a 的取值范围是 .18.如图,一次函数的图象与x 轴,y 轴分别相交于点A 、B ,将△AOB 沿直线AB翻折得△ACB .若C (23,23),则该一次函数的解析式为 .三、解答题:(共46分)19.(本题6分)已知y 是x 的一次函数,当x =3时,y =1;当x =0时,y =-2.求这个一次函数的解析式.第18题图20.(本题6分)已知长方形周长为20.(1)写出长y关于宽x的函数解析式(x为自变量);(2)在直角坐标系中,画出函数图象.21.(本题8分)如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3).一次函数的图象与y轴交于点B,且OA =OB,(1)求线段OA的长;(2)求这两个函数的解析式.22.(本题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?23.(本题8分)如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,3).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA 的面积S与x的函数关系式,并写出自变量x的取值范围.24.(本题10分)某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单元:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义.(2)求线段AB所表示的y1与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?参考答案: 一、选择题:ADBDA BADBA 二、填空题 11.2 12.11,2a b =-=13.0.2 14.32y x =+ 15.(0,1)- 16.5 17.79a ≤≤ 18.33+-=x y 三、解答题19.设函数的解析式为y kx b =+,由条件得312k b b +=⎧⎨=-⎩,1,2k b ==-,2y x =-20.(1)10y x =-;(2)图略 21.(1)5;(2)设一次函数的解析式为y =ax +b , a =2 b =-5,y =2x -5 22.(1)3000÷10=300(米/分)40-10=30(分)即小敏去超市途中的速度是300米/分,在超市逗留了30分钟.(2)(3000-2000)÷(45-40)=200(米/分)40+3000÷200=55x(分)即小敏8点55分返回到家. 23.(1)E (-8,0),-8k -6=0,34k =;(2)如图,过P 作PH ⊥OA 于H , ∵点P 3(,6)4x x +是第二象限内的直线上的一个动点,∴PH =y ,而点A 的坐标为(0,3),133()(80)22S x x x =⨯⨯-=--≤<;24.(1)点D 的横坐标、纵坐标的实际意义:当产量为为130kg 时,该产品每千克生产成本与销售价相等,都为42元.(2)设线段AB 所表示的y 1与x 之间的函数关系式为111y k x b =+则111609042b k b =⎧⎨+=⎩ 解方程组得110.260k b =-⎧⎨=⎩这个一次函数的表达式为10.260(090)y x x =-+≤≤(3)设y 2与x 之间的函数表达式为222y k x b =+则22212013042b k b =⎧⎨+=⎩ 解得220.6120k b =-⎧⎨=⎩这个一次函数的表达式为20.6120(0130)y x x =-+≤≤ 设产量为x kg 时,获得的利润为W 元.当090x ≤≤时,2[(0.6120)(0.260)]0.4(75)2250W x x x x =-+--+=--+.所以当x =75时,W 的值最大,最大值为2250.当90130x ≤≤时,2[(0.6120)42]0.6(65)2535W x x x =-+-=--+,当x =90时,20.6(9065)25352160W =--+=,由-0.6<0知,当x>65时,W 随x 的增大而减小,所以90130x ≤≤时,2160W ≤.因此,当该产品产量为75kg 时获得的利润最大,最大利润是2250元.。
浙教版八年级上册数学第5章一次函数含答案一、单选题(共15题,共计45分)1、如图,A,B两地相距4千米,8∶00时甲从A地出发步行到B地,8:20时乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与所用的时间(分)之间的函数关系如图所示.由图中的信息可知乙到达A地的时刻为()A.8:30B.8:35C.8:40D.8:452、如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()①体育场离张强家3.5千米②张强在体育场锻炼了15分钟③体育场离早餐店1.5千米④张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个3、已知函数y=中,当x=a时的函数值为1,则a的值是()A.-1B.1C.-3D.34、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5、如图已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A. B. C. D.6、如图1,矩形ABCD中,AB=4,AD=2,E、F是边AB、DC的中点,连接EF、AF,动点P从A向F运动,AP=x,y=PE+PB.图2所示的是y关于x的函数图象,点(a,b)是函数图象的最低点,则a的值为()A. B. C. D.27、一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集在数轴上表示正确的是()A. B. C. D.8、一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A. B. C. D.9、如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后原路返回家,其中x(分钟)表示时间,y(千米)表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是( )A.食堂离小明家2.4千米B.小明在图书馆的时间有17分钟C.小明从图书馆回家的平均速度是0.04千米/分钟D.图书馆在小明家和食堂之间10、如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D 作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A. B. C.D.11、下面哪个点不在函数y = -2x+3的图象上()A.(-5,13)B.(0.5,2)C.(3,0)D.(1,1)12、已知函数:①y=2x;②y=﹣(x<0);③y=3﹣2x;④y=2x2+x(x≥0),其中,y随x增大而增大的函数有()A.1个B.2个C.3个D.4个13、已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限14、函数y=中,自变量x的取值范围是()A.x>3B.x<3C. x≥-2且x≠3D.x≠315、函数y=中,自变量x的取值范围是()A.x≠0B.x≥﹣1C.x≠﹣1D.x≤﹣1二、填空题(共10题,共计30分)16、如图,已知直线AB与x轴交于点A(4,0)、与y轴交于点B(0,3),直线 BD与x轴交于点D,将直线AB沿直线BD翻折,点A恰好落在y轴上的C 点,则直线BD对应的函数关系式为________ .17、如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为________.(写出一个即可)18、已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x 必定经过第________ 象限.19、点P(x,y)是第一象限的一个动点,且满足x+y=10,点A(8,0).若△OPA的面积为S,则S关于x的函数解析式为________.20、函数的自变量x的取值范围是________.21、函数是一次函数,则________.22、如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y 的值随x的增大而________.(填“增大”或“减小”)23、点P(-1,m)、Q(2,n)是直线y=-2x上的两点,则m与n的大小关系是________.24、已知直线,若,且,那么该直线不经过第________象限.25、如图所示的折线为某地向香港地区打电话需付的通话费y(元)与通话时间之间的函数关系,则通话应付通话费________元.三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.28、已知函数,与x成正比例,与x成反比例,且当时,;当时,.求y与x的函数表达式.29、某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?30、近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每kg售价(元)40 39 38 37 (30)每天销量(kg)60 65 70 75 (110)设当单价从40元/kg下调了x元时,销售量为ykg;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/kg,若不考虑其他情况,那么单价从40元/kg 下调多少元时,当天的销售利润W最大?利润最大是多少?参考答案一、单选题(共15题,共计45分)2、A3、D4、B5、C6、B7、C8、C9、D10、B11、C12、C13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
浙教版八年级上册数学第五章一次函数单元测试卷一、单选题1.下列各点在函数y=1-2x的图象上的是()A.(2,-1B.(0,2)C.(1,0)D.(1,-1)2.一次函数y=ax+b(a>0)与x轴的交点坐标为(m ,0),则一元一次不等式ax+b≤0的解集应为()A.x≤mB.x≤-mC.x≥mD.x≥-m3.若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)4.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是()A.他离家8km共用了30minB.他等公交车时间为6minC.他步行的速度是100m/minD.公交车的速度是350m/mi5.一次函数y=a1x+b1与y=a2x+b2的图象在同一平面直角坐标系中的位置如图所示,小华根据图象写出下面三条信息:①a1>0,b1<0;②不等式a1x+b1≤a2x+b2的解集是x≥2;③方程组的解是,你认为小华写正确()A.0个B.1个C.2个D.3个6.若一次函数y=(m﹣3)x+(m+1)(其中m为常数)的图形经过第一、二、四象限,则m的取值范围是()A.﹣1≤m≤3B.m<3C.﹣1<m<3D.m>37.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P,Q两点同时停止运动.设P点运动的时间为t秒,△APQ的面积为S,则表示S与t之间的函数关系的图象大致是()A. B.C. D.8.下列函数(1)y=2πx;(2)y=-2x+6;(3)y= ;(4)y=x2+3;(5)y= ,其中是一次函数的是().A.4个B.3个C.2个D.1个9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.“龟兔首次赛跑“之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米②兔子和乌龟同时从起点出发③乌龟在途中休息了10分钟④兔子在途中750米处追上乌龟其中说法正确的是()A.1个B.2个C.3个D.4个二、填空题11.若直线y=(k-2)x+2k-1与y轴交于点(0,1),则k的值等于________ .12.写一个图象经过第二、四象限的正比例函数:________13.某书定价为30元,如果一次购买20本以上,超过20本的部分打9折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系式为________14.函数y=+(x﹣2)0中,自变量x的取值范围是 ________.15.某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式kx+30<x成立的x的取值范围是________。
浙教年级八上学期数学第五章一次函数综合测试题(时间90分钟,满分100分)一.选择题:(本题共10小题,每小题3分,共30分) 1.函数1+=x y 中自变量x 的取值范围是( )A . x >﹣1B . x ≥﹣1C . x <﹣1D . x ≤﹣1 2.点A (1,m )在y =2x 的图象上,则m 的值是( ) A .1 B .2 C .21D .0 3.点P 1(-1,y 1),点P 2(2,y 2)是一次函数34+-=x y 图象上的两个点,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2 >0C .y 1<y 2D .y 1=y 2 4.在平面直角坐标系中,一次函数y =2x ﹣3的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.一次函数y =kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3) C .(2,2) D .(5,﹣1) 6.如图,在长方形A O BC 中,A (-2,0),B (0,1).若正比 例函数y =kx 的图象经过点C ,则k 的值为( )A .-21 B .21C .-2D .27.如图,已知直线 y =﹣x +2 与 x 轴交于点 A ,与 y 轴交于点 B , 以点 A 为圆心,AB 长为半径画弧,交 x 轴于点 C ,则点 C 的坐 标为( )A. (﹣1,0) B . (22,0) C . (22﹣2,0) D . (2﹣22,0)8.已知一次函数y =kx -m -2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( )A .k <2,m >0B .k <2,m <0C .k >2,m >0D .k <0,m <0第6题图第7题图9.如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=C G,设△EF G的面积为y,AE的长为x,则y关于x的函数的图象大致是( )10.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地( )100千米B.120千米C.180千米D.200千米二.填空题(本题共6小题,每题3分,共18分)11.函数y=(2-k)x是正比例函数,则k的取值范围是________.12.在函数关系式y=-31x+2中,当x=-3时,y=________.13.已知点A(a-2,3-a)在函数y=2x+1的图象上,则a=________.14.一条直线由函数xy3=的图象平移得到,且经过点A(1,5),则直线的函数解析式为________.15.如图,是某电信公司甲、乙两种业务:每月通话费用y(元)与通话时间x(分)之间的函数关系.某企业的周经理想从两种业务中选择一种,如果周经理每个月的通话时间都在100分钟以上,那么选择________种业务合算.16.关于x的一次函数)2()73(-+-=axay的图象与y轴的交点在x轴的上方,则y随x的增大而减小,则a的取值范围是_______________________ .三.解答题(共8题,共52分)17.(本题6分)已知正比例函数y=kx的图象过点P(3,-3).(1)写出这个正比例函数的函数解析式;(2)已知点A(a,2)在这个正比例函数的图象上,求a的值.18.(本题6分)已知一次函数y=2x-3.(1)当x=-2时,求y.(2)当y=1时,求x.第10题图A.B.C.D.第15题图(3)当-3<y<0时,求x的取值范围.19.(本题6分)已知正比例函数y=kx的图象经过点)32,123(mmP-+-.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向右平移4个单位长度,求出平移后的直线的解析式.20.(本题8分)某旅游团上午8时从旅馆出发,乘汽车到距离180千米的某著名旅游景点游玩,该汽车离旅馆的距离S(千米)与时间t (时)的关系可以用图6的折线表示.根据图象提供的有关信息,解答下列问题:⑴求该团去景点时的平均度是;⑵该团在旅游景点游玩了小时⑶求出返程途中S(千米)与时间t (时)的函数关系式.21.(本题8分)如图,已知直线l1经过点A(0,﹣1)与点P(2,3),另一条直线l2经过点P,且与y轴交于点B(0,m).(1)求直线l1的解析式;(2)若△APB的面积为3,求m的值.22.(本题8分)做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.第21题图(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同? (2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?23.(本题10分)如图,在△ABC 中,∠C =90°,AC =BC =4cm ,点D 是斜边AB 的中点,点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定:当点E 到终点C 时停止运动;设运动的时间为x 秒,连接DE 、DF . (1)填空:S △ABC = cm 2;(2)当x =1且点F 运动的速度也是1cm/s 时,求证:DE =DF ;(3)若动点F 以3cm/s 的速度沿射线CA 方向运动;在点E 、点F 运动过程中,如果有某个时间x ,使得△ADF 的面积与△BDE 的面积存在两倍关系,请你直接写出时间x 的值.答案一、选择题:BBABC ADAAC 二、填空题: 112 k12. 3 13. 214. 23+=x y 15. 甲 16. 372<<a 三、解答题17.(1)把P (3,-3)代入正比例函数y =kx ,得3k =-3,k =-1,所以正比例函数的函数解析式为y =-x ;(2)把点A (a,2)代入y =-x 得,-a =2,a =-2. 18.解 (1)把x =-2代入y =2x -3中得:y =-4-3=-7; (2)把y =1代入y =2x -3中得:1=2x -3,解得x =2; (3)∵-3<y <0,∴-3<2x -3<0,解得0<x <23. 19.(1)将x ,y 的值代入y =kx 中,得2=k .∴正比例函数的解析式为y =2x . (2)设平移后直线的解析式为y =2x +b ,将(4,0)代入,得8+b =0.解得b =-8. ∴平移后直线的解析式为y =2x -8. 20.解析:⑴180÷(10-8)=90(千米/时). 所以该团去景点时的平均速度是90千米/时. ⑵14-10=4(小时).该团在旅游景点游玩了4小时.⑶设返回途中S(千米)与时间t (时)的函数关系式为S=kt +b , 根据题意得,⎩⎨⎧=+=+1201518014b t b t解得,⎩⎨⎧=-=.1020,60b k因此其关系式为S=-60t +1020.(14≤t ≤17).图6·→↑··601201808101415S(千米)t(时)21.(1)设直线l 1的表达式为y =kx +b , 则,解得:.∴直线l 1的函数关系式为:y =2x ﹣1.(2)过P 作P H ⊥y 轴于H ,则P H=2,∵S △APB =AB •P H=3,∴AB ×2=3,∴AB =3,∵A (0,﹣1),∴B (0,2)或(0,﹣4), ∴m =2或﹣4.22.(1)设A 款式服装分配到甲店铺为x 件,则分配到乙店铺为(36-x )件; B 款式分配到甲店铺为(30-x )件,分配到乙店铺为(x -6)件. 根据题意得30x +35×(30-x )=26×(36-x )+36(x -6), 解得x =22.所以36-x =14(件),30-x =8(件),x -6=16(件),故A 款式服装分配到甲店铺为22件,则分配到乙店铺为14件;B 款式分配到甲店铺为8件,分配到乙店铺为16件,能使两个店铺在销售完这批服装后所获利润相同; (2)设总利润为w 元,根据题意得:30x +35×(30-x )≥950,解得x ≤20.∴6≤x ≤20.w =30x +35×(30-x )+26×(36-x )+36(x -6)=5x +1770,∵k =5>0,∴w 随x 的增大而增大,∴当x =20时,w 有最大值1870.∴A 款式服装分配给甲、乙两店铺分别为20件和16件,B 款式服装分配给甲、乙两店铺分别为10件和14件,最大的总利润是1870元. 23.(1)∵S △ABC =AC ×BC ∴S △ABC =×4×4=8(c m 2) 故答案为:8 (2)如图:连接CD∵AC=BC,D是AB中点∴CD平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴△CDF≌△BDE(S A S)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AA S)∴DN=DM若S△ADF=2S△BDE.∴×AF×DN=2××BE×DM∴|4﹣3x|=2x∴x1=4,x2=若2S△ADF=S△BDE∴2××AF×DN=×BE×DM∴2×|4﹣3x|=x∴x1=,x2=综上所述:x=或4或或.。
浙教版2022-2023学年八上数学第5章 一次函数 尖子生测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.点 P(a ,b) 在函数 y =3x +2 的图像上,则代数式 6a −2b +1 的值等于( ) A .5 B .-3 C .3 D .-1 【答案】B【解析】∵点P (a ,b )在函数y=3x+2上 ∴b=3a+2∴原式=6a -2(3a+2)+1=6a -6a -4+1=-3. 故答案为:B.2.如图,已知一次函数 y =kx +b 的图象经过A (0,1)和B (2,0),当x >0时, y 的取值范围是( )A .y <1 ;B .y <0 ;C .y >1 ;D .y <2【答案】A【解析】把A (0,1)和B (2,0)两点坐标代入y=kx+b 中,得 {b =12k +b =0 ,解得 {k =−12b =1 ∴y=- 12 x+1,∵- 12<0,y 随x 的增大而减小,∴当x >0时,y <1. 故答案为:A .3.如图,函数y=ax+b 和y=kx 的图像交于点P ,关于x ,y 的方程组 {y −ax =bkx −y =0的解是( )A .{x =−2y =−3B .{x =−3y =2C .{x =3y =−2D .{x =−3y =−2【答案】D【解析】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是 {x =−3y =−2 . 故答案为:D .4.如图,直线y =x+m 与y =nx ﹣5n (n≠0)的交点的横坐标为3,则关于x 的不等式x+m >nx ﹣5n >0的整数解为( )A .3B .4C .5D .6【答案】B【解析】当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故答案为:B.5.如图,一次函数y=kx+b的图象经过点(2,0),则下列结论正确的是()A.k>0B.关于x方程kx+b=0的解是x=2C.b<0D.y随x的增大而增大【答案】B【解析】∵一次函数y=kx+b(k≠0)的图象过一、二、四象限,∴k<0,b>0,∴y随x的增大而减小,故A、C、D均不符合题意;∵直线y=kx+b(k≠0)与x轴的交点为(2,0),∴关于x方程kx+b=0的解是x=2,故B符合题意.故答案为:B.6.两条直接y1=ax−b与y2=bx−a在同一坐标系中的图象可能是图中的()A.B.C.D.【答案】B【解析】A:直线y1过第一、二、三象限,则a>0,b<0,直线y2过第一、二、四象限,则b<0,a <0,前后矛盾,故A选项不符合题意;B:直线y1过第一、二、三象限,则a>0,b<0,直线y2过第二、三、四象限,则b<0,a>0,故B 选项符合题意;C:直线y1过第一、三、四象限,则a>0,b>0,直线y2过第一、二、四象限,则b<0,a<0,前后矛盾,故C选项不符合题意;D:直线y1过第一、三、四象限,则a>0,b>0,直线y2过第二、三、四象限,则b<0,a>0,前后矛盾,故D选项不符合题意;故答案为:B.7.如图,四边形ABCD 的顶点坐标分别为4(-4,0),B (-2,-1),C (3,0),D (0,3),当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线I 所表示的函数表达式为( )A .y= 1110x +65B .y= 23x +13C .y=x+1D .y= 54x +32【答案】D【解析】 ∵A (-4,0),B (-2,-1),C (3,0),D (0,3)∴AC=7,DO=3∴四边形ABCD 面积为12×AC ×(|y B |+3)=12×7×4=14。
2021-2022学年浙江八年级数学上册第5章《一次函数》竞赛题精选姓名学校考号一.选择题(共8小题,满分40分,每小题5分)1.(5分)(2020•原阳县校级自主招生)不论m为何实数,直线y=(m2+2m+2)x﹣3m2﹣6m﹣1恒过定点()A.( 3,2 )B.( 5,3 )C.( 3,5 )D.( 0,﹣1)2.(5分)(2020•西安自主招生)把函数y=﹣2x+3的图象向右平移3个单位长度,再向下平移2个单位长度,可得到的图象的函数解析式是()A.y=﹣2x﹣5 B.y=﹣2x+7 C.y=﹣2x﹣7 D.y=﹣2x+113.(5分)(2020•武昌区校级自主招生)已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P (﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24 C.2D.124.(5分)(2019•麻城市校级自主招生)直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条5.(5分)(2018•武昌区校级自主招生)已知实数a、b、c满足a<b<c,并且k=++,则直线y=﹣kx+k一定经过()A.第一、三、四象限B.第一、二、四象限C.第一、二、三象限D.第二、三、四象限6.(5分)(2020•浙江自主招生)函数y=a|x|与y=x+a的图象恰有两个公共点,则实数a 的取值范围是()A.a>1 B.﹣1<a<1 C.a≥1或a≤﹣1 D.a>1或a<﹣17.(5分)(2017•温江区校级自主招生)将函数y=3x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|3x+b|的图象,若该图象在直线y=3下方的点的横坐标x满足0<x<3,则b的取值范围为()A.b<﹣6或b>﹣3 B.b≤﹣6或b≥﹣3 C.﹣6<b<﹣3 D.﹣6≤b≤﹣38.(5分)(2017•金牛区校级自主招生)若直线l:y=kx+b经过不同的三点A(m,n),B(n,m),C(m﹣n,n﹣m),则该直线经过()象限.A.二、四B.一、三C.二、三、四D.一、三、四二.填空题(共6小题,满分30分,每小题5分)9.(5分)(2020•温江区校级自主招生)在同一直角坐标系中,关于x轴对称的两点P,Q分别在两个一次函数y=﹣x+3与y=3x﹣5的图象上,则点P的坐标是.10.(5分)(2020•浙江自主招生)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围是.11.(5分)(2020•浙江自主招生)若四条直线x=1,y=﹣1,y=3,y=kx﹣3所围成的凸四边形的面积等于12,则k的值为.12.(5分)(2020•南岸区自主招生)在一段长为1000m的笔直道路AB上,甲、乙两名运动员分别从A,B两地出发进行往返跑训练.已知甲比乙先出发30秒钟,甲距A点的距离y/m 与其出发的时间x/分钟的函数图象如图所示.乙的速度是200m/分钟,当乙到达A点后立即按原速返回B点.当两人第二次相遇时,乙跑的总路程是m.13.(5分)(2019•江阴市校级自主招生)在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,连接OD.当∠DOA=∠OBA时,直线CD的解析式为.14.(5分)(2015•黄冈中学自主招生)函数y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|的最小值是.三.解答题(共4小题,满分93分)15.(7分)(2020•南岸区自主招生)已知函数y=k|x+2|+b的图象经过点(﹣2,4)和(﹣6,﹣2),完成下面问题:(1)求函数y=k|x+2|+b的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y=x+1的图象如图所示,结合你所画出y=k|x+2|+b的图象,直接写出k|x+2|+b>x+1的解集.16.(70分)(2011•南京)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是m,他途中休息了min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?17.(8分)(2017•镇海区校级自主招生)某次足球邀请赛的记分规则及奖励方案如下表:胜一场平一场负一场积分 3 1 0奖励(元/每人)1500 700 0 当比赛进行到12轮结束(每队均要比赛12场)时,A队共积19分.(1)试判断A队胜、平、负各几场?(2)若每一场每名参赛队员均得出场费500元,设A队中一位参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.18.(8分)(2020•浙江自主招生)已知:实数x满足﹣≥x﹣,并且关于x的函数y=2|x﹣a|+a2的最小值为4,求常数a的值.2021-2022学年浙江八年级数学上册第5章《一次函数》竞赛题精选一.选择题(共8小题,满分40分,每小题5分)1.(5分)(2020•原阳县校级自主招生)不论m为何实数,直线y=(m2+2m+2)x﹣3m2﹣6m﹣1恒过定点()A.( 3,2 )B.( 5,3 )C.( 3,5 )D.( 0,﹣1)【分析】令k=m2+2m+2,则直线的解析式为y=kx﹣3k+5=k(x﹣3)+5,代入x=3求出与之对应的y值,进而可得出直线恒过的顶点坐标.【解答】解:令k=m2+2m+2,则﹣3m2﹣6m﹣1=﹣3k+5,∴直线的解析式为y=kx﹣3k+5=k(x﹣3)+5,∴当x﹣3=0,即x=3时,y=k(3﹣3)+5=5.∴直线y=(m2+2m+2)x﹣3m2﹣6m﹣1恒过定点(3,5).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.2.(5分)(2020•西安自主招生)把函数y=﹣2x+3的图象向右平移3个单位长度,再向下平移2个单位长度,可得到的图象的函数解析式是()A.y=﹣2x﹣5 B.y=﹣2x+7 C.y=﹣2x﹣7 D.y=﹣2x+11【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:把函数y=﹣2x+3的图象向右平移3个单位长度,再向下平移2个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)+3﹣2=﹣2x+7,故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.(5分)(2020•武昌区校级自主招生)已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P (﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24 C.2D.12【分析】依据题意得到三个关系式:a﹣b=﹣c,ab=8,a2+b2=c2,运用完全平方公式即可得到c的值.【解答】解:∵点P(﹣1,)在“勾股一次函数”y=x+的图象上,∴=﹣+,即a﹣b=﹣c,又∵a,b,c分别是Rt△ABC的三条边长,∠C=90°,Rt△ABC的面积是4,∴ab=4,即ab=8,又∵a2+b2=c2,∴(a﹣b)2+2ab=c2,即∴(﹣c)2+2×8=c2,解得c=2,故选:A.【点评】考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.4.(5分)(2019•麻城市校级自主招生)直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条【分析】联立直线y=px与直线y=x+10,求出p的取值范围即可求得结果.【解答】解:联立直线y=px与直线y=x+10,,得px=x+10,x=,∵x为整数,p也为整数.∴P的取值范围为:﹣9≤P≤11,且P≠1,P≠0.而.10=2×5=1×10,0<P≤11,有四条直线,P≠0,﹣9≤P<0,只有三条直线,那么满足条件的直线有7条.故选:B.【点评】本题考查了两条直线相交或平行问题,难度较大,关键不要漏掉某条直线.5.(5分)(2018•武昌区校级自主招生)已知实数a、b、c满足a<b<c,并且k=++,则直线y=﹣kx+k一定经过()A.第一、三、四象限B.第一、二、四象限C.第一、二、三象限D.第二、三、四象限【分析】根据a<b<c,并且k=++,可以得到k的正负情况,然后根据一次函数的性质,即可得到直线y=﹣kx+k经过哪几个象限.【解答】解:∵a<b<c,∴c﹣a>b﹣a>0,∴,∵k=++,∴k=++<++=<0,∴直线y=﹣kx+k经过第一、三、四象限,故选:A.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.(5分)(2020•浙江自主招生)函数y=a|x|与y=x+a的图象恰有两个公共点,则实数a 的取值范围是()A.a>1 B.﹣1<a<1 C.a≥1或a≤﹣1 D.a>1或a<﹣1【分析】画图象用数形结合解题,y=a|x|的图在x轴上过原点是折线,关于y轴对称;a >0时,y=x+a斜率为1,与y=a|x|交于第一、二象限,a<0时,y=x+a斜率为1,与y =a|x|交于第三、四象限,分析图象可得答案.【解答】解:根据题意,y=a|x|的图在x轴上过原点是折线,关于y轴对称;分两种情况讨论,①a>0时,过第一、二象限,y=x+a斜率为1,a>0时,过第一、二、三象限,若使其图象恰有两个公共点,必有a>1;②a<0时,y=a|x|过第三、四象限;而y=x+a过第二、三、四象限;若使其图象恰有两个公共点,必有a<﹣1;故选:D.【点评】本题要求利用图象求解各问题,先画函数图象,根据图象观察,得出结论.7.(5分)(2017•温江区校级自主招生)将函数y=3x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|3x+b|的图象,若该图象在直线y=3下方的点的横坐标x满足0<x<3,则b的取值范围为()A.b<﹣6或b>﹣3 B.b≤﹣6或b≥﹣3 C.﹣6<b<﹣3 D.﹣6≤b≤﹣3【分析】先解不等式3x+b<3时,得x<;再求出函数y=3x+b沿x轴翻折后的解析式为y=﹣3x﹣b,解不等式﹣3x﹣b<3,得x>﹣;根据x满足0<x<3,得出﹣=0,=3,进而求出b的取值范围.【解答】解:∵y=3x+b,∴当y<3时,3x+b<3,解得x<;∵函数y=3x+b沿x轴翻折后的解析式为﹣y=3x+b,即y=﹣3x﹣b,∴当y<3时,﹣3x﹣b<3,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,解得b=﹣3,=3,解得b=﹣6,∴b的取值范围为﹣6≤b≤﹣3,故选:D.【点评】本题考查了一次函数图象与几何变换,求出函数y=3x+b沿x轴翻折后的解析式是解题的关键.8.(5分)(2017•金牛区校级自主招生)若直线l:y=kx+b经过不同的三点A(m,n),B(n,m),C(m﹣n,n﹣m),则该直线经过()象限.A.二、四B.一、三C.二、三、四D.一、三、四【分析】合理观察分析,即可求得此函数的解析式.【解答】解:根据题意得:mk+b=n(1)nk+b=m(2)(m﹣n)k+b=n﹣m(3)由(1)﹣(2),得(m﹣n)k=n﹣m.结合(3)可得b=0,那么此函数为正比例函数,两边都除以m﹣n,得k=﹣1所以此正比例函数过的是二四象限.故选:A.【点评】本题考查的知识点是;在这条直线上的各点的坐标一定适合这条直线的解析式.二.填空题(共6小题,满分30分,每小题5分)9.(5分)(2020•温江区校级自主招生)在同一直角坐标系中,关于x轴对称的两点P,Q分别在两个一次函数y=﹣x+3与y=3x﹣5的图象上,则点P的坐标是(1,2).【分析】根据题意点P,Q关于x轴对称,则P,Q的横坐标相等,纵坐标互为相反数,设点P的横坐标为a,点P在一次函数y=﹣x+3的图象上,点Q在一次函数y=3x﹣5的图象上,可得点P,Q的坐标,可列代数﹣a+3+3a﹣5=0,即可得出答案.【解答】解:设点P的横坐标为a,则点Q的横坐标为a,∵点P在一次函数y=﹣x+3的图象上,∴P(a,﹣a+3),则点Q在一次函数y=3x﹣5的图象上,∴Q(a,3a﹣5),∴﹣a+3+3a﹣5=0,解得a=1,∴P(1,2),故答案为:(1,2).【点评】本题主要考查了一次函数图象上点的坐标的特征及关于x,y轴对称点的坐标的特征,合理应用坐标的特征进行计算是解决本题的关键.10.(5分)(2020•浙江自主招生)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围是m>7 .【分析】由题可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=5代入函数式即可求m的取值范围.【解答】解:根据题意,得:当x=﹣1时,y=﹣m+2m﹣7=m﹣7>0,解得m>7;当x=5时,y=5m+2m﹣7=7m﹣7>0,解得m>1,∴m的取值范围是m>7.故答案是:m>7.【点评】本题考查了一次函数图象与系数的关系.一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m的取值范围.11.(5分)(2020•浙江自主招生)若四条直线x=1,y=﹣1,y=3,y=kx﹣3所围成的凸四边形的面积等于12,则k的值为﹣2或1 .【分析】本题可先求出直线y=kx﹣3与y=﹣1和y=3的交点坐标,由于四条直线所围的图形为直角梯形,也就求出了梯形上下底和高的长.根据直角梯形的面积公式可得出关于k 的方程,即可求出k的值.【解答】解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1;故答案为:﹣2或1.【点评】此题考查了一次函数的综合;利用k正确表示出四边形的面积是解决本题的关键,由于k的符号不确定,因此要分类讨论,以免造成错解、漏解.12.(5分)(2020•南岸区自主招生)在一段长为1000m的笔直道路AB上,甲、乙两名运动员分别从A,B两地出发进行往返跑训练.已知甲比乙先出发30秒钟,甲距A点的距离y/m 与其出发的时间x/分钟的函数图象如图所示.乙的速度是200m/分钟,当乙到达A点后立即按原速返回B点.当两人第二次相遇时,乙跑的总路程是1450 m.【分析】据函数图象中的数据求出甲的速度,进而求出两人第二次相遇时甲出发的时间,从而得出当两人第二次相遇时,乙跑的总路程.【解答】解:甲的速度为:1000÷4=250(米/分钟),两人第一次相遇时处于两人都未跑完一个1000m时,由图象可知时间处于4分钟以内;∵甲比乙先出发30秒钟,∴当x=5分钟时,乙跑了4.5分钟,此时乙跑了200×4.5=900<1000(m);设甲返回时再经过m分钟,两人第二次相遇,此时甲返回的速度为200,根据题意得:(200+200)m=1100,解得m=,∴200×+900=1450(米),∴乙总路程为1450米.故答案为:1450.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.13.(5分)(2019•江阴市校级自主招生)在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,连接OD.当∠DOA=∠OBA时,直线CD的解析式为y=﹣x+4 .【分析】由旋转的性质得到三角形BOA与三角形CDA全等,再由已知角相等,以及公共角,得到三角形AOM与三角形AOB相似,确定出OD与AB垂直,再由OA=DA,利用三线合一得到AB为角平分线,M为OD中点,利用SAS得到三角形AOB与三角形ABD全等,得出AD垂直于BC,进而确定出B,D,C三点共线,求出直线OD解析式,与直线AB解析式联立求出M坐标,确定出D坐标,设直线CD解析式为y=mx+n,把B与D坐标代入求出m与n的值,即可确定出解析式.【解答】解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∵∠DOA=∠OBA,∠OAM=∠BAO,∴△AOM∽△ABO,∴∠AMO=∠AOB=90°,∴OD⊥AB,∵AO=AD,∴∠OAM=∠DAM,OM=DM,连接BD,在△AOB和△ABD中,,∴△AOB≌△ABD(SAS),∴△ABD≌△ACD,∴∠ADB=∠ADC=90°,∴B,D,C三点共线,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣x+4【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,一次函数与坐标轴的交点,两直线的交点坐标,坐标与图形性质,以及旋转的性质,得出B,D,C三点共线是解本题的关键.14.(5分)(2015•黄冈中学自主招生)函数y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|的最小值是8 .【分析】根据式子特点,分x≤1,1<x≤2,2<x≤3,3<x≤4,x>4几种情况讨论.【解答】解:①x≤1时,y=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)=30﹣10x,当x=1时,y=30﹣10=20;最小值②1<x≤2时,y=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)=﹣8x+28,当x=2时,y最小值=28﹣16=12;③2<x≤3时,y=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)=﹣4x+20,当x=3时,y最小值=20﹣12=8;④3<x≤4时,y=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)=2x+2,无最小值;⑤x>4时,y=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)=10x﹣30,无最小值.综上所述,原式的最小值为8.【点评】通过分类讨论,将原函数转化为分段函数,再根据x的取值范围求出各段的最小值,取其最小者,即为原函数最小值.三.解答题(共4小题,满分93分)15.(7分)(2020•南岸区自主招生)已知函数y=k|x+2|+b的图象经过点(﹣2,4)和(﹣6,﹣2),完成下面问题:(1)求函数y=k|x+2|+b的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y=x+1的图象如图所示,结合你所画出y=k|x+2|+b的图象,直接写出k|x+2|+b>x+1的解集.【分析】(1)根据待定系数法求得即可;(2)画出函数的图象,根据图象得出性质;(3)根据图象求得即可.【解答】解:(1)根据题意,得,解方程组,得,所求函数表达式为;(2)函数的图象如图所示,性质为:①当x<﹣2时,y随x增大而增大;当x>﹣2时,y随x增大而减少.②当x=﹣2时,该函数取得最大值,函数的最大值为4.(3)由图象可知:k|x+2|+b>x+1的解集为:﹣6<x<0.【点评】本题考查了一次函数的图象和性质,一次函数与一元一次不等式,待定系数法求一次函数的解析式,数形结合是解题的关键.16.(70分)(2011•南京)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是3600 m,他途中休息了20 min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【分析】(1)纵坐标为小亮行走的路程,其休息的时间为纵坐标不随x的值的增加而增加;(2)根据当50≤x≤80时函数图象经过的两点的坐标,利用待定系数法求得函数的解析式即可.【解答】解:(1)3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,根据题意,当x=50时,y=1950;当x=80时,y=3600∴解得:∴函数关系式为:y=55x﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.【点评】本题考查了一次函数的应用,解决此类题目最关键的地方是经过认真审题,从中整理出一次函数模型,用一次函数的知识解决此类问题.17.(8分)(2017•镇海区校级自主招生)某次足球邀请赛的记分规则及奖励方案如下表:胜一场平一场负一场积分 3 1 0奖励(元/每人)1500 700 0当比赛进行到12轮结束(每队均要比赛12场)时,A队共积19分.(1)试判断A队胜、平、负各几场?(2)若每一场每名参赛队员均得出场费500元,设A队中一位参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.【分析】(1)首先假设A队胜x场,平y场,负z场,得出x+y+z=12,3x+y=19,即可得出y,z与x的关系,再利用x≥0,y≥0,z≥0,得出即可;(2)根据图表奖金与出场费得出W=(1500+500)x+(700+500)y+500z,进而得出即可.【解答】解:(1)设A队胜x场,平y场,负z场,得,可得:依题意,知x≥0,y≥0,z≥0,且x、y、z均为整数,∴解得:≤x≤,∴x可取4、5、6∴A队胜、平、负的场数有三种情况:当x=4时,y=7,z=1;当x=5时,y=4,z=3;当x=6时,y=1,z=5.(2)∵W=(1500+500)x+(700+500)y+500z=﹣600x+19300当x=4时,W最大,W最大值=﹣600×4+19300=16900(元)答:W的最大值为16900元.【点评】此题主要考查了一次函数的应用以及不等式组的应用等知识,利用已知得出x+y+z =12,3x+y=19,进而得出y,z与x的关系是解题关键.18.(8分)(2020•浙江自主招生)已知:实数x满足﹣≥x﹣,并且关于x的函数y=2|x﹣a|+a2的最小值为4,求常数a的值.【分析】首先得出x的取值范围,再利用当x=a时,当x>a时分别得出答案.【解答】解:﹣≥x﹣,解得:x≥1,当x=a时,y最小=a2=4,解得:a=±2,∵x≥1,∴a=2,当x>a时,y=2x+a2﹣2a,∴当x=1时,y=2+a2﹣2a=4,最小解得:a==1±,∵x≥1,∴a<1,∴a=1﹣,∴x<a时,y=﹣2(x﹣a)+a2=﹣2x+a2+2a无最小值,综上所述:a=2或a=1﹣时,y=2|x﹣a|+a2的最小值为4.【点评】此题主要考查了一次函数与不等式,正确分类讨论是解题关键.。
第5章测试题一、选择题(每小题4分,共32分)1.有下列函数表达式:①y =kx(k 是常数,且k ≠0);②y =23x ;③y =2x 2-(x -1)(x +3);④y =52-x.其中是一次函数的有(B )A. 4个B. 3个C. 2个D. 1个2.函数y =1x -1的自变量x 的取值范围是(D ) A. x >1 B. x <-1 C. x ≠-1 D. x ≠13.一次函数y =kx -3(k >0)的大致图象为(C )4.已知一次函数y =kx +b 的图象经过点(0,-3)与(1,5),则这个一次函数的表达式是(A )A. y =8x -3B. y =-8x -3C. y =8x +3D. y =-8x +35.已知函数y =-12x +2,当-1<x ≤1时,y 的取值范围是(C ) A. -52<y ≤32 B. 32<y <52 C. 3≤y <5 D. 3<y ≤56.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h 随时间x 变化的函数图象最接近实际情况的是(A )(第6题)7.已知P (x ,y )是平面直角坐标系上的一个点,且它的横、纵坐标是二元一次方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8(a 为任意实数)的解,则当a 变化时,点P 一定不会经过(C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解】 解方程组,得⎩⎪⎨⎪⎧x =3a +2,y =-2a +4.当x =3a +2>0时,解得a >-23,此时y =-2a +4<163,∴当x >0时,y 可能大于0也可能小于0. 当x =3a +2<0时,解得a <-23,此时y =-2a +4>0,∴当x <0时,y >0.∴点P 一定不会经过第三象限.8.如图,已知一次函数y =-12x +2的图象上有两点A ,B ,点A 的横坐标为2,点B 的横坐标为a (0<a <4且a ≠2),过点A ,B 分别作x 轴的垂线,垂足分别为C ,D 两点,若△AOC ,△BOD 的面积分别为S 1,S 2,则S 1,S 2的大小关系是(A )(第8题)A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定【解】 ∵点A 的横坐标为2,∴y =-12×2+2=1,∴s 1=12×1×2=1.∵点B 的横坐标为a ,∴y =-12a +2,∴s 2=12·a ·⎝⎛⎭⎫-12a +2=-14a 2+a =-14(a -2)2+1.∵a ≠2,∴s 2<1,∴s 1>s 2.二、填空题(每小题4分,共24分)9.已知在一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是m <3. 10.圆锥的高是4 cm ,当圆锥的底面半径由小到大变化时,圆锥的体积也随之发生了变化.如果圆锥的底面半径为r (cm),那么圆锥的体积V (cm 3)与r 的关系式是V =43πr 2.(1)在这个变化过程中,常量为__43,π__,变量为V ,r .(2)当底面半径由1 cm 变化到10 cm 时,圆锥的体积由__43π__cm 3变化到__4003π__cm 3. 11.函数y =3x -2的图象是由函数y =3x 的图象向__下__平移__2__个单位得到的;把y =3x -2的图象向上平移5个单位,所得到的直线的函数表达式为y =3x +3.12.已知关于x ,y 的一次函数y =(m -1)x +m -2的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是1<m <2.13.弹簧的长度与所挂物体的质量为一次函数关系,其图象如图所示,由图可知弹簧不挂物体时的长度为__10__cm.【解】 设该一次函数的表达式为y =kx +b ,将点(5,12.5),(20,20)的坐标代入y =kx +b ,得⎩⎪⎨⎪⎧5k +b =12.5,20k +b =20,解得⎩⎪⎨⎪⎧k =0.5,b =10.∴弹簧不挂物体时的长度为10 cm.,(第13题)),(第14题))14.如图,点A 的坐标为(1,0),点B 在直线y =-x 上运动,当线段AB 最短时,点B的坐标为⎝⎛⎭⎫12,-12.【解】 过点A 作直线y =-x 的垂线段,垂足为H ,当点B 运动到点H 时,线段AB 最短,此时△AOB 是等腰直角三角形,由OA =1,易得点B 的坐标为⎛⎫1,-1.三、解答题(共44分)15.(10分)如图,在直角坐标系中,点A 在第一象限,点B 的坐标为(3,0),OA =2,∠AOB =60°.(第15题)(1)求点A 的坐标.(2)若直线AB 交y 轴于点C ,求△AOC 的面积. 【解】 (1)过点A 作AM ⊥OB 于点M . ∵∠AOM =60°, ∴∠OAM =30°, ∴OM =12OA =12×2=1. ∴AM =OA 2-OM 2=22-12= 3.∴点A 的坐标为(1,3).(2)设直线AB 的函数表达式为y =kx +b ,把点A (1,3),B (3,0)的坐标代入y =kx +b ,得⎩⎪⎨⎪⎧k +b =3,3k +b =0,解得⎩⎪⎨⎪⎧k =-3,b =33.∴y =-3x +33.当x =0时,y =33,∴点C 的坐标为⎝⎛⎭⎫0,332.∴S △AOC =121×332=334.16.(10分)设关于x 的一次函数y =a 1x +b 1与y =a 2x +b 2,则称函数y =m (a 1x +b 1)+n (a 2x +b 2)(其中m +n =1)为这两个函数的生成函数.(1)当x =1时,求函数y =x +1与y =2x 的生成函数的值.(2)若函数y =a 1x +b 1与y =a 2x +b 2的图象的交点为P ,判断点P 是否在这两个函数的生成函数的图象上,并说明理由.【解】 (1)当x =1时,y =m (1+1)+n ꞏ2=2m +2n =2. (2)点P 在这两个函数的生成函数的图象上.理由如下:设点P 的坐标为(a ,b ).∵a 1·a +b 1=b ,a 2·a +b 2=b ,∴当x =a 时,y =m (a 1·a +b 1)+n (a 2·a +b 2)=mb +nb =b (m +n )=b . ∴点P 在这两个函数的生成函数的图象上.17.(12分)荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:鲢鱼 草鱼 青鱼 每辆汽车载鱼量(吨) 8 6 5 每吨鱼获利(万元)0.250.30.2(1)设装运鲢鱼的车辆为x 辆,装运草鱼的车辆为y 辆,求y 与x 之间的函数表达式. (2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.【解】 (1)设装运鲢鱼的车辆为x 辆,装运草鱼的车辆为y 辆,则有(20-x -y )辆汽车装运青鱼.由题意,得8x +6y +5(20-x -y )=120,∴y =-3x +20.答:y 与x 之间的函数表达式为y =-3x +20.(2)根据题意,得⎩⎪⎨⎪⎧x ≥2,y ≥2,20-x -y ≥2,∴⎩⎪⎨⎪⎧x ≥2,-3x +20≥2,20-x +3x -20≥2,解得2≤x ≤6.设此次销售所获利润为w 元,则w =0.25x ꞏ8+0.3(-3x +20)×6+0.2(20-x +3x -20)×5=-1.4x +36.∵k =-1.4<0,∴w 随x 的增大而减小.∴当x =2时,w 取最大值,最大值为-1.4×2+36=33.2(万元).∴装运鲢鱼的车辆为2辆,装运草鱼的车辆为14辆,装运青鱼的车辆为4辆时获利最大,最大利润为33.2万元.18.(12分)某部队甲、乙两个班参加植树活动,乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y 甲棵,乙班植树的总量为y 乙棵,两班一起植树所用的时间(从甲班开始植树计时)为x (h),y 甲,y 乙分别与x 之间的部分函数图象如图所示.(第18题)(1)当0≤x ≤6时,分别求y 甲,y 乙与x 之间的函数表达式:y 甲=20x ,y 乙=10x +30. (2)如果6 h 后,甲班保持前6 h 的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2 h ,活动结束.当x =8时,两班之间植树的总量相差20棵,那么乙班增加人数后平均每小时植树多少棵?【解】 (1)y 甲x =1206,y 甲=20x . y 乙-30x =90-306,y 乙=10x +30.(2)①若甲班比乙班多植树20棵,当x =6时,y 甲=120,y 乙=90;当x =8时,y甲=160,y 乙=140,140-902=25(棵).②若乙班比甲班多植树20棵,当x =6时,y 甲=120,y 乙=90;当x =8时,y 甲=160,y 乙=180.180-902=45(棵).∴乙班增加人数后平均每小时植树25棵或45棵.。
浙教版初中数学八年级上册第五单元《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图,在平面直角坐标系中,将△OAB沿直线y=−3x平移后,4点O′的纵坐标为6,则点B平移的距离为( )A. 4.5B. 6C. 8D. 102.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米,其中正确结论的个数有( )A. 1个B. 2个C. 3个D. 4个3.小明从早晨8时从家出发到郊外赏花.他所走的路程(千米)随时间(时)变化的情况如图所示,则下面说法中错误的是( )A. 在这个变化过程中,自变量是时间,因变量是路程B. 小明在途中休息了半小时C. 从8时到10时,小明所走的路程约为9千米D. 小明从休息后直至到达目的地的平均速度约为1.25千米/时4.某电视台记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(km)与时间x(ℎ)之间的关系如图所示,则下列结论正确的是.( )A. 汽车在高速公路上的行驶速度为100km/ℎB. 乡村公路总长为90kmC. 汽车在乡村公路上的行驶速度为60km/ℎD. 该记者在出发后4.5ℎ到达采访地5.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是( )A. 4860年B. 6480年C. 8100年D. 9720年6.下列函数中,y是x的一次函数但不是正比例函数的是( )A. y=1−x2B. y=2xC. y=x2D. y=x2+17.2020年12月1日下午6点,京张高铁延庆线正式启用,“复兴号”列车在北京北站与延庆站之间往返,途径清河站、昌平站、八达岭站、如图是从北京北站到延庆站的线路图,其中延庆站到八达岭站,全长9.33公里、某天“复兴号”列车从八达岭站出发,终点为北京北.列车始终以每小时160公里的速度匀速行驶,那么在到达昌平站之前,“复兴号”列车到延庆站的距离与对应的行驶的时间满足的函数关系是( )A. 正比例函数关系B. 反比例函数关系C. 一次函数关系D. 二次函数关系8.下列选项中,y与x的关系为正比例函数关系的是( )A. 正方形的周长y(cm)与边长x(cm)的关系B. 圆的面积y(cm2)与半径x(cm)的关系C. 直角三角形中一个锐角的度数y与另一个锐角的度数x的关系D. 矩形的面积为20cm2,长y(cm)与宽x(cm)之间的关系9.已知在平面直角坐标系xOy中,直线y=2x+2和直线y=2x+2分别交x轴于点A和点B.3则下列直线中,与x轴的交点不在线段AB上的直线是( )A. y=x+2B. y=√2x+2C. y=4x+2D. y=2√3x+2310.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是( )A. B.C. D.11.把直线y=−x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A. 1<m<7B. 3<m<4C. m>1D. m<412.如图 ①,在Rt△ABC中,∠ACB=90∘,点P以每秒1cm的速度从点A出发,沿折线AC−CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图 ②所示.则当点P运动3秒时,PD的长是( )A. 3cmB. 4cmC. 5cmD. 12cm5第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么在S,p,a中变量是.14.一棵树高ℎ(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出ℎ(m)与n(年)之间的关系式:ℎ=.n/年246810⋯ℎ/m 2.6 3.2 3.8 4.4 5.0⋯15.如图1,在长方形ABCD中,动点P从点B出发,沿B−C−D−A匀速运动至点A处停止,设点P运动的路程为x,△PAB的面积为y.若y关于x的图象如图2所示,则长方形ABCD的周长为.16.对于一次函数y=kx+2,当−2≤x≤3时,y有最大值5,则k=.三、解答题(本大题共9小题,共72.0分。
浙教版八年级上册 第五章 一次函数 单元测试1 / 11第五章一次函数单元测试一、选择题1. 下列函数中,是一次函数的有A. B. C. D.2. 下列图象中,y 不是x 的函数的是A.B.C.D.3. 已知函数 是正比例函数,则当 时,函数y 的值为A. B. C. 30 D. 204. 清清从家步行到公交车站台,等公交车去学校 下公交车后又步行了一段路程才到学校 图中的折线表示清清的行程 米 与所花时间 分 之间的函数关系 下列说法错误的是A. 清清等公交车时间为3分钟B. 清清步行的速度是80米分C. 公交车的速度是500米分D. 清清全程的平均速度为290米分5.直线经过点,和,,若则有A. B. C. D. 无法确定6.已知一次函数的图象经过点,,且与直线平行,则一次函数表达式为A. B. — C. — D.7.下列表示一次函数与正比例函数、n为常数,且图象中,一定不正确的是A. B.C. D.8.如图,已知一次函数的图象,当,的取值范围是A.浙教版八年级上册 第五章 一次函数 单元测试3 / 11B.C.D.9. 函数 的图象与 的图象交于x 轴上一点,那么a :b 等于A. :3B. 4:3C. :D. 3: 10. 如图,一次函数 与一次函数 的图象交于点 , ,则关于x 的不等式的解集是A.B.C.D.二、填空题11. 已知一次函数 经过点 , 和 , ,则y 随x 的增大而______填“增大”或“减小” .12. 已知一出租车油箱内剩余油48L ,一般行驶一小时耗油8L ,则该车油箱内剩余油量和行驶时间 时 之间的函数关系式是 ______ 不写自变量取值范围 .13. 若函数 是一次函数,则 ______ .14. 直线 与x 轴的交点坐标为 ______,与y 轴的交点坐标为 ______.15. 在函数中,自变量x 的取值范围是 ______. 三、解答题16.一天之中,海水的水深是不同的,如图是某港口从0时到12时的水深情况,结合图象回答下列问题:如图描述了哪两个变量之间的关系?其中自变量是什么?因变量是什么?大约什么时刻港口的水最深?深度约是多少?图中A点表示的是什么?在什么时间范围内,水深在增加?什么时间范围内,水深在减少?17.某工厂投入生产一种机器的总成本为2000万元当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x 的部分对应值如下表:浙教版八年级上册第五章一次函数单元测试求y与x之间的函数关系式,并写出自变量x的取值范围;求该机器的生产数量;市场调查发现,这种机器每月销售量台与售价万元台之间满足如图所示的函数关系该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润注:利润售价成本18.已知与成正比例,且当时,.求y与x的函数关系式;求当时的函数值;5 / 11如果y的取值范围是,求x的取值范围.19.一列火车以80千米小时的速度匀速行驶。
专题训练:一次函数竞赛(2020年3月24日)
一、典例精析:
1.已知一次函数3y x m =+的图象与一次函数21y x =-+的图象交于点A .
(1)点A 一定不在 象限;
(2)若点A 在第一象限,求常数m 的取值范围.
2.已知abc ≠0,并且a b b c c a p c a b ,那么直线y px p 一定经过( )
A .第一、二象限
B .第二、三象限
C .第三、四象限
D .第一、四象限
3.(1)在直角坐标系中,画出函数2y x =-的图象;
(2)在直角坐标系中,画出函数3|2|y x 的图象;
①图象与坐标轴交点的坐标是 ;
②图象最高点的坐标是 .
4.如图,在直角坐标系中,长方形OABC 的顶点B 的坐标为(15,6),直线13y
x b 恰好将长方形形OABC 分
成面积相等的两部分,那么,b ;如果OABC 是一个平行四边形呢?是一个等腰梯形,或是一个等边三角形呢?
5.设直线(1)2nx n y (n 为自然数)与两坐标轴围成的三角形面积为n S (n =1,2,3,…,2000).则S 1+S 2+S 3+…+S 2000的值为 ( )
A .19992000
B .1
C .20002001
D .20012002
6.在直角坐标系xOy 中,x 轴上的动点M (,0x )到定点P (5,5)、Q (2,1)的距离分别为MP 和MQ .当MP
MQ 最小值时,求M 的横坐标.
7.(1)一次函数(1)y k x =-的图象经过一个定点,定点的坐标是 ;
(2)函数3y kx k =-过哪个定点?
8.求证:不论m 为何值,关于x 的函数2
(3)21y m x mx =-++的图象恒过两定点,并求出这两定点的坐标.
二、巩固训练
1.无论k 为何值,一次函数(21)(3)(13)0k x k y k -----=的图象必经过一个定点,这个定点的坐标是……( )
A .(0,0)
B .(2,5)--
C .(2,3)
D .(4,1) 2.已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =kx +k 的图象大致是图
中的( )
A .
B .
C .
D .
3.若直线y =﹣2x ﹣4与直线y =4x +b 的交点在第三象限,则b 的取值范围是( )
A .﹣4<b <8
B .﹣4<b <0
C .b <﹣4或b >8
D .﹣4≤b ≤8
4.在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点,设k 为整数,当直线2y x =-与y kx k =+的交点为整点时,k 的值可取……( )
A . 4个
B . 5个
C . 6个
D . 7个 5. 若直线y =3x +k 与两坐标轴围成的三角形的面积是24,则k = .
6.如图,直线l 1的解析表达式为:y =﹣3x +3,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,
l 2交于点C .
(1)求点D 的坐标;
(2)求直线l 2的解析表达式;
(3)求△ADC 的面积;
(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标.
7..求直线31y x =+关于x 轴成轴对称的图形的解析式为 ;
关于y 轴成轴对称的图形的解析式为 .它们之间有怎样的关系?说明理由.
8.已知A (-2,3),B (3,1),P 点在x 轴上.
(1)若│P A │+│PB │最小,求点P 的坐标;
(2)若PA PB -最大,求点P 的坐标;
(3)若P A =PB .,求点P 的坐标.。