超静定结构影响线
- 格式:pdf
- 大小:155.22 KB
- 文档页数:14
§9-5 超静定力的影响线1、影响线的特征与求解方法1)影响线的特征静定结构——反力、内力影响线均为直线;位移影响线为曲线。
超静定结构——各量值的影响线均为曲线。
2)影响线的求作方法静力法——利用静力平衡条件求影响线方程,进而绘制影响线。
但对超静定力的影响线须解超静定问题,复杂、少用。
机动法——利用影响线与移动载荷作用点位移(挠度)图的比拟关系,快速绘制影响线轮廓。
简便、实用。
2、机动法求作超静定力影响线以图9-14连续梁(超静定梁)M K的影响线为例,说明用机动法求作超静定力影响线的方法。
1)取基本结构(超静定、几何不变体系)图b——去掉与XK 相应的约束,代之以(暴露出)约束反力XK ;A B C D EF P=1K(a)原结构A B C D EF P=1X K(M K)(下拉为正)(b)基本结构图9-14§9-5 超静定力的影响线2)建立力法典型方程k kk kp X δδ+=1()kp k pk kk kkX x δδδδ∴=-=-⋅()()pk kp x x δδ=ABCD EF P =1K ABCD E F P =1X K (M K )(下拉为正)(b)基本结构§9-5 超静定力的影响线K 截面相对转角为0式中δkk ——常数,不随X 而变化。
δpk ——载荷F P =1位置参数X 的函数,即δPK =δPK (x),其位移图如图9-14c 所示。
互等定理图9-14ABCDEX K (M K )(下拉为正)θB(c)挠度图⏹写成更明确的形式:()()1pk kkk x x X δδ=-ABCD EK+图9-15X k (M k )的影响线结论:X k 与δpk 成正比;挠度图即为影响线轮廓线图9-14ABCDEX K (M K )(下拉为正)θB(c)作用挠度图1kM=§9-5 超静定力的影响线X k 向上为正δpk 以向下为正(与p=1同向)X k 与δpk 反向3、求做超静定力影响线的步骤⏹1)撤去与所求约束力(或量值)相应的约束,代之以反力X K ;●2)使体系沿X K 正方向发生位移,作出移动载荷作用点的挠度δPK =δPK (x)(位移)图即为影响线X K (x)的形状;●3)将δPK 图除以常数δKK 使可确定影响线的具体数值;●4)横坐标以上图形为正号,横坐标以下图形为负号。
院(系) 学号 姓名 .密封线内不要答题 密封……………………………………………………………………………………………………………………………………………………结构力学试题答案汇总结构力学课程试题 ( B )卷考 试 成 绩题号 一二三四成绩得分一、选择题(每小题3分,共18分)1. 图 示 体 系 的 几 何 组 成 为 : ( ) A. 几 何 不 变 , 无 多 余 联 系 ; B. 几 何 不 变 , 有 多 余 联 系 ; C. 瞬变 ; D. 常 变 。
2. 静 定 结 构 在 支 座 移 动 时 , 会 产 生 : ( )A. 内 力 ;B. 应 力 ;C. 刚 体 位 移 ;D. 变 形 。
3. 在 径 向 均 布 荷 载 作 用 下 , 三 铰 拱 的 合 理 轴 线 为: ( )A .圆 弧 线 ;B .抛 物 线 ;C .悬 链 线 ;D .正 弦 曲 线 。
4. 图 示 桁 架 的 零 杆 数 目 为 : ( )A. 6;B. 7;C. 8;D. 9。
5. 图 a 结构的最后弯矩图为:()A.图 b; B.图 c ; C.图 d ; D.都不对。
6. 力法方程是沿基本未知量方向的:()A.力的平衡方程;B.位移为零方程;C.位移协调方程; D.力的平衡及位移为零方程。
二、填空题(每题3分,共9分)1.从几何组成上讲,静定和超静定结构都是_________体系,前者_________多余约束而后者_____________多余约束。
2. 图 b 是图 a 结构 ________ 截面的 _______ 影响线。
3. 图示结构 AB 杆 B 端的转动刚度为 ________, 分配系数为________, 传递系数为 _____。
三、简答题(每题5分,共10分)1.静定结构内力分析情况与杆件截面的几何性质、材料物理性质是否相关?为什么?2.影响线横坐标和纵坐标的物理意义是什么?四、计算分析题,写出主要解题步骤(4小题,共63分)1.作图示体系的几何组成分析(说明理由),并求指定杆1和2的轴力。
结构力学复习题及答案3:[判断题]1、(本小题2分)在竖向均布荷载作用下,三铰拱的合理轴线为圆弧线。
答案:错误4:[判断题]2、(本小题2分)几何可变体系在任何荷载作用下都不能平衡。
考参答案:错误5:[判断题]3、(本小题2分)在温度变化与支座移动因素作用下静定与超静定结构都有内力。
参考答案:错误6:[判断题]4、(本小题2分)静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。
参考答案:错误7:[判断题]5、(本小题2分) 按虚荷载原理所建立的虚功方程等价于几何方程。
参考答案:正确8:[单选题]1、(本小题3分)力法的基本未知量是A:结点角位移和线位移B:多余约束力C:广义位移D:广义力参考答案:B9:[单选题]2、(本小题3分)静定结构有温度变化时A:无变形,无位移,无内力B:有变形,有位移.无内力C:有变形.有位移,有内力D:无变形.有位移,无内力参考答案:B10:[单选题]3、(本小题3分)变形体虚功原理A:只适用于静定结构B:只适用于线弹性体C:只适用于超静定结构D:适用于任何变形体系参考答案:D11:[单选题]4、(本小题3分)由于静定结构内力仅由平衡条件决定,故在温度改变作用下静定结构将A:产生内力B:不产生内力C:产生内力和位移D:不产生内力和位移参考答案:B12:[单选题]5、(本小题3分)常用的杆件结构类型包括A:梁、拱、排架等B:梁、拱、刚架等C:梁、拱、悬索结构等D:梁、刚架、悬索结构等参考答案:B1:[判断题]1、(本小题2分)有多余约束的体系一定是几何不变体系。
参考答案:错误2:[判断题]2、(本小题2分)静定结构的内力与荷载有关,而与材料的性质、截面的形状及大小无关。
参考答案:正确3:[判断题]3、(本小题2分)三个刚片由三个铰相联的体系一定是静定结构。
参考答案:错误4:[判断题]4、(本小题2分)位移法未知量的数目与结构的超静定次数有关。
参考答案:错误5:[判断题]5、(本小题2分)力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。
求解超静定结构影响线的一种方法张强;屠正国;袁峰雄【摘要】利用影响线与挠度图的比拟关系作超静定力的影响线,通过对弯矩函数积分得到挠度函数,并代入相应的边界条件,得到一个具有普遍适用性的影响线函数公式.【期刊名称】《上海师范大学学报(自然科学版)》【年(卷),期】2006(035)003【总页数】5页(P25-29)【关键词】超静定结构;影响线;挠度图【作者】张强;屠正国;袁峰雄【作者单位】上海师范大学,建筑工程学院,上海,201418;上海师范大学,基建规划处,上海,201418;上海师范大学,建筑工程学院,上海,201418【正文语种】中文【中图分类】TU311.40 引言影响线能够反映移动荷载的作用效果,是用来分析最不利荷载分布的基本工具.通常作影响线的方法只有两种,用力法(或称位移法、力矩分配法等),即直接求出影响系数的方法;和利用影响线与挠度图的比拟关系求解的方法,也分别称为静力法和机动法.与静力法相比,机动法可以方便地绘出影响线的形状,计算上也相对简单,但对于作超静定力的影响线仍旧显得过于繁琐复杂.文献[1]给出了一个由图乘法得到的公式:y(x) = ( 2l - x) + MB (l + x)].(1)此公式可通过每个杆件单元两端的弯矩以及柔度系数求得影响线函数,但只适用于杆件单元解除约束后,杆件两端没有位移的情况.本文在机动法的基础上,利用影响线与挠度曲线的比拟关系,通过对弯矩函数积分,并代入边界条件,求得挠度曲线的表达式,给出只含有4个变量的影响线表达式.1 公式推导定义弯矩下部受拉为正,上部受拉为负,剪力为使脱离体发生顺时针旋转的方向为正.支座反力向上为正,向下为负.其余变形及荷载正负号以图1所示的坐标轴为准. 图 1 超静定结构拆分后简支梁用机动法求解超静定力的影响线时,首先撤去与所求约束力Z1相应的约束,代入Z1得到基本结构.求出在Z1=1单独作用下,基本结构的弯矩图将图进行自图乘得到在Z1=1作用下沿Z1方向的位移δ11.并可通过虚功原理求出每个节点处的竖向位移Δi1.为了求得单位力Z1=1作用下,在动荷载P=1作用点处的广义位移δp1 ,把超静定结构拆分为若干个两端带有弯矩和支座位移的简支梁(如图1所示).然后对取出的每个简支梁单元进行单独分析,梁两端作用弯矩MA和MB,因为梁上没有其他荷载作用,因此弯矩图为一条直线.通过已知的MA和MB,以A点为原点,的正方向作为x轴的正方向建立坐标系,就可求出弯矩函数M(x).设A点的坐标为(0,MA ),B点为(l,MB),其中l为简支梁梁长.因为弯矩图为直线,所以根据两点坐标得弯矩函数为:(2)令则将(2)式简化为:M x = kx + MA.(3)对弯矩函数进行两次积分求得挠度函数δ x [2],(4)再将先前求得的节点位移Δi1作为边界条件代入,可以求出(4)式中含有的待定系数A和B.由于原结构为超静定结构,因此拆去一个约束之后得到基本结构.取简支梁单元后对应的边界条件就只有3种:(1)两端都没有初始位移(2)左端有初始位移(3)右端有初始位移将上述边界条件代入式(4)可得到3组方程,得:(5)(6)(7)将待定系数代入挠度函数,可得到在Z1=1作用下动荷载P作用点处的广义位移δ p1 .因为动荷载P的作用点位置能在x方向上移动,因此δp1 也是一个关于x 的函数.由位移互等定理,δp1 =δ1p.把求得的系数代入式(4)得:当(8)当(9)当(10)然后将求得的δ1p 除以δ11 就能得到原来超静定结构的影响线.将(8)~(10)式除以δ11 得影响线函数y x :当(11)当(12)当(13)(11)~(13)式即为超静定力在局部坐标系下的影响线函数.在求解刚架问题时不适合使用整体坐标系,但对于连续梁的情况,若要以整体坐标系求解,则需要修正式(1),得到在整体坐标系下连续的弯矩函数,然后再分段积分,代入边界条件即可.2 举例图 2 连续梁例1 图2所示连续梁AC,EI为常数,有活荷载P=1沿ABC移动,求AB跨中弯矩MD ,支座反力FB和跨中剪力QD的影响线.解 (1)求跨中弯矩MD的影响线图 3(a) 虚力状态及虚力作用下的弯矩图图 3(b) 真实状态及真实荷载作用下的弯矩图先撤去D点的支座,加上所求约束力Z1,画出在Z1=1作用下基本结构的弯矩图如图3(a).通过(a)图的弯矩图自图乘可得:此题弯矩图图3(a)仍旧只有一个转折点,但在D点处因为存在一个铰,使弯矩图在D点处不连续.因此要分成AD,DB,BC 3部分计算,需要附加的节点位移只有Δ D1 .为了求节点位移ΔD1 ,在D点沿y轴正方向加上单位荷载P=1,得到弯矩图如图3(b).ΔD1 可通过图3(a)和图3(b)的弯矩图图乘得:AD段:从Z1作用下基本结构的弯矩图图3(a)中取点得:所以故所以同理得到DB段、BC段MD的影响线.所以跨中弯矩MD的影响线为:AD段:DB段:BC段:由静力法解得的以基本结构中A点作为原点的整体坐标系中的影响线函数为:AD段:DB段:BC段:x ∈ l,2l .可证明两个解答在各自相应的取值范围内函数图形完全吻合.同样可以得到支座反力FB的影响线和跨中剪力QD的影响线,与静力法解答完全一致.例2 如图4(a)所示刚架ABC,EI为常数,AB,BC杆长都为4m.有水平方向的活荷载P=1沿AB移动,求B点弯矩MB的影响线.(a) (b) (c)图 4 超静定刚架、虚力状态、虚力作用下刚架的弯矩图解先撤去B点的支座,加上所求约束力Z1,画出在Z1作用下基本结构的弯矩图如图4(b).通过(a)图的弯矩图4(c)自图乘可得:因为在C点处有铰支座限制刚架的侧移,在忽略轴向变形的时候基本结构中的B 点没有发生水平方向的位移,所以Δ B1 = 0.又因为活荷载P=1沿AB移动,与BC杆无关,所以只需要将AB杆拆分出来进行计算.以A点为原点,AB为X轴正方向,BC 为Y轴正方向得:所以所以此题亦可用静力法得到相同的解.关于刚架其他内力的影响线求解这里不再一一举例,都可以根据公式(11)~(13)求得.3 结束语本文推导了一组求解超静定力影响线的公式:式(11)~(13),这组公式适用于连续梁、刚架等各种情况,相比其他教科书给出的只适用于杆件两端没有位移的公式,具有普遍的适用性.参考文献:[1] 龙驭球,包世华. 结构力学教程[M].北京:高等教育出版社, 2001.[2] 武建华.材料力学[M]. 重庆:重庆大学出版社,2002.。
§9-5 超静定力的影响线1、影响线的特征与求解方法1)影响线的特征静定结构——反力、内力影响线均为直线;位移影响线为曲线。
超静定结构——各量值的影响线均为曲线。
2)影响线的求作方法静力法——利用静力平衡条件求影响线方程,进而绘制影响线。
但对超静定力的影响线须解超静定问题,复杂、少用。
机动法——利用影响线与移动载荷作用点位移(挠度)图的比拟关系,快速绘制影响线轮廓。
简便、实用。
2、机动法求作超静定力影响线以图9-14连续梁(超静定梁)M K的影响线为例,说明用机动法求作超静定力影响线的方法。
1)取基本结构(超静定、几何不变体系)图b——去掉与XK 相应的约束,代之以(暴露出)约束反力XK ;A B C D EF P=1K(a)原结构A B C D EF P=1X K(M K)(下拉为正)(b)基本结构图9-14§9-5 超静定力的影响线2)建立力法典型方程k kk kp X δδ+=1()kp k pk kk kkX x δδδδ∴=-=-⋅()()pk kp x x δδ=ABCD EF P =1K ABCD E F P =1X K (M K )(下拉为正)(b)基本结构§9-5 超静定力的影响线K 截面相对转角为0式中δkk ——常数,不随X 而变化。
δpk ——载荷F P =1位置参数X 的函数,即δPK =δPK (x),其位移图如图9-14c 所示。
互等定理图9-14ABCDEX K (M K )(下拉为正)θB(c)挠度图⏹写成更明确的形式:()()1pk kkk x x X δδ=-ABCD EK+图9-15X k (M k )的影响线结论:X k 与δpk 成正比;挠度图即为影响线轮廓线图9-14ABCDEX K (M K )(下拉为正)θB(c)作用挠度图1kM=§9-5 超静定力的影响线X k 向上为正δpk 以向下为正(与p=1同向)X k 与δpk 反向3、求做超静定力影响线的步骤⏹1)撤去与所求约束力(或量值)相应的约束,代之以反力X K ;●2)使体系沿X K 正方向发生位移,作出移动载荷作用点的挠度δPK =δPK (x)(位移)图即为影响线X K (x)的形状;●3)将δPK 图除以常数δKK 使可确定影响线的具体数值;●4)横坐标以上图形为正号,横坐标以下图形为负号。
一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共11分)1 . (本小题 3分)图示结构中DE 杆的轴力F NDE =F P /3。
(x ).2 . (本小题 4分)用力法解超静定结构时,只能采用多余约束力作为基本未知量。
(x )3 . (本小题 2分)力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。
(o )4 . (本小题 2分)用位移法解超静定结构时,基本结构超静定次数一定比原结构高。
(o )二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分)图示结构EI=常数,截面A 右侧的弯矩为:( A )A .2/M ;B .M ;C .0; D. )2/(EI M 。
2. (本小题4分)图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:(B ) A.ch ; B.ci; C.dj; D .cj.23. (本小题 4分)图a 结构的最后弯矩图为:A. 图b;B. 图c;C. 图d;D.都不对。
(A )( a) (b) (c) (d)4. (本小题 4分)用图乘法求位移的必要条件之一是:( B ) A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。
5. (本小题3分)图示梁A 点的竖向位移为(向下为正):( C ) A.F P l 3/(24EI ); B . F P l 3/(!6EI ); C . 5F P l 3/(96EI ); D. 5F P l 3/(48EI ).三(本大题 5分)对图示体系进行几何组成分析。
图示体系为具有一个多余约束的几何不变体系F P=1四(本大题 9分)图示结构B 支座下沉4 mm ,各杆EI=2.0×105 kN ·m 2,用力法计算并作M 图。
六(本大题14分)已知图示结构,422.110 kN m ,10 kN/m EI q =⨯⋅=求B 点的水平位移。
第1章测试题一.判断题1: “受弯直杆发生弯曲变形后,杆件两端点间的距离不变。
”是位移法中受弯直杆的“轴向刚度条件”。
答案是2:位移法方程是静力平衡方程,所以位移法只考虑了结构的静力平衡条件,无须考虑变形连续条件。
答案否3:位移法典型方程中的第i个方程ki1z1+ki2z2+…+kinzn+Fip= 0,表示位移法基本结构由z1,z2,…,zn和荷载分别单独作用时引起的zi方向上的力的总效应与原结构一致。
答案是4:位移法基本结构(或离散的各单跨超静定梁)仅在荷载作用下产生的杆端剪力和杆端弯矩称为固端剪力和固端弯矩,统称为固端力或载常数。
答案是5:位移法通过将各杆的杆端与将它们连接起来的部分(如结点、柱端、横梁等的位移相一致来考虑变形协调条件的。
答案是二.填空题1:判定结构位移法基本未知量中的线位移未知量时,忽略受弯直杆的轴向、切向变形,只考虑其_______变形,且该变形是_______变形,因此结构的独立线位移未知量数总是_______或等于结构的自由结点数。
答案弯曲。
微小。
小于2:位移法典型方程中的刚度系数kij,表示仅当_______作用在结构的位移法的_______结构上时引起的在_______方向上的_______的大小。
答案Z j = 1。
基本。
zi。
力3:等截面直杆的转角位移方程,表示杆的_______和_______之间的关系。
答案杆端力。
杆端位移4:可取半刚架简化结构计算的先决条件是,结构必须是_______的,同时其上的荷载也必须是_______的或是_______的。
答案对称。
正对称。
反对称5:附加链杆法判定结构的线位移未知量可按照“由两个已知_______点引出的两根受弯直杆的_______一点(当该两轴钱夹角满足_______时)也是不动点”的规则,逐一判定线位移,并在其位移方向上附加链杆以消除位移,最后使结构的结点线位移全部消失所_______数,即为结构的线位移数。