结构力学-渐近法和超静定影响线
- 格式:pdf
- 大小:600.97 KB
- 文档页数:57
考研结构⼒学知识点梳理1.瞬变体系:本来是⼏何可变,经微⼩位移后,⼜成为⼏何不变的体系,成为瞬变体系。
瞬变体系⾄少有⼀个多余约束。
2.两根链杆只有同时连接两个相同的刚⽚,才能看成是瞬铰。
3.关于⽆穷远处的瞬铰:(1)每个⽅向都有且只有⼀个⽆穷远点,(即该⽅向各平⾏线的交点),不同⽅向有不同的⽆穷远点。
(2)各个⽅向的⽆穷远点都在同⼀条直线上(⼴义)。
(3)有限点都不在⽆穷线上。
4.结构及和分析中的灵活处理:(1)去⽀座去⼆元体。
体系与⼤地通过三个约束相连时,应去⽀座去⼆元体;体系与⼤地相连的约束多于4个时,考虑将⼤地视为⼀个刚⽚。
(2)需要时,链杆可以看成刚⽚,刚⽚也可以看成链杆,且⼀种形状的刚⽚可以转化成另⼀种形状的刚⽚。
5.关于计算⾃由度:(基本不会考)(1),则体系中缺乏必要约束,是⼏何常变的。
(2)若,则体系具有保证⼏何不变所需的最少约束,若体系⽆多余约束,则为⼏何不变,若有多余约束,则为⼏何可变。
(3),则体系具有多与约束。
是保证体系为⼏何不变的必要条件,⽽⾮充分条件。
若分析的体系没有与基础相连,应将计算出的W减去3.1.静定结构的⼀般性质:(1)静定结构是⽆多余约束的⼏何不变体系,⽤静⼒平衡条件可以唯⼀的求得全部内⼒和反⼒。
(2)静定结构只在荷载作⽤下产⽣内⼒,其他因素作⽤时,只引起位移和变形。
(3)静定结构的内⼒与杆件的刚度⽆关。
(4)在荷载作⽤下,如果仅靠静定结构的某⼀局部就可以与荷载维持平衡,则只有这部分受⼒,其余部分不受⼒。
(5)当静定结构的⼀个内部⼏何不变部分上的荷载或构造做等效变换时,其余部分的内⼒不变。
(6)静定结构有弹性⽀座或弹性结点时,内⼒与刚性⽀座或刚性节点时⼀样。
解放思想:计算内⼒和位移时,任何因素都可以分别作⽤,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。
2.叠加院⾥的应⽤条件是:⽤于静定结构内⼒计算时应满⾜⼩变形,⽤于位移计算和超静定结构的内⼒计算时材料还应服从胡克定律,即材料是线弹性的。
第9章影响线及影响面§9.1绪论结构承受移动荷载(方向、大小不变,仅作用位置变化的荷载)作用时,其反力、内力以及位移等量值均随荷载作用位置的变化而变化。
对于线弹性结构,由于叠加原理成立,只要研究在最简单的单位移动荷载的作用下,结构的反力、内力或位移的变化规律即可。
结构反力(或内力、位移)随荷载作用位置变化的函数关系式,被称为反力(或内力、位移)影响系数方程,对应的函数图形则称为反力(或内力、位移)影响线(英文Influence Line,缩写为IL)。
正确的影响线应具有正确的外形、必要的控制点纵坐标(竖标)值和正负号。
由于内力图(如梁的弯矩图)也是内力方程(表达内力与截面位置的函数关系)所对应的图形,初学者容易与内力影响线混淆(如图9.1.1)。
应明确,内力图是反映在实际固定荷载下所有截面内力的分布规律,横坐标是截面位置,纵坐标是该截面的内力值,其量纲是力的量纲;而影响线只表达在单位移动荷载下某一关心截面内力的变化规律,横坐标是外力移动作用的位置,纵坐标是关心截面关心内力值,其量纲是内力量纲与移动荷载量纲之比。
静定结构反力和内力影响线为直线形或折线形,位移影响线则为曲线形,从而超静定结构各类影响线(除静定部分和间接荷载作用外)均为曲线形。
影响线的用途很广,凡设计各种桥梁、吊车梁等一切由活荷载作用的结构都要应用它。
影响线可用于确定移动荷载作用下结构的最不利荷载位置及其对应的最大量值,也用来计算简支梁的绝对最大弯矩、绘制包络图。
此外,影响线还可用以求结构某一截面在复杂的固定荷载作用下的内力、位移等量值。
但受叠加原理限制,只能近似考虑非线性的Ⅱ阶效应。
随着大型复杂桥梁的设计建造,使得结构分析不能仅采用单纯的梁单元模型,而必须分析二维的内力影响面。
影响线和影响面的分析可以采用静力法,但更多地采用机动法,在实际工程中机动法比静力法方便且效率高。
图9.1.1 简支梁内力图与影响线§9.2 静力法与机动法绘制影响线有两种基本方法:静力法和机动法。