23.3课题学习图案设计
- 格式:doc
- 大小:82.50 KB
- 文档页数:2
23.3 课题学习图案设计教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十三章“旋转”23. 3 课题学习图案设计,内容包括:利用平移、轴对称和旋转的组合设计图案.2.内容解析本节课我们学习利用平移、轴对称和旋转这些图形变换中的一种或组合进行图案设计,有利于学生认识图形间运动变化和联系,培养学生的审美能力.基于以上分析,确定本节课的教学重点是:利用平移、轴对称和旋转的组合设计图案.二、目标和目标解析1.目标1)学会利用旋转、轴对称或平移进行简单的图案设计.2)了解和欣赏平移、旋转在现实生活中的应用.3)灵活运用平移与旋转组合的方式进行一些图案设计.2.目标解析达成目标1)的标志是:学生进行图案设计时,能选取简单的基本图形,通过几种不同的变换组合构造出美丽的图案.达成目标2)的标志是:欣赏生活的美丽图案,并分析它的形成.达成目标3)的标志是:利用平移、轴对称和旋转的组合设计图案.三、教学问题诊断分析学生利用平移、轴对称和旋转的组合设计图案并不难,但要设计出丰富的图案,就需要学生提高审美能力,多观察多思考,感受生活中数学的美.基于以上分析,本节课的教学难点是:利用平移、轴对称和旋转的组合设计丰富、美观的组合图案.四、教学过程设计(一)复习旧知,引入新课【提问1】简述平移、轴对称、旋转的概念?【提问2】平移、轴对称变换、旋转有什么共同特征?师生活动:教师提出问题,学生回答.【设计意图】先回顾平移、轴对称、旋转的相关知识,为本节课学生分析图案的形成过程和设计图案做好铺垫.(二)探究新知[问题1]生活中有很多由几何图形组成的优美图案,你知道它们是怎样形成的吗?[问题2]生活中有很多由几何图形组成的优美图案,你知道它们是怎样形成的吗?[问题3]观察下面的图案,分析它是将哪种基本图形经过哪些变换得到的?[问题4]观察下面的图案,分析它是将哪种基本图形经过哪些变换得到的?师生活动:教师提出问题,学生回答.教师演示课件,展示基本图形经过不同的图形变换后得到组合图案的过程,让学生在组合图案中辨析出基本图形经过了哪些图形变换,再现组合图案的设计过程,感受图形变换的奇妙、美丽、生动与灵活,调动学生创造的热情.教学时,应关注学生能否准确地运用数学语言表述基本图形进行平移、旋转和轴对称变换的过程.【设计意图】让学生感受简单的基本图形如何通过不同的变换组合变成丰富多彩的图案.[问题5]简述分析图案形成过程的方法?师生活动:教师提出问题,学生回答.教师负责引导学生归纳:1)找出组成原图案最基本的图形;2)说明将该基本图形运用平移、旋转、轴对称中的哪些图形变换,通过怎样的变换方式得到原图案.【设计意图】让学生掌握分析图案形成过程的方法.(三)典例分析和针对训练例1 分析下列图案的形成过程.【针对训练】1.下面四个图案中,不能由基本图案旋转得到的是( )2.如图,将甲图经图形变换变到乙图,下列说法错误的是( )A .可以通过旋转和平移实现B .可以通过旋转和轴对称实现C .必须通过旋转才能实现D .不必通过旋转就能实现3.下列对下图的形成过程叙述正确的是( )A .它可以看作是一只小狗绕图案的中心位置旋转90∘,180∘,270∘形成的B .它可以看作是相邻两只小狗绕图案的中心位置旋转180∘形成的C .它可以看作是相邻两只小狗绕图案的某条对称轴翻折而成的D .它可以看作是左侧和上方的小狗分别向右侧和下方平移得到的A .B .C .D .【设计意图】考查学生分析图案形成过程.(四)探究新知【小组讨论】请以给定的图形○○△△=(两个圆,两个三角形,两条平行线)为构件,尽可能多地构思有意义的一些图形,并写上一两句贴切,诙谐的解说词.如下图就是符合要求的图形,你能构思其它图形吗?比一比,看谁想得多,看谁想得妙!(图形不限定大小,线段不限定长短,每小组至少给出5个答案,比一比哪个小组画的最漂亮)师生活动:教师提出问题,以小组为单位讨论并给出答案.[问题]简述设计图案的方法?师生活动:教师提出问题,学生回答.教师负责引导学生归纳:图案的设计通常是利用基本图形通过轴对称、平移、旋转这三种基本形式变换来进行的,三种基本变换都有一个共同特征,那就是变换前后图形的形状、大小不发生变化,只有位置发生了变化,它们都属于全等变换。
23.3 课题学习 图案设计课题23.3 课题学习 图案设计授课人知识技能1.认识和欣赏平移、旋转、轴对称变换在现实生活中的应用;2.能够灵活运用平移、旋转、轴对称变换进行简单的图案设计.数学思考通过学生操作和试验,构建自主学习环境,充分发挥学生的主动性,让学生在活动中获取知识.问题解决经历搜集、欣赏、分析、设计和操作的过程,培养学生搜集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力.教学目标情感态度经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识.教学重点利用各种图形变换设计组合图案.教学难点将基本图形创造性地运用平移、旋转、轴对称变换设计出丰富、美观的组合图案.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾回顾以下问题:1.平移、旋转和轴对称变换的基本特征;2.归纳三种图形变换的共性;3.图片欣赏:利用多媒体演示三种图形变换.师生活动:学生思考交流后回答,教师进行点评和归纳.用美丽的图片捕捉学生的眼睛,帮助学生回顾三种图形变换.活动一:创设情境导入新课【课堂引入】展示问题:观察图23-3-6,分析它是将哪个基本图形经过了哪些变换后得到的,你能用平移、旋转或轴对称变换分析这个图案的形成过程吗?图23-3-6师生活动:学生观察图形,将基本图形从组合图案中分离出来.教师利用多媒体演示基本图形经过三种变换后得到组合图案的过程,突出基本图形经过不同的图形变换后得到组合图案的过程.通过辨析图形,认识图形变换的本质,让学生感受数学的生动、灵活、美感,调动学生的创作热情.活动二:实践探究1.探究新知活动一:学生展示搜集到的利用平移、旋转和轴对称变换设计的组合图案.学生在展示的同时,说明组合图案是运用了哪种图形变换得到的,最基本的图形是什么.1.对学生进行创新意识的培养,让学生在合作中学习与他人交流,集思广益.2.以学生为主展示其创作成果,在促进学交流新知教师观察学生的展示,适时评价或肯定.活动二:教师引导学生反思图案设计的关键.学生讨论后,师生进行总结:选取简单的基本几何图形,通过不同的变换组合出丰富的图案.即时小练:如图23-3-7所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的是( B )图23-3-7图23-3-82.综合运用教师指导学生选择简单的基本图形,进行不同的图形变换,组合出美丽的图案.如利用三角形、矩形、菱形、圆等基本图形,进行图案设计.学生活动:自己独立设计;小组交流设计图案;小组内选出优秀图案班内展示.生进行数学交流的基础上增强其表达与交流的意识.教师活动:组织学生进行评价选择.【应用举例】例1 在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( C )图23-3-9例2 如图23-3-10,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程: 答案不唯一,如△ABC向上平移4个单位,再沿y轴对折,得到△DEF .图23-3-10师生活动:学生解答问题,教师进行个别提问,最后总结解题方法.典型问题的设计考查学生对于基础知识的理解和运用.活动三:开放训练体现应用【拓展提升】例3 图23-3-11是3×3的正方形网格,将其中两个正方形涂灰,并且使得涂灰后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,图23-3-12中的四幅图就视为同一种,则得到的不同图案共有( C )设置开放型问题利于激发学生的思维,拓展学生的思维空间,发挥学生的想象力.图23-3-11图23-3-12A.4种B.5种C.6种D.7种师生活动:学生小组内讨论、交流,总结答案,教师在过程中进行引导、点拨.活动四:课堂总结反思【达标测评】1.下列语句中,不正确的是( D )A.图形平移是由移动的方向和距离决定的B.图形旋转是由旋转中心、旋转方向和旋转角度决定的C.中心对称图形是指把一个图形绕着某一点旋转180°后能与其自身重合的图形D.旋转后能重合的图形是中心对称图形2.如图23-3-13所示的图案,至少绕它的中心旋转多少度能与自身重合( A )针对本课时的主要问题,从多个角度、分层次进行检测,达到学有所成、了解课堂学习效果的目的.图23-3-13A.45°B.90°C.135°D.180°3.如图23-3-14,这些美丽的图案都是在几何画板软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的基本图案绕着它的旋转中心旋转同样的角度得来的,则旋转的角度为( C )图23-3-14A.30°B.60°C.90°D.180°4.如图23-3-15,图①经过 轴对称 变换得到图②;图①经过 旋转 变换得到图③;图①经过 平移 变换得到图④.(填“平移”“旋转”或“轴对称”)图23-3-155.如图23-3-16,以点O为旋转中心,将阴影图形顺时针旋转90°三次,作出旋转后的图形.图23-3-16学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:(1)你在本节课的学习中有哪些收获?哪些进步?(2)学习完本节课后,你还存在哪些困惑?2.布置作业:教材第76页复习题23第4,5,6,8题.让学生养成自主归纳课堂重点的习惯,提高学生的学习能力.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在教学过程中,注重引导学生动手实践,以创造性地运用数学知识进行图案设计为主线,增强学生学好数学的信念,更好地提高学生的动手操作能力和实践能力.②[讲授效果反思]教师引导学生注意灵活运用图形变换方式,将基本图形进行变换.③[师生互动反思]从课堂表现和学生表现分析,学生能够充分发挥主观能动性,创造性地进行图案设计,较好地完成学习任反思教学过程和教师表现,进一步优化操作流程和提升自身素质.务.④[习题反思]好题题号 错题题号 学习目标1.认识和欣赏平移、轴对称、旋转在现实生活中的应用.2. 利用图形的平移、轴对称、旋转变换设计组合图案.重点难点重点:设计图案.难点:如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.预习导学一、自学指导.(10分钟)自学:自学教材P72内容,思考下列问题.(1)我们学过哪些图形变换?它们分别有何特征?(2)下列图形之间的变换分别属于什么变换?探究:(1)观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?(2)观察三种图形变换的过程,回答问题:①平移、旋转和轴对称变换的基本特征;②归纳三种图形变换的共性.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.分析图案的形成过程要注意些什么?分析图案的形成过程,应注意运用__平移、__轴对称__、__旋转__进行描述,只要合理就行.2.图案设计的关键是什么?选取简单的基本几何图形,然后通过不同的变换组合出美丽的图案.合作探究一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)用平移、旋转或轴对称变换分析下图中各个图案,分析它是将哪种基本图形经过了哪些变换后得到的?点拨精讲:将基本图形从组合图案中分离出来,并再现此基本图形的变换过程.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.某单位搞绿化,要在一块圆形空地上种植四种颜色的花,为了便于管理和美观,相同颜色的花集中种植,且每种颜色的花所占的面积相同,现征集设计方案,你能帮忙设计吗?点拨精讲:将基本图形创造性地应用平移、轴对称、旋转等变换,设计出和谐、丰富、美观的组合图案.2.下面花边中的图案,由圆弧、圆构成.仿照例图,请你为班级的板报设计一条花边,要求:(1)只要画出组成花边的一个图案;(2)以所给的图形为基础,用圆弧、圆或线段画出;(3)图案应有美感.课堂小结学生总结本堂课的收获与困惑.(2分钟)利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.当堂训练请使用本课时对应训练部分.(10分钟)。
人教版九年级数学上册第二十三章旋转《23.3课题学习图案设计》教学设计一. 教材分析本节课是人教版九年级数学上册第二十三章旋转《23.3课题学习图案设计》,主要让学生通过实际操作和数学推理,掌握旋转变换在图案设计中的应用。
教材通过丰富的图案设计实例,引导学生发现旋转变换的规律,并学会如何运用旋转变换进行图案设计。
二. 学情分析学生在学习本节课之前,已经掌握了旋转变换的定义和基本性质,能够理解和运用旋转变换解决一些实际问题。
但是,对于如何将旋转变换应用于图案设计,可能还存在一定的困惑。
因此,在教学过程中,教师需要通过具体的实例和操作,让学生深入理解旋转变换在图案设计中的作用和方法。
三. 教学目标1.理解旋转变换在图案设计中的应用。
2.学会运用旋转变换进行图案设计。
3.培养学生的创新意识和审美能力。
四. 教学重难点1.旋转变换在图案设计中的应用。
2.如何运用旋转变换进行创新图案设计。
五. 教学方法1.实例教学:通过具体的图案设计实例,让学生直观地理解旋转变换的应用。
2.操作实践:让学生亲自动手操作,体验旋转变换在图案设计中的实际应用。
3.小组讨论:学生分组讨论,分享各自的图案设计成果,互相学习和借鉴。
4.启发引导:教师引导学生发现旋转变换的规律,并运用规律进行图案设计。
六. 教学准备1.教学课件:制作课件,展示旋转变换在图案设计中的应用实例。
2.图案设计素材:准备一些图案设计素材,供学生在实践操作中使用。
3.旋转变换软件:为学生准备旋转变换的相关软件,如旋转变换工具或绘图软件。
七. 教学过程1.导入(5分钟)教师通过展示一些精美的图案设计作品,引发学生的兴趣,然后提出本节课的学习任务:运用旋转变换进行图案设计。
2.呈现(10分钟)教师呈现一些旋转变换在图案设计中的应用实例,让学生直观地感受旋转变换的魅力。
同时,教师引导学生分析旋转变换的特点和规律。
3.操练(10分钟)学生分组进行实践操作,运用旋转变换进行图案设计。
人教版数学九年级上册23.3《课题学习图案设计》教学设计一. 教材分析人教版数学九年级上册23.3《课题学习图案设计》是本册教材的最后一个单元,主要让学生通过学习简单的图案设计,培养学生的创新意识和实践能力。
本节课的内容包括:欣赏简单的图案设计,了解基本图案设计的方法和步骤,利用纸折叠和剪切,制作简单的图案设计。
二. 学情分析九年级的学生已经具备了一定的几何知识,对于简单的图案设计有一定的认识和理解。
但是,对于复杂的图案设计,学生还需要进一步的学习和实践。
此外,学生的动手能力参差不齐,需要教师在教学过程中给予个别指导。
三. 教学目标1.让学生了解简单的图案设计方法,培养学生创新意识和实践能力。
2.让学生掌握基本的图案设计步骤,提高学生的动手能力。
3.通过图案设计的学习,培养学生的审美观念和合作意识。
四. 教学重难点1.教学重点:让学生掌握基本的图案设计方法,能够独立完成简单的图案设计。
2.教学难点:如何引导学生创新设计,提高学生的动手实践能力。
五. 教学方法1.采用问题驱动法,引导学生思考和探索图案设计的原理和方法。
2.采用案例分析法,让学生通过分析实际案例,掌握图案设计的基本方法。
3.采用动手实践法,让学生亲自动手制作,提高学生的实践能力。
六. 教学准备1.准备相关的图案设计案例,用于分析和讲解。
2.准备纸张、剪刀等制作工具,让学生动手实践。
3.准备教学课件,用于辅助讲解和展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的图案设计案例,引导学生对图案设计产生兴趣,进而引入本节课的主题。
2.呈现(10分钟)讲解基本的图案设计方法和步骤,让学生了解图案设计的基本原理。
3.操练(10分钟)让学生分组进行图案设计,教师巡回指导,解答学生的问题。
4.巩固(5分钟)让学生展示自己的作品,互相评价,教师总结评价,巩固所学知识。
5.拓展(5分钟)引导学生思考如何将图案设计应用到实际生活中,提高学生的创新意识。
23.3 课题学习图案设计23.3课题学习图案设计基础题知识点1分析图案形成过程1.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图的是(C)A. B.C. D.2.如图所示,这个图案可以看作是以“基本图案”——原图案的四分之一经过变换形成的,但一定不能通过________变换得到(C)A.旋转B.轴对称C.平移D.对称和旋转3.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为(C)A.30°B.60°C.90°D.120°4.欣赏如图①的图案,并分析这个图案由②怎么合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.解:答案不唯一,下面各举一例:(1)只是轴对称图形;(2)只是中心对称图形;(3)既是轴对称图形又是中心对称图形.中档题7.在下列四种图形变换中,本题图案不包含的变换是(D)A.位似B.旋转C.轴对称D.平移8.观察如图所摆放的五朵梅花,变换中间的一朵梅花,得到四角的梅花,下列说法错误的是(D)A.左上角梅花只需沿对角线平移即可B.右上角梅花沿对角线平移后,顺时针旋转90°C.右下角梅花沿对角线平移后,以下底边为对称轴对称得到D.左下角梅花先沿对角线平移后,顺时针旋转90°9.正五角星绕着它的中心至少旋转72°可以与原图形重合.10.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转60度后,两张图案构成的图形是中心对称图形.11.图(2)可以看作是由(1)经过怎样的变换得到的?图(3)可以看作是由(2)经过怎样的变换得到的?由图(1)到图(3)经过了几次变换?解:图(2)可以看作是由(1)经过旋转得到,图(3)可以看作是由(2)经过轴对称得到.由图(1)到图(3)经过了两次变换.12.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°,180°,270°,并画出它在各象限内的图形.解:如图所示.13.如图1是由2个白色和2个黑色全等正方形组成的“L”型图案,请你分别在图2,图3上按下列要求画图:(1)在图2中,添1个白色或黑色正方形,使它成中心对称图案;(2)在图3中,先改变1个正方形的位置,再添1个白色或黑色正方形,使它既成中心对称图案,又成轴对称图案.解:(1)如图所示.(2)如图所示.综合题14.如图是由14个全等的三角形组成的图案,是由阴影部分的三角形通过平移、轴对称或旋转而得到的,试分析这个图案形成的过程.解:可以看成按如下步骤形成的:①以l1为对称轴作与阴影三角形轴对称的图形;②将①中所得的图形分别以M,N为旋转中心旋转180°;③以①,②所得的两组图形为基本图形作关于l2的轴对称图形;④再以此为基本图形,O点为中心旋转180°.。
23.3课题学习图案设计
一、仔仔细细,记录自信
1.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度正确的为()
A.30B.60C.120D.180
2.将一张正方形纸片沿如图1所示的虚线剪开后,能拼成下列四个图形,其中是中心对称图形的是()
3.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()
二、拓广探索,游刃有余
4.用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.
5.请你为班级设计一个具有中心对称特征的漂亮的班徽,并对你的设计方案加以解释.
6.观察下列图案,你能利用图2来分析图3和图4是如何形成的吗?
参考答案:
一、1.D 2.D 3.B
二、4.答案不惟一,例如:
5.略.
6.解:图3是将图2进行连续的平移得到的;图4是将图2进行连续的平移、旋转再平移
得到的.。