一元气体动力学基础学习资料
- 格式:doc
- 大小:253.00 KB
- 文档页数:7
第7章一元气体动力学基础本章目录§7.1 理想气体一元恒定流动的运动方程§7.2 音速、滞止参数、马赫数§7.3 气体一元恒定流动的连续性方程§7.4 等温管路中的流动§7.5 绝热管路中的流动本章概述气体动力学研究可压缩流体运动规律及其工程应用。
气体的密度随着压强和温度变化而变化,此时必须考虑气体的可压缩性。
气体动力学不仅研究流速、压强问题,而且包含密度和温度问题,不仅需要流体力学知识,还需要热力学知识。
进行气体动力学计算时,压强和温度只能用绝对压强和热力学温度。
理想气体状态方程:定容过程:热力学中,定容过程系指气体在容积不变或比容不变条件下进行的热力过程。
定温过程:热力学中,定温过程系指气体在温度不变条件下进行的热力过程。
绝热过程:热力学中,在无能量损失且与外界无能量交换的条件下进行的热力过程称为可逆的绝热过程,又称为等熵过程。
§7.1 理想气体一元恒定流动的运动方程§7.1.1 一元理想流体欧拉运动微分方程此即欧拉运动微分方程,也称为微分形式的伯努利方程。
§ 7.1.2 气体一元定容流动该方程的物理意义:沿流各断面上单位重量理想气体的压能和动能之和守恒,二者可以互相转换。
§7.1.3 气体一元定温流动定温流动也就是气体在温度保持不变情况下的流动。
§7.1.4 气体一元绝热流动绝热条件下的流动就是绝热流动,又称为等熵流动。
在绝热条件下,气体参数变化服从等熵过程方程理想气体绝热流动(等熵流动),沿流任意断面上,单位重量的气体所具有的内能、压能和动能之和为一常量。
§7.1.5 例题§7.1.6 关于气体一元绝热流动方程使用理想气体一元绝热流动方程,不仅适用于无摩阻的绝热流动中,也适用实际气流。
由于流动系统与外界无热量交换,摩擦产生的热量保存在管路中,所消耗的机械能转化为内能,其总和将保持不变。
第九章 一元气体动力学基础一、学习指导 1. 基本参数 (1) 状态方程气体的压强p ,密度ρ以及温度(绝对)T 满足状态方程p RT ρ=式中,R 为气体常数,对于空气,287/()R J kg K =⋅。
(2) 绝热指数k/p v k c c =式中,c p 和c v 分别是等压比热和等容比热,他们与气体参数地关系为1p k c R k =-,11p c R k =-(3) 焓和熵焓h 的定义是ph e ρ=+式中,e 是气体内能,v e c T =。
h 可一表示为 p h c T =熵的表达式为ln()kps cv c ρ=+常数(4) 音速cc =(5) 马赫数马赫数M 的定义是uM c =式中,u 是气流速度;c 是音速。
2. 一元恒定流动的运动方程 (1) 气体一元定容流动ρ=常数22pv g γ+=常数 (2) 气体一元等温流动T =常数,pRT cρ==2ln 2v c p +=常量2ln 2v RT p +=常量(3) 气体一元绝热流动k p cρ= 212k p v k ρ⋅+-=常量3. 滞止参数气流在某断面的流速,设想以无摩擦绝热过程降低至零时,断面各参数所达到的值,称为气流在该断面的滞止参数。
用p 0、ρ0、T 0、i 0、c 0表示滞止压强、滞止密度、滞止温度、滞止焓值、滞止音速。
0/T T ,0/p p ,0/ρρ,0/c c 与马赫数M 的函数关系:20112T k M T -=+11200112k kk k p T k M p T ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1111200112k k T k M T ρρ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1122200112c T k M c T -⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭4. 气体一元恒定流动的连续性方程2(1)dA dv M A v =-(1) M<1为亚音速流动,v<c ,因此dv 与dA 正负号相反,速度随断面面积增大而减慢;随断面面积减小而加快。
一元气体动力学基础
一元气体动力学基础
1.若要求22
v p ρ∆小于0.05时,对20℃空气限定速度是多少? 解:根据20v P ρ∆=42M 知
42
M < 0.05⇒M<0.45,s m kRT C /3432932874.1=⨯⨯==
s m MC v /15334345.0=⨯==
即对20℃ 空气限定速度为v <153m/s ,可按不压缩处理。
2.有一收缩型喷嘴,已知p 1=140kPa (abs ),p 2=100kPa (abs ),v 1=80m/s ,T 1=293K ,求2-2断面上的速度v 2。
解:因速度较高,气流来不及与外界进行热量交换,且当忽略能量损失时,可按等熵流动处理,应用结果:2v =2121)(2010v T T +-,其中T 1=293K
1ρ=11RT p =1.66kg/m 3.
k P 1
12
12)(ρρρ==1.31kg/m 3.
T 2=R
P 22ρ=266 K 解得:2v =242m/s
3.某一绝热气流的马赫数M =0.8,并已知其滞止压力p 0=5×98100N/m 2,温度t 0=20℃,试求滞止音速c 0,当地音速c ,气流速度v 和气流绝对压强p 各为多少?
解:T 0=273+20=293K ,C 0=0KRT =343m/s
根据 20
2
11M K T T -+=知 T=260 K ,s m kRT C /323==
,s m MC v /4.258== 100-⎪⎭⎫ ⎝⎛=k k T T p p
解得:2/9810028.3m N p ⨯=
4.有一台风机进口的空气速度为v 1,温度为T 1,出口空气压力为p 2,温度为T 2,出口断面面积为A 2,若输入风机的轴功率为N ,试求风机质量流量G (空气定压比热为c p )。
解:由工程热力学知识:
⎪⎪⎭⎫ ⎝⎛+=22
v h G N ∆∆,其中PA GRT T c h P ==,pA GRT A G v ==ρ ∴⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧+-⎥⎦⎤⎢⎣⎡+=)2()(2121122222v T c A p GRT T c G N P P 由此可解得G
5.空气在直径为10.16cm 的管道中流动,其质量流量是1kg/s ,滞止温度为38℃,在管路某断面处的静压为41360N/m 2,试求该断面处的马赫数,速度及滞止压强。
解:由G =v ρA
⇒=RT p
ρv=pA GRT
⇒-+=kRT
v k T T 2
0211T =282k 又:202
11M k T T -+= ∴717.0=M
s m kRT M MC v /4.241===
⇒⎪⎭⎫ ⎝⎛=-100k k T T p p p 0=58260N/m 2
6.在管道中流动的空气,流量为0.227kg/s 。
某处绝对压强为137900N/m 2,马赫数M =0.6,断面面积为6.45cm 2。
试求气流的滞止温度。
解:c
v M =和kRT c =得 kRT M v =
G =vA ρ和RT p =ρ得
pA GRT
v =,代入:kRT M v = ∴⇒=GR
A kRT pM T T =269.6k ⇒-+=202
11M k T T T 0=289.1k 7.毕托管测得静压为35850N/m 2(r )(表压),驻点压强与静压差为65.861kPa ,由气压计读得大气压为100.66kPa ,而空气流的滞止温度为27℃。
分别按不可压缩和可压缩情况计算空气流的速度。
解:可按压缩处理:a p p 13651010066035850=+=
Pa P p 202371658610=+=
1)211(20--+=k k
M k p p M 2.0=,解得:77.0=M
202
11300M k T T T -+== 解得:k T 2.268= kRT C M ν
ν
== 解得:s m v /8.252=
按不可压缩处理:γγp p =标标
即:γ
0066.17.12013.1= ∴3/6.12m N =γ
s m g P g v /2.2366.123585022===γ
8.空气管道某一断面上v =106m/s ,p =7×98100N/m 2(abs ),t =16℃,管径D =1.03m 。
试计算该断面上的马赫数及雷诺数。
(提示:设动力粘滞系数μ在通常压强下不变) 解:2892874.1⨯⨯==KRT c =340.8m/s
马赫数为:m =c v =0.311 7105Re ⨯====μ
μρυvd RT p vd vd 9.16℃的空气在D=20cm 的钢管中作等温流动,沿管长3600m 压降为1at ,假若初始压强为5at (abs ),设λ=0.032,求质量流量。
解:由G =)(16222152p p lRT D -λπ
其中:Pa p 4110807.95⨯⨯=,Pa p 4210807.94⨯⨯=
解得G =1.34kg /s 校核:s m kRT C /8.340== 322/73.4m kg RT
p ==ρ s m D G v /9422
2==πρ 0265.022==C v M k M 12<,计算有效
10.已知煤气管路的直径为20cm ,长度为3000m ,气流绝对压强p 1=980kPa ,t 1=300K ,阻力系数λ=0.012,煤气的
R =490J/(k g ·K),绝对指数k =1.3,当出口的外界压力为490kPa 时,求质量流量(煤气管路不保温)。
解:按等温条件计算G =
)(16222152p p lRT D -λπ=5.22kg s / 验算管道出口马赫数 c=
m kRT 1.437=/s RT p 22=
ρ=3.33kg /m 3 2224D G v πρ==50m /s
2M =11.02=c
v M 2<k 1
=0.88,计算有效
11.空气p 0=1960kPa ,温度为293K 的气罐中流出,沿流长度为20m ,直径为2cm 的管道流入p 2=392kPa 的介质中,设流动为等温流动,阻力系数λ=0.015,不计局部阻力损失,求出口质量流量。
解:由G=
)(16222152p p lRT D -λπ=0.537kg/s RT p 22=
ρ=4.66kg/m 3 2224D
G
v πρ==367m/s M =K 1
=0.845
v c =MC =290m/s
由于v 2>v c
,则 G=A v c
2ρ=0.426kg/s
12.空气在光滑水平管中输送,管长为200m ,管径5cm ,摩阻系数λ=0.016,进口处绝对压强为106N/m 2,温度为20℃,流速为30m/s ,求沿此管压降为多少?
若(1)气体作为不可压缩流体;
(2)可压缩等温流动;
(3)可压缩绝热流动;
试分别计算之。
解:(1)若气体作为不可压缩流体,查表得20=t ℃时,ρ=1.205kg /m 3则
∆p =22
v D l ρλ=3.47×105
N/m (2)气体作可压缩等温流动
D l RT v p p λ21
121-==5.6×105N/m 2
∆p =21p p -=4.4×
105 N/m 2 校核:s m p p v v /6.53211
2== s m kRT C /343== k C v M 116.02<==,计算有效
(3)气体作可压缩绝热流动
⎥⎥⎦⎤⎢⎢⎣
⎡-+=++k k k k k p p p k k l DA G 1211111212ρλ ,又:111A v G ρ=,111RT p =ρ 得:⎥⎥⎦⎤⎢⎢⎣⎡-+=+k k p p k k l D RT v 112121)(112λ 解得:262/10597.0m N p ⨯=
∴2521/1003.4m N p p p ⨯=-=∆。