气体动力学基础
- 格式:ppt
- 大小:1.21 MB
- 文档页数:57
气体动力学基础气体动力学是研究气体运动规律以及与其他物体之间相互作用的学科。
它的研究对象包括气体的压力、体积、温度和分子速度等特性,以及这些特性之间的相互关系。
本文将介绍气体动力学的基础概念、理论模型和重要定律。
一、气体分子模型气体分子模型是气体动力学研究的基础,它假设气体是由大量极小的分子组成的。
这些分子之间几乎没有相互作用力,它们以高速不规则运动,并且具有各向同性的特性。
二、理想气体状态方程理想气体状态方程是描述气体状态的基本定律之一。
根据理想气体状态方程,气体的压力(P)、体积(V)和温度(T)之间存在着下列关系:P * V = n * R * T其中,n代表气体的摩尔数,R代表气体常数。
这个方程表明,在一定温度和摩尔数的条件下,气体的压力和体积成反比,而与气体的物理性质(例如分子大小和形状)无关。
三、气体的压强气体分子在容器壁上会产生压力,这种压力被称为气体的压强。
根据气体分子的运动特性,我们可以得到气体的压强与分子速度和撞击频率之间的关系。
通常情况下,气体的压强与气体分子的速度平方成正比。
四、气体的温度气体的温度是指气体分子的平均动能。
根据气体分子模型,气体分子的速度与其温度之间呈正相关关系。
在绝对温标上,温度与气体分子的平均动能之间存在着线性关系。
五、气体的体积气体的体积是气体占据的空间大小。
根据观察和实验结果,气体的体积与其分子数量和分子碰撞的频率有关。
当温度不变时,气体的体积与其压强成反比。
六、亚音速和超音速流动亚音速流动是指气体在流动过程中,流速小于音速的情况。
这种流动模式下,气体能够传递信息,且压力和温度分布相对均匀。
超音速流动则是指气体的流速大于音速。
在超音速流动中,气体的压力和温度存在明显的不均匀分布。
七、伯努利定理根据伯努利定理,沿着气体流动的方向,气体的总能量保持不变。
这意味着当气体流速增大时,气体的压强会降低,从而产生较低的静压力。
八、霍金定理霍金定理是描述亚音速气体流动的基本原理。
气体动力学基础气体动力学是研究气体的运动规律以及与能量、力学和热学等的关系的学科。
它是物理学的一个重要分支,具有广泛的应用领域,涵盖了气象学、空气动力学、燃烧学等多个领域。
本文将介绍气体的基本概念、物理性质和运动规律。
一、气体的基本概念气体是物态的一种,具有以下特性:1.分子间间距较大,相互之间几乎没有相互作用力。
2.分子间的运动是随机的,具有高度的自由度。
3.气体的体积能够随环境条件的变化而变化。
二、气体的物理性质气体的物理性质包括压力、温度和体积。
下面将逐一进行介绍。
1. 压力压力是单位面积上施加的力的大小。
根据理想气体状态方程可以得知,气体的压力与温度、体积、分子数之间存在一定的关系。
2. 温度温度是气体分子热运动的一种度量,通常使用开尔文温标来进行表示。
根据理想气体状态方程,温度与气体的压力、体积、分子数之间存在一定的关系。
3. 体积气体的体积是指气体所占据的空间。
根据理想气体状态方程,气体的体积与压力、温度、分子数之间存在一定的关系。
三、气体的运动规律气体的运动规律主要包括玻意耳-马略特定律、查理定律和盖-吕萨克定律。
1. 玻意耳-马略特定律玻意耳-马略特定律也称为定容气体定律,它表明,在恒定体积下,气体的压力与温度成正比。
即P/T=常数。
2. 查理定律查理定律也称为定压气体定律,它表明,在恒定压力下,气体的体积与温度成正比。
即V/T=常数。
3. 盖-吕萨克定律盖-吕萨克定律也称为理想气体状态方程,它表明,在恒定的摩尔数下,气体的压力、体积和温度之间存在一定的关系。
即P*V/T=常数。
四、气体动力学的应用气体动力学具有广泛的应用领域,以下是几个应用领域的简要介绍。
1. 气象学气象学研究大气的运动规律以及与气候、天气等的关系。
气体动力学为气象学提供了重要的理论基础,可以用来解释大气循环、风、气压等现象。
2. 空气动力学空气动力学研究物体在气流中运动时的力学规律,对于飞机、汽车等交通工具的设计和性能研究具有重要意义。
第九章气体动力学基础第九章气体动力学基础一、微弱扰动在气流中的传播1、音速和马赫数音速是微弱扰动在流场中的传播速度。
微弱扰动通常是流场中某个位置上的压强产生了微小的变化。
在不可压缩流动中,任何扰动总是立即传播到整个流场,但是在可压缩流里,不是在任何情况下都能传播到整个流场,微弱扰动在流场中是按一定的速度传播的,这个速度就是音速。
一个直圆管,里面充满了压强为p、密度为ρ、温度为T的静止气体。
活塞以dv速度运动,将压缩(或膨胀)最相邻的气体层,致使那层气体的压强升高(或降低)、温度升高(或降低)。
这层气体又去压缩另外的气体层。
这样将在管道内形成微弱扰动的压缩波(或膨胀波),波面的传播速度假设为c,气体本身也将随活塞一起运动,其运动速度将和活塞的运动速度一致,是dv。
请注意,压缩(或膨胀)波的波面速度与活塞(因而是气体)的运动速度不一致的!现在来推导音速公式。
由于微弱扰动在管道里的传播是一个非定常运动,因此假设研究者和波面一同运动。
这样,波面是相对静止的,而波前气流速度为c,波后气流速度为c-dv,同时压强密度和温度分别由p、ρ和T升到p+dp、ρ+dρ和T+dT。
在波面附近取一个微元体,有连续方程:动量方程:因为我们讨论的是微弱扰动,故高阶项可忽略。
把dv消去,得到音速为弱扰动的过程可以认为是一个等熵过程,即有对于微弱扰动,其热力学过程接近于绝热的可逆过程,即等熵过程。
对完全气体,(1)音速的的大小是和流体介质有关:可压缩性大的介质,微弱扰动传播的速度慢、音速就小。
在20度的空气中,音速为343(m/s);在20度的水里,音速为1478(m/s)。
(2)音速是状态参数的函数。
在相同介质中,不同点的音速也不同。
提到音速,总是指当地音速。
(3)同一气体中,音速随气体温度的升高而升高马赫数的定义在音速定义后,可以定义马赫数1)马赫数是判断气体压缩性的标准, 它是个无量纲量,也是气体动力学的一个重要参数(2)按马赫数,可以将气流分成亚音速、音速和超音速流动。
气体动力学是流体力学的一个分支。
在连续介质的假设下,研究了与热力学现象有关的气体运动规律及其与相对运动物体的相互作用。
气体在低速时是不可压缩的流动,其热力学状态的变化可以忽略不计;但是,在高速流动时(例如,马赫数大于0.3),气体的压缩效果不容忽视,其热力学状态也发生明显变化。
气体运动应同时满足流体力学和热力学定律。
气体动力学[1] [2]由流体力学和热力学的紧密结合形成。
书籍目录第一章基础知识第二章是流体运动的基本方程第三章一维稳态流基本方程第四章停滞参数与空气动力功能第五章膨胀波和冲击波1个气体动力学空气动力学始于射弹运动和蒸汽轮机的研究。
随着航空航天业的蓬勃发展,出现了许多新的分支机构。
高温气体动力学高温气体动力学。
研究了高温气体的流动规律及其伴随的理化变化,能量传递和转化规律。
例如,在喷气发动机的燃烧室中,重返航天器表面的冲击层和高超音速尾流,气体温度极高,气体的比热不再恒定,并且完美的气体状态方程(p =ρRT,P,ρ,T为气体的压力,密度和温度,R为气体常数)不再适用。
另外,气体分子中各种能级的激发(平移,旋转和振动等)处于不平衡状态,导致流动不平衡。
在非常高的温度下,气流伴随着离解和电离过程以及物体表面的烧蚀。
因此,对高温气体动力学的研究应将气体动力学与热力学,统计物理学,分子物理学,化学动力学和电磁学相结合,并使用物理,化学和气体动力学等实验技术,光谱,激光,电子学等测量方法机械师和测试设备,例如冲击管和电弧加热器。
高温气体动力学的研究对航空航天工业,激光和等离子体技术的发展具有重要意义。
稀有气体动力学稀有气体的动力学。
研究了努氏数Kn(见流体力学相似性准则)不小于1的稀有气体的运动规律。
对于在高空飞行的航天器来说,Kn 值不小,并且气体分子的离散结构显示出其影响,因此经典连续谱模型不再适用。
在研究5微米以下的气溶胶颗粒在地面上的运动时,我们还应考虑稀有气体效应。
为了研究稀有气体动力学,需要玻尔兹曼气体分子运动方程和气体分子与固体表面相互作用的理论,以及低密度风洞,冲击风洞和分子束装置等实验设备。