地表径流系数
- 格式:doc
- 大小:5.93 KB
- 文档页数:2
入渗系数和径流系数入渗系数和径流系数分别是水文学中常用的两个指标,它们分别用于描述土壤的渗透能力和降雨径流的生成过程。
在实际水文学应用中,这两个指标的准确性和精度直接影响到天然水文过程的解释和水文模型的建立。
下面本文将对入渗系数和径流系数进行详细地解释和介绍。
一、入渗系数1.定义土壤渗透能力是指土壤在一定时间内通过单位面积内的水量,即土壤的水分传导能力。
入渗系数(Infiltration Capacity)就是指单位时间内单位面积的降雨量能够渗透到土壤中的量,是土壤渗透能力的一种反映。
2.测定方法入渗系数的测定方法有最常用的现场试验法、试验盘法、室内试验法等多种方法。
其中,现场试验法是较为常用的一种方法,它通过在土壤表面放置一个具有一定容积的圆筒,所加水的流量被实时地记录下来,进而得到入渗系数的值。
3.影响因素(1)土壤结构:土壤颗粒间的间隙大小和分布状态是影响土壤渗透性的主要因素之一。
土壤颗粒越细腻,颗粒间距越小,则土壤的渗透能力越差,反之亦然。
(2)土壤水分:当土壤的水分饱和时,土壤的渗透能力显著降低;而当土壤处于干旱状态时,土壤的渗透能力会增强。
(3)降雨强度:当降雨强度增加时,土壤图蓝口改仁鲁的渗透能力会逐渐减弱,并且甚至渗透不良,从而导致冲刷和滞留。
4.应用入渗系数的应用范围很广,主要应用在下列方面:(1)降雨径流分析;(2)城市排水系统设计;(3)土地利用变化分析;(4)水文模型的建立等。
二、径流系数降雨水在下垫面流走的一部分称为径流,径流系数(Runoff coefficient)是指在特定的降雨情况下,单位面积的降雨量中产生径流的比例。
通常用C表示,其计算公式为:C = Q / P其中,Q为产生的径流,P为降雨量。
径流系数的测定方法主要有暴雨采样法、旅行时间法、雨强变化法等多种方法。
在实际应用中,根据研究对象和测量条件的不同选择不同的测量方法。
径流系数受到多种因素的影响,主要包括:(1)地形:地形的起伏和坡度是决定降雨径流的一个重要因素。
径流系数计算范文径流系数是指降雨过程中雨水在地表径流中所占比例的系数。
径流系数的计算是水资源管理和水文学研究中很重要的一项工作,对于水资源的合理利用和水文预测具有重要意义。
本文将介绍径流系数的定义、计算方法及其影响因素。
一、径流系数的定义径流系数是指降雨事件中产生的地表径流量与降雨总量之间的比值,用符号C表示,一般用百分数表示。
径流系数的计算可以揭示降雨过程中雨水的产流特征,对于预测洪水、估计径流量以及水文模型的应用具有重要意义。
二、径流系数的计算方法计算径流系数可以采用多种方法,常见的有经验公式法、统计法和水文模型法等。
下面将分别介绍这几种方法的计算步骤。
1.经验公式法经验公式法是基于历史观测资料得出的经验关系,适用于缺少水文资料和水文测站的区域。
根据实测降雨与实测径流数据,通过统计分析得到经验公式,再将该公式用于其他降雨事件的径流系数计算。
常用的经验公式有Hawkins公式和SCS公式等。
2.统计法统计法是基于大量的历史降雨和径流数据,通过统计分析得到一般规律。
根据降雨频率分析的结果,结合径流量的概率密度函数,可以计算出不同频率下的径流系数。
统计方法适用于对径流过程的概率特征进行研究和水文预测。
3.水文模型法水文模型法是利用水文模型对流域的水文过程进行模拟和预测,并计算出相应的径流系数。
常见的水文模型有单水平模型、单线水文模型和分布式水文模型等。
通过对流域的物理特征、土壤信息以及降雨等输入数据的处理和分析,可以建立合适的水文模型,从而计算出径流系数。
三、影响径流系数的因素径流系数的大小受到多个因素的影响,主要包括下面几个方面。
1.地表类型:不同地表类型的径流系数具有一定的差异。
例如,林地和草地的径流系数一般较小,而城市地区的径流系数较大。
2.土地利用方式:土地利用方式的改变会导致径流系数的变化。
例如,农田被城市化后,径流系数通常会增加。
3.土壤类型:不同土壤类型的水持有能力和透水性不同,对降雨产生的径流量影响较大。
径流量与径流系数 LELE was finally revised on the morning of December 16, 2020径流量与径流系数径流系数径流系数,一定地区任意时段内径流量(或得流总量)与同时段内相应的降水量之比值。
以小数或百分数计。
(runoff coefficient),一定地区任意时段内径(或总量)与同时段内相应的之比值。
以小数或百分数计。
即:径流系数=径流量/量在干旱地区,径流系数小,甚至趋近于零;在湿润地区较大,径流系数同所取时段不同分别称为次径流系数、洪峰径流系数、月径流系数、年径流系数和多径流系数。
径流系数(runoff coefficient)是一定地面径流量(毫米)与降雨量(毫米)的比值,是任意时段内的径流深度y(或径流总量W)与同时段内的降水深度x(或降水总量)的比值。
径流系数说明在降水量中有多少水变成了径流,它综合反映了流域内自然地理要素对径流的影响。
其计算公式为a=y/x。
同一、同一时段内径流深度(R)与降水量(P)的比值称为径流系数,以小数或百分数计,表示降水量中形成径流的比例,其余部分水量则损耗于植物截留、填洼、入渗和蒸发。
径流系数同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数表示。
计算式为:α=R/P,式中α为径流系数,R为径流深度,P为降水深度。
α值变化于0~1之间,湿润地区α值大,干旱地区α值小。
我国河流年平均径流系数>,表明径流十分丰富;径流贫乏的海滦河,年平均径流系数仅有。
根据计算时段的不同,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。
径流系数综合反映流域内自然地理要素对降水─径流关系的影响。
径流量中文名称:径流量英文名称:runoff定义:为时段流量,可分地面径流、地下径流两种。
表示径流大小的方式有流量、径流总量、径流深、径流模数等。
应用学科:(一级学科);(二级学科)径流量在上有时指,有时指。
即一定时段内通过河流某一断面的水量。
径流系数-定义任意时段内径流深度R与同时段内降水深度P之比。
用符号a 表示,即α=R/P,式中:a为径流系数;R为径流深度,mm;P为降水深度mm。
延伸含义:(1)地表径流系数,是指任意时段内的径流深度(或径流总量)与同一时段内的降水深度(或降水总量)的比值。
径流系数说明了降水量转化为径流量的比例,它综合反映了流域内自然地理要素对降水-径流关系的影响。
(2)径流指降落到地表的降水在重力作用下沿地表或地下流动的水流。
可分为地表径流和地下径流,两者具有密切联系,并经常互相转化。
(3)水文学中常用的流量,径流总量,径流深度,径流模数和径流系数等特征值说明地表径流。
水文地质学中有时也采用相应的特征值来表征地下径流。
影响因素:径流系数主要受集水区的地形、流域特性因子、平均坡度、地表植被情况及土壤特性等的影响。
径流系数越大则代表降雨较不易被土壤吸收,亦即会增加排水沟渠的负荷。
地区差异:径流系数的地区差异:α值变化于0~1之间,湿润地区α值大,干旱地区α值小。
我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。
根据计算时段的不同,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。
径流系数综合反映流域内自然地理要素对降水─径流关系的影响。
设计取值:根据《建筑给水排水设计规范》GB50015-2009(2009版)中4.9.6规定,给排水设计中雨水设计径流系数取值可按下表(本规范适用于居住小区、公共建筑区、民用建筑给水排水设计,亦适用于工业建筑生活给水排水和厂房屋面雨水排水设计):屋面、地面种类径流系数Ψ屋面0.90~1.00混凝土和沥青路面0.90块石路面0.60级配碎石路面0.45干砖及碎石路面0.40非铺砌路面0.30公园绿地0.15各种汇水面积的综合径流系数应加权平均计算。
根据《室外排水设计规范》GB50014-2006中3.2.2规定,给排水设计中雨水设计径流系数取值可按下表(本规范适用于新建、扩建和改建的城镇、工业区和居住区的永久性的室外排水工程设计):地面种类Ψ各种屋面、混凝土或沥青路面0.85~0.95 大块石铺砌路面或沥青表面处理的碎石0.55~0.65路面级配碎石路面0.40~0.50干砌砖石或碎石路面0.35~0.40非铺砌土路面0.25~0.35公园或绿地0.10~0.20 综合径流系数见下表:区域情况Ψ城市建筑密集区0.60~0.85城市建筑较密集区0.45~0.6城市建筑稀疏区0.20~0.45综合径流系数计算过程如下:(加权计算)综合径流系数=不同下垫面类型(地表径流系数)*不同下垫面的面积/汇水区总面积。
流域地表径流系数的计算方法研究摘要:径流系数是描述降雨和径流关系的重要参数,在雨洪控制利用系统的理论研究、规划、设计计算中应用广泛,在流域或区域的雨水径流总量、径流峰流量、流量过程线以及非点源污染物总量、各设施规模的计算中也起着极其重要的作用。
由于径流系数有着不同的含义 ,其相应的统计计算方法、适用条件、应用目的和取值不尽相同。
而且要获得流域的径流系数通常是比较困难的,在一些特殊流域基本上很难获得能满足要求的径流实测资料,尤其在多年平均径流量的计算中实测数据资料往往相当缺乏,在这样的情况下有必要利用一些特殊的方法去满足工程建设对水文数据的需求。
本文综合了大量的数据以及列举了多个例子,详细地介绍了不同情况下径流系数的推求方法,并在此基础上研究总结提出了过程中发现的一些问题和心得。
关键词:流域径流量降雨量径流系数一引言流域径流系数是指同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数表示。
计算式为:α= R/P,式中α为径流系数, R 为径流深度, P 为降水深度。
α值变化于 0~ 1 之间,湿润地区α值大,干旱地区α值小。
我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。
根据计算时段的不同,可分为瞬时雨量径流系数、雨量径流系数、年径流系数、多年平均径流系数等。
径流系数综合反映流域内自然地理要素对降水─径流关系的影响。
瞬时雨量径流系数是指某一特定的流域或汇水面上,降雨期间随时间变化的径流厚度和降雨厚度之间的瞬时变化关系,是一个动态的变量,这个意义上的径流系数就是瞬时雨量径流系数。
雨量径流系数是指降雨时,在某一汇水面上产生的径流量(厚度)和降雨量(厚度 )的比值,一般用于估计一场降雨在某一汇水区域内单位面积产生的平均径流厚度。
年径流系数和多年平均径流系数反映了流域降雨厚度和径流厚度长时间的关系,是一个累积结果。
在各种径流系数中应用较为广泛的是年径流系数和多年平均径流系数。
径流系数-定义任意时段内径流深度R与同时段内降水深度P之比。
用符号a 表示,即α=R/P,式中:a为径流系数;R为径流深度,mm;P为降水深度mm。
延伸含义:(1)地表径流系数,是指任意时段内的径流深度(或径流总量)与同一时段内的降水深度(或降水总量)的比值。
径流系数说明了降水量转化为径流量的比例,它综合反映了流域内自然地理要素对降水-径流关系的影响。
(2)径流指降落到地表的降水在重力作用下沿地表或地下流动的水流。
可分为地表径流和地下径流,两者具有密切联系,并经常互相转化。
(3)水文学中常用的流量,径流总量,径流深度,径流模数和径流系数等特征值说明地表径流。
水文地质学中有时也采用相应的特征值来表征地下径流。
影响因素:径流系数主要受集水区的地形、流域特性因子、平均坡度、地表植被情况及土壤特性等的影响。
径流系数越大则代表降雨较不易被土壤吸收,亦即会增加排水沟渠的负荷。
地区差异:径流系数的地区差异:α值变化于0~1之间,湿润地区α值大,干旱地区α值小。
我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。
根据计算时段的不同,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。
径流系数综合反映流域内自然地理要素对降水─径流关系的影响。
设计取值:根据《建筑给水排水设计规范》GB50015-2009(2009版)中4.9.6规定,给排水设计中雨水设计径流系数取值可按下表(本规范适用于居住小区、公共建筑区、民用建筑给水排水设计,亦适用于工业建筑生活给水排水和厂房屋面雨水排水设计):屋面、地面种类径流系数Ψ屋面0.90~1.00混凝土和沥青路面0.90块石路面0.60级配碎石路面0.45干砖及碎石路面0.40非铺砌路面0.30公园绿地0.15各种汇水面积的综合径流系数应加权平均计算。
根据《室外排水设计规范》GB50014-2006中3.2.2规定,给排水设计中雨水设计径流系数取值可按下表(本规范适用于新建、扩建和改建的城镇、工业区和居住区的永久性的室外排水工程设计):地面种类Ψ各种屋面、混凝土或沥青路面0.85~0.95 大块石铺砌路面或沥青表面处理的碎石0.55~0.65路面级配碎石路面0.40~0.50干砌砖石或碎石路面0.35~0.40非铺砌土路面0.25~0.35公园或绿地0.10~0.20 综合径流系数见下表:区域情况Ψ城市建筑密集区0.60~0.85城市建筑较密集区0.45~0.6城市建筑稀疏区0.20~0.45综合径流系数计算过程如下:(加权计算)综合径流系数=不同下垫面类型(地表径流系数)*不同下垫面的面积/汇水区总面积。
径流系数1. 什么是径流系数?径流系数是指降雨发生后,降水量中形成地表径流的比例。
在水文学中,它是一个重要的参数,用于描述下雨后的水分分配情况。
径流系数的计算可以帮助我们更好地了解降水在地表径流和入渗之间的分配方式。
2. 径流系数的计算方法径流系数的计算通常基于降雨量和地表径流量之间的关系。
下面是一种常用的计算方法:径流系数 = 地表径流量 / 降雨量需要注意的是,这里的地表径流量是指降雨后在地表流动的水分,不包括入渗到地下的水分。
降雨量则是指雨水降落到地表的总降水量。
3. 径流系数的影响因素径流系数的数值受多种因素的影响:3.1 地表状况地表的不同状况会对径流系数产生影响。
例如,水密性较高的硬质地表往往会导致较高的径流系数,因为它不易渗透水分。
相反,土壤较松散的地表则有较高的入渗能力,导致较低的径流系数。
3.2 降雨强度降雨的强度也会对径流系数产生影响。
当降雨强度较大时,地表往往无法快速吸收水分,从而导致较高的径流系数。
3.3 植被覆盖率植被覆盖率对地表径流的形成有着重要的影响。
具有较高植被覆盖率的地区,植被可以有效地吸收部分降雨水分,减少地表径流的形成,因此具有较低的径流系数。
4. 径流系数的应用径流系数的应用是多方面的。
以下是径流系数在一些领域中的应用案例:4.1 水资源管理通过对降雨数据和径流系数的分析,可以帮助水资源管理部门更好地了解水资源的分配情况,做出合适的供水计划。
径流系数的计算还可以用于水库蓄水量的估算。
4.2 土地利用规划在土地利用规划中,了解不同地区的径流系数可以帮助决策者更好地确定土地的最佳利用方式。
例如,在城市规划中,如果一个区域的径流系数较高,可能需要加强排水系统的建设。
4.3 水文模型研究径流系数是水文模型中的一个重要参数。
通过对径流系数的研究,可以改进水文模型的准确性,提高洪水预报和水资源管理的效果。
5. 总结径流系数是一个描述降水后的水分分配情况的重要参数。
它可以通过地表径流量和降雨量之间的关系来计算。
径流系数-定义任意时段内径流深度R与同时段内降水深度P之比。
用符号a 表示,即α=R/P,式中:a为径流系数;R为径流深度,mm;P为降水深度mm。
延伸含义:(1)地表径流系数,是指任意时段内的径流深度(或径流总量)与同一时段内的降水深度(或降水总量)的比值。
径流系数说明了降水量转化为径流量的比例,它综合反映了流域内自然地理要素对降水-径流关系的影响。
(2)径流指降落到地表的降水在重力作用下沿地表或地下流动的水流。
可分为地表径流和地下径流,两者具有密切联系,并经常互相转化。
(3)水文学中常用的流量,径流总量,径流深度,径流模数和径流系数等特征值说明地表径流。
水文地质学中有时也采用相应的特征值来表征地下径流。
影响因素:径流系数主要受集水区的地形、流域特性因子、平均坡度、地表植被情况及土壤特性等的影响。
径流系数越大则代表降雨较不易被土壤吸收,亦即会增加排水沟渠的负荷。
地区差异:径流系数的地区差异:α值变化于0~1之间,湿润地区α值大,干旱地区α值小。
我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。
根据计算时段的不同,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。
径流系数综合反映流域内自然地理要素对降水─径流关系的影响。
设计取值:根据《建筑给水排水设计规范》GB50015-2009(2009版)中4.9.6规定,给排水设计中雨水设计径流系数取值可按下表(本规范适用于居住小区、公共建筑区、民用建筑给水排水设计,亦适用于工业建筑生活给水排水和厂房屋面雨水排水设计):各种汇水面积的综合径流系数应加权平均计算。
根据《室外排水设计规范》GB50014-2006中3.2.2规定,给排水设计中雨水设计径流系数取值可按下表(本规范适用于新建、扩建和改建的城镇、工业区和居住区的永久性的室外排水工程设计):综合径流系数见下表:综合径流系数计算过程如下:(加权计算)综合径流系数=不同下垫面类型(地表径流系数)*不同下垫面的面积/汇水区总面积。
(2)地表径流污染物
本产业转移园规划区内已开发的区域为华鸿铜业,面积为20公顷,未开发面积为407.57公顷。
根据历史气象资料统计,园区所在区域多年平均降雨量为22l6mm ,径流系数按《环境影响评价技术导则—地表水环境》(HJ/T2.3-93)中表15的推荐值,硬化地面(道路路面、人工建筑物屋项等)的径流系数可取值0.80,其它绿化地面(草地、植被地表等)的径流系数可取0.18。
地表径流量估算公式如下:
A Q C Q m ⨯⨯=-310 (3-1)
式中:Q m ——降雨产生的路面水量,m 3/a ;
C ——集水区径流系数;
Q ——集水区多年平均降雨量,mm ; A ——集水区地表面积,m 2。
通过地表径流量估算公式计算,可得目前园区地表年径流量,见表3-18。
表3-18 不同类型区域地表径流量
对于地表径流中水污染物浓度参数选取,可类比《面污染源管理与控制手册》(科学普及出版社广州分社),具体取值见表3-19。
一般来说,面源污水大部分的污染物出现在降雨前15分钟初期的雨水中,假定降雨集中在一年中的150天,每天连续6小时的降雨,6小时降雨的前15分钟为初期降雨,计算得出一年中的初期降雨总径流量为8.16万m 3/a 。
表3-19 不同类型区域地表径流中水污染物浓度参数 单位:mg/L
对于园区已建成区水中污染物的浓度可参考城市暴雨水,未开发区域可参考农业耕地雨水径流中水污染物的浓度,结合表3-19,计算本工业园区地表径流量,
见表3-20。
表3-20 工业园现状地表径流中主要水污染物排放负荷单位:t/a。
附录A地表径流量计算方法A.1 地表径流量的计算可采用地表径流系数法来计算地表径流量。
地表系数法计算简单,参数少,参考文献较多,实用性较强。
地表径流量由降雨量乘以地表径流系数获得,计算公式如下:QF PREα=⨯…………………………(A.1)式中:QF—地表径流量,单位为毫米(mm);PRE—降水量,单位为毫米(mm);α—地表径流系数。
地表径流系数α是地表径流量与降雨量的比值,可由径流小区观测的降水与地表径流数据计算获得,在一定程度上反应生态系统水源涵养的能力;各类生态系统地表径流系数可参考表A.1。
表A.1 各生态系统类型地表径流系数α参考值附 录 B(资料性附录)实际蒸散量计算方法实际蒸散量AET 计算公式(Zhang et al.,2001)如下:AET =(1+w×E 0PRE 1+w×E 0PRE +PRE E 0)×PRE …………………(B.1)式中: AET —实际蒸散量,单位为毫米(mm );w —土地利用类型的用水系数(参考值:森林2,灌丛1.5,草地0.5,农田0.5,人工表面、裸地和荒漠为0);PRE —降水量,单位为毫米(mm );E 0—潜在蒸散量,单位为毫米(mm ),可按照FAO Penman-Monteith 方法,由公式(B.2~B.6)计算:E 0=0.408×∆×(R n −G )+γ×900T+273×μ×(e s −e a )∆+γ×(1+0.34×μ)…………(B.2)()217.2740980.6108exp 237.3237.3T T T ⎡⎤⎛⎫⨯⨯⎢⎥ ⎪+⎝⎭⎣⎦∆=+…………(B.3) 1-10.07(-)i i G T T +=⨯ …………(B.4)=30.66510p γ-⨯⨯…………(B.5)= 4.78ln (67.8-5.42)h h μμ⨯⨯…………(B.6) 式中:∆—饱和水汽压-温度曲线斜率,单位为千帕每摄氏度(kPa/℃);R n —表面净辐射,计算方法见GB/T20481-2017,单位为兆焦每平方米(MJ/m 2); G —当月土壤热通量,单位为兆焦每平方米(MJ/m 2);T i+1—后一个月平均气温,单位为摄氏度(℃);T i-1—前一个月平均气温,单位为摄氏度(℃);γ—干湿表常数,单位为千帕每摄氏度(kPa/℃);p —气压,单位为千帕(kPa );T —月平均气温,单位为摄氏度(℃);μ—2m高处的风速,单位为米每秒(m/s);h—高度,单位为米(m);μ—h处的风速,单位为米每秒(m/s);hEs—饱和水汽压,单位为千帕(kPa);Ea—实际水汽压,单位为千帕(kPa)。
地表径流系数
地表径流系数(Runoff Coefficient)是指暴雨下的水量在降落时可以排出地表的一部分,而这部分排出的水量占总降落水量的比例就是地表径流系数。
地表径流系数是与暴雨强度、地表条件、植物覆盖和地表坡度等有关的水文学参数,用于评估暴雨作用下的地表径流量。
地表径流系数可以用来判断暴雨对地表的影响,并且可以为水利工程设计提供参考。
地表径流系数由地表结构(如土壤结构、植物覆盖、地表坡度等)、暴雨强度(如暴雨的时间、暴雨的量等)、降雨下的地表情况(如降雨量、渗透量等)等因素所决定的,也就是说地表径流系数是一个复杂的水文参数,受不同的因素的影响大小有很大的差别。
地表径流系数的值通常介于0.0~1.0之间,而有时也可能超过1.0。
当暴雨量很大时,地表径流系数可能会超过1.0,这是因为地表上的水分子受暴雨冲击而被溢出,使得总排出量大于总降落量。
地表径流系数的值越低,地表上的水分子排出的量就越低,地表的湿度也就越高,这就意味着暴雨强度越大,地表的湿度越高,地表径流系数也就越小。
地表径流系数的值受到多种因素的影响,如地表条件、植物覆盖和地表坡度等,因此该参数的测定是非常复杂的。
首先,要确定地表的结构,包括土壤类型、植物覆盖率、地表坡度等,然后确定暴雨的强度,最后根据实际测量数据计算出地表径流系数。
此外,地表径流系数还可以通过模拟方法来测定。
模拟方法是利用水文学模型,通过结合不同的暴雨条件和地表条件,模拟出不同地表径流系数的参数,从而来推测地表径流系数。
总之,地表径流系数是一个复杂的水文参数,受不同的因素的影响大小有很大的差别。
它可以用来判断暴雨对地表的影响,也可以为水利工程设计提供参考。