外圆车削过程中的零件变形分析
- 格式:doc
- 大小:100.72 KB
- 文档页数:11
轴类零件外圆表面的主要加工方法轴类零件在机械里可太常见啦,就像人体的骨头一样重要呢。
那它外圆表面的加工方法有不少哦。
车削是一种很常用的方法。
就像是用一把超级锋利的刀在轴上削啊削。
车床上的刀具可听话啦,按照设定好的轨迹,把轴的外圆表面一层一层地削掉多余的部分,让外圆变得光滑又精准。
这就好比是给轴做一个精细的瘦身运动,把那些不整齐的部分都去掉,让它拥有完美的曲线。
磨削也是个厉害的家伙。
如果说车削是初步塑造,那磨削就是精细打磨啦。
磨削的工具就像一个超级细心的美容师,把车削后可能还存在的小瑕疵都磨掉。
它能让外圆表面变得像镜子一样光亮,摸起来滑溜溜的。
这就像是给轴穿上了一件超级光滑的外衣,不仅好看,而且在和其他零件配合的时候也会更加顺畅呢。
还有一种是滚压加工。
这个加工方法就有点像给轴做按摩啦。
通过滚压工具在轴的外圆表面滚来滚去,让表面的金属发生塑性变形。
这样做可神奇了,不仅能提高外圆表面的硬度,还能让它的粗糙度变得更小。
就好像是把轴的外圆表面变得更加紧实有力量,就像给它做了一个强身健体的训练呢。
在实际的加工过程中呀,选择哪种方法或者哪几种方法组合,那可得好好考虑呢。
要根据轴的材料、精度要求、生产批量这些因素来决定。
如果是精度要求不是特别高的小批量生产,车削可能就够用啦。
但要是高精度、大批量生产的轴,那磨削可能就必不可少了。
滚压加工呢,在一些对表面硬度和耐磨性有要求的轴类零件加工中就会大显身手。
总之呢,这些加工方法就像不同的魔法,让轴类零件的外圆表面变得符合各种需求,在机械的世界里发挥它们的重要作用哦。
浅析车削外圆产生波纹的原因和消除方法澄城县电厂习建斌用车床车削外圆时,加工表面常会产生一些不明显的波纹,影响工件的精度。
对造成波纹的原因及防治措施,进行如下分析。
一、产生波纹的主要原因外圆表面按一定规律均匀产生的波纹,轻微时肉眼不易发现,如涂上红丹粉用砂布背面打磨或用细油石轻轻推磨即清晰可辨。
严重时,手摸有明显不平感。
如波纹的间距过大,恰与纵向进给机构齿条的周节相等,原因在于进给系统故障,齿条与小齿轮啮合不良,导致溜板在纵向移动中定期的间歇性窜动。
若波纹间距于床身长丝杠的螺距相等且倾斜,原因可能是丝杠、齿条与小齿轮啮合出现下列三种情况之一:1.丝杠于对合螺母相摩擦;2.丝杠与溜板箱体孔相摩擦;3.齿条与小齿轮两齿面在一端啮合。
波纹的间距较小,恰与光杠每转一周的溜板一端距离相等,而且此种波纹常表现为越靠近明显,这说明出现波纹的原因是光杠或同光杠保持相等传到关系的进给处齿轮,传动轴或有关零件有一定程度的损伤。
可能是下列四种情况之一:1.光杠走刀箱轴接间隙大,有松动;2.光杠走刀箱转动轴套、轴承有损伤;3.走刀传动齿轮磨损,销、轴窜动;4.光杠、丝杠、操纵杠与溜板箱组装精度差。
二、波纹消除方法与预防措施1.当齿条与小齿轮啮合不在同一直线上时,应调整溜板的安装位置,用涂色法检验接触精度,使齿条与小齿轮两侧均匀啮合,即可消除波纹。
2.当齿条与小齿轮的齿顶与齿根为线接触时,往往是齿条与小齿轮的制造精度低造成,应设法更换齿条齿轮,即可消除波纹。
3.当齿条与小齿轮在一端啮合而出现斜向波纹时,要清除齿面杂物,检验接触精度,刮大溜板与溜板箱的接触面,调整齿条与小齿轮齿向啮合间隙,使接触状况改善,即可消除波纹。
4.当长丝杠与溜板箱孔或对合螺母摩擦而产生斜波纹时,要检验丝杠,恢复丝杠回转中心与对合螺母的同轴度以及与床面导轨的等距性,修复或更换磨损的丝杠托架或衬套。
5.当光杠与溜板箱进给机构传递不平稳时,应检验光杠,修复或更换箱内的进给传动件。
零件装夹变形分析与解决措施零件变形主要表现在装夹变形;切削力、切削热使零件产生变形;加工方法和技巧不当使零件产生变形;材料应力释放零件原因导致的变形等。
如果在生产过程中工件产生变形,那么肯定就会影响工件的形位精度,尺寸精度以及表面粗糙度,所以提高易变形零件加工质量和加工效率的关键就是装夹方法以及车削,铣削时的加工方法和技巧。
标签:装夹方法;刀具选择;切削用量1 为什么会产生零件装夹变形我们在加工生产中会遇到各种各样的问题,譬如在加工薄壁易变型零件时,就必须根据其不同的特点,找出薄弱环节,选用不同的工艺方法和夹紧方法来保证加工要求。
很多时候我们要具体问题具体分析,找到切实可行的办法来应对遇到的实际问题。
1.1 工件装夹不当为什么会产生变形?在我们生产实际操作中,如果我们采用三爪卡盘夹紧薄壁外圆,就会由于夹紧面积过小,夹紧力不均匀分布,那么拆卸以后,被卡爪夹紧部分就可能因弹性变形而涨大,最终导致零件出现多角形变化。
1.2 相对位置调整时候偏差,产生壁厚不均的现象经过多年的工作实践,我发现由于夹具、刀具,工件和机床主轴旋转中心的位置调整相对不准确,导致工件几何形状变化和壁厚不均匀现象。
我们遇见很多薄壁零件对于均匀性要求非常高,但对其尺寸精度要求却不高这种现象。
此时工件如果采用常规刚性定位,就会误差非常大,壁的厚度很容易超差。
这样工件在装夹过程中,假设我们没有根据实际特性,也就是工件刚度较低(薄壁件),或者不注意夹紧力的方向和施力点,那么支撑点和压紧点不能够重合就形成力矩效应,最终会引起零件变形。
1.3 为什么要强调零件壁厚差重要性有一部分薄壁零件对均匀性要求非常高,而对其尺寸精度要求却不高。
这种工件和彩刚性定位,就会误差很大,壁厚非常容易超差。
在装夹过程中的工件,假设刚度较低(薄壁件)或者夹紧力方向,施力点选择不恰当,支撑点与压紧点不重合必然形成力矩效应将会引起零件变形。
1.4 选用什么样的刀具至关重要我们选择什么样的刀具,会直接影响零件精度以及表面粗糙度。
薄壁零件加工中变形振动分析和消振措施摘要:车削过程中,工艺系统由于受到各种力的作用,工件和刀具之间常会发生相对振动。
它不仅使加工表面产生波纹,严重恶化加工精度和表面质量。
特别是最后一刀精车,当切削速度提高,常常会发生刺耳的响声,使车削无法继续加工下去。
所以,在加工薄壁零件中,不仅要考虑装夹中工件受力变形的问题,还要注意解决加工中振动问题关键词:薄壁零件加工变形振动措施车削薄壁零件在加工中很容易出现问题,如果我们在加工中善于总结经验,就能在加工中找出它的共性、个性和矛盾突出点。
变被动为主动。
从而才能够加工出合格的产品。
要想解决薄壁零件加工中出现的问题,我想从以下几个方面来加以分析。
一、薄壁零件装夹分析1、薄壁零件的加工特点薄壁零件以日益广泛地应用个工业部门生产机器零件中,车削薄壁零件的关键是变形、振动问题。
工件产生变形振动的原因大多是由于切削力、夹紧力、定位误差和弹性变形。
其中影响最大的是切削力和夹紧力。
我们在实践过程中减小切削力和切削热主要采取方法是:合理地选择切削用量、合理地选择刀具几何角度、减小夹紧力引起的变形,主要改变和改善夹紧力对零件的作用。
2、车削薄壁零件时采用的装夹方式以上讲的薄壁零件加工特点是车削中变形和振动问题。
由于薄壁零件的刚性差,车削中容易变形。
所以在装夹时要考虑到夹紧力的方向和着力点。
夹紧力的方向应选择在有利于减小夹紧力的部位。
如薄壁零件为套类,则可将径向夹紧力改为轴向夹紧力;薄壁零件为盘类,则可该轴向夹紧力为径向夹紧力;当薄壁零件径向和轴向刚性都很差时,保证夹紧力方向与切削力方向一致,就能使较小夹紧力起到较大夹紧力的作用。
还要夹紧力着力点应落在支承点正对面和切削力部位的附近以减小变形振动。
二、减小薄壁套装夹中变形的措施1、合理确定夹紧力的大小、方向、作用点。
粗、精车加工分开,当粗精车加工使用同一夹具时,粗加工余量大,切削力大。
因而需要较大的夹紧力。
而精车时余量小,切削力小,所需要的夹紧力也就小。
如何分析产生变形的原因对于机械加工来说,差不多的理念是致命的,一个看起来差不多的产品,如果再和其他组合使用,缺陷就会继续放大,导致工厂的加工品质一直达不到高端精密的制造要求。
我们都知道加工中心的工件变形问题比较难解决,因此首先必须分析产生变形的原因,然后才能采取应对的措施。
一、工件的材质和结构影响形变变形量的大小与形状复杂程度、长宽比和壁厚大小成正比,与材质的刚性和稳定性成正比。
所以在设计零件时尽可能的减小这些因素对工件变形的影响。
尤其在大型零件的结构上更应该做到结构合理。
在加工前也要对毛坯硬度、疏松等缺陷进行严格控制,保证毛坯质量,减少其带来的工件变形。
二、工件装夹时造成的变形首先夹具使用需要选择正确的夹紧点,根据夹紧点位置选择适当夹紧力。
尽可能使夹紧点和支撑点一致,使夹紧力作用在支撑上,夹紧点应尽可能靠近加工面,且选择受力不易引起夹紧变形的位置。
(来源夹具侠)当工件上有几个方向的夹紧力作用时,要考虑夹紧力的先后顺序。
对于使工件与支撑接触夹紧力应先作用,且不易太大,对于平衡切削力的主要夹紧力,应作用在后。
增大工件与夹具的接触面积或采用轴向夹紧力。
增加零件的刚性,是解决发生夹紧变形的有效办法,但由于薄壁类零件的形状和结构的特点,导致其具有较低的刚性。
这样在装夹施力的作用下,就会产生变形。
增大工件与夹具的接触面积,可有效降低工件件装夹时的变形。
如在铣削加工薄壁件时,大量使用弹性压板,目的就是增加接触零件的受力面积;在车削薄壁套的内径及外圆时,无论是采用简单的开口过渡环,还是使用弹性芯轴、整弧卡爪等,均采用的是增大工件装夹时的接触面积。
这种方法有利于承载夹紧力,从而避免零件的变形。
采用轴向夹紧力,在生产中也被广泛使用。
设计制作专用夹具可使夹紧力作用在端面上,可以解决由于工件壁薄,刚性较差,导致的工件弯曲变形。
三、工件加工时造成的变形工件在切削过程中由于受到切削力的作用,产生向着受力方向的弹性形变,就是我们常说的让刀现象。
车削外圆的常见问题及解决方法车削是机械加工中一种常见的加工方式,它包括车削内圆、车削外圆、车削孔等多种加工形式。
其中,车削外圆是较为常见的一种。
在进行车削外圆的加工时,经常会出现一些问题或者难点,这些问题将影响到整个加工过程的质量和效率。
因此,本文将分析并总结车削外圆加工中的常见问题以及对应的解决方法。
常见问题1. 车削外圆圆度不精确车削外圆圆度不精确是车削加工中最为常见的问题之一。
在进行车削外圆加工时,由于车刀和工件夹紧不均匀或夹具靠板磨损等原因,会导致车削出的外圆不圆或者圆度不精确。
此外,由于车床本身及刀具刃口磨损或变形等原因也会导致圆度不精确。
2. 车削外圆表面粗糙车削外圆表面粗糙是车削外圆加工中常见的质量问题。
外圆表面的粗糙度受到许多因素的影响,例如车刀磨损、刀具倾角不合适、工件硬度等。
3. 车削外圆尺寸不正确车削外圆加工不仅需要满足圆度、表面粗糙度的要求,还要符合指定的尺寸要求。
但是,在实际加工中,经常会出现尺寸不正确的情况。
这主要和工件夹紧方式不正确、工件变形、车床导轨磨损等因素有关。
4. 车削外圆阴影部分过深车削外圆阴影部分过深是车削外圆加工中的一种瑕疵问题。
阴影部分是指车削后工件表面周围与车刀接触不良的部分,此部分与其它表面形成的交界处,如不加以处理,将对工件的美观度产生影响。
当工件硬度过高、刀具尖角过大、过渡角不合适等原因时,都很容易导致阴影部分过深。
解决方法1. 车削外圆圆度不精确的解决方法要解决车削外圆圆度不精确的问题,可以采用以下的方法:•对车刀的刀具倾角进行调整,保证车刀的刀尖与工件的中心线处于同一平面上。
•对车床的主轴及夹紧机构进行校准和调整,确保夹紧力均匀、准确。
•当工件过硬或者过长时,可以采用多次轮切或顺切的方法进行加工。
2. 车削外圆表面粗糙的解决方法要解决车削外圆表面粗糙的问题,可以采用以下的方法:•适当调整车刀的进给量,减小车削表面粗糙度。
•选用合适的刀具材料,提高切削质量,减小表面残留的毛刺。
车削加工切屑形状分析及合理断屑方法摘要:车削加工过程中产生连续不断的带状切屑,不仅容易划伤工件的加工表面、损坏刀刃,严重时还会影响安全生产。
本文探讨通过采取一定的工艺方法来改变切削加工的条件,从而改变切屑种类实现有效断屑的方法。
关键词:车削加工?切削形状?分析?断屑?方法一、切屑形状分析在切削时由于材料塑性变形程度的不同,就会产生不同形状的切屑。
加工塑性材料时,主要形成带状切屑、节状切屑或粒状切屑;加工脆性材料时,一般形成崩碎状切屑。
带状切屑是一种连续不断的、底面光滑且背面呈毛刺状的切屑,当采用具有较大前角的刀具以较高的切削速度加工塑性金属材料时,易产生这种切屑。
它是切削层未充分变形的产物。
在产生带状切屑时,由于切削过程比较平稳,工件已加工表面粗糙度较小,使切屑不易折断,这样往往会引起缠绕,因此拉毛工件,甚至影响车削。
节状切屑是一种底面光滑、背面有明显裂纹且裂纹较深的切屑。
当采用具有减小前角的刀具,以较低的切削速度加工塑性金属材料时,易产生这种切屑。
它是切屑层较为充分变形的产物,已达到剪裂程度。
在产生节状切屑时,切屑工作不平稳,工件已加工表面粗糙度较大。
粒状切屑是一种均匀的颗粒状切屑。
当使用具有较小前角的刀具,以很低的切削速度加工塑性金属材料时,易产生这种切屑。
它是切削层充分变形的产物,其材料已产生剪切破坏,已使切屑沿厚度断裂。
在产生粒状切屑时,切削工作不平稳,工件已加工表面粗糙度大。
崩碎状切屑是一种不规则的细粒状切屑。
它是在切削脆性材料时,切削层弹性变形,几乎不经过塑性变形阶段,经突然崩裂而产生的切屑。
在产生崩碎状切屑时,切削工作不稳定,刀刃受到较大的冲击力,工件已加工表面粗糙不平。
切屑的形状随工件材料和切削条件的不同而不同。
因此,在加工过程中,我们可以通过观察切屑的形状来判断切屑条件是否合适,也可以通过转化切削条件改变切屑的形状,改进加工方法。
二、断屑方法切屑断与不断的根本原因在于切屑形成过程中材料的变形和所受应力的大小。
外圆车削过程中的零件变形分析1 绪论随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。
人们对提高供水质量的要求越来越高,另外人们的节能意识及对运行的可靠性的要求越来越强。
采用变频器及PLC技术实现的无塔恒压供水系统,不仅能提高供水质量,而且在节约能源和运行可靠性具有较好的改善。
其中,采用变频调速的主要目的是通过调速来恒定用水管道的压力以达到节能的目的,恒压供水则是为了满足用户对流量的要求。
变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。
然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。
本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。
应用PLC技术是为了实现系统的软启动,减少手动操作或抚慰操作,同时替代部分继电器减少机械触点的故障,增强可靠性。
1.1本课题设计的背景和内容至今数控技术的发展是通过国家的技术支持,成功引进数控技术,国家不但引进数控技术,而且还组织相关科研人员进行技术攻关,至此,我国的数控技术和数控相关行业取得相当大的成绩,对后续的发展提供了扎实的基础,近十年,我国的数控机床的产量和需求量走向世界的前列,目前可以说无论在一些大型企业或者私人小工厂,都可以看见数控机床的身影,从事这方面的技术人员也越来越多,国家对于数控相关的职业教育也更重视。
随着越来越多的大大小小工厂采用数控机床来加工制造产品,因此可以说对加工的工件的尺寸精度的要求越来越高,随之显露的问题也越来越多,这是一个最为基本亦最为重要的问题。
车削加工的范围很广,包括模具制造、汽车制造、机械制造,可以说车削加工与我们的生活息息相关,紧密联系。
其实际操作基本的内容很多,但我个人认为最为基本的还是车削外圆,外圆加工精度关乎于一个轴类零件是否变形报废、加工精度是否达标等情况,可以说在车削外圆时零件变形是一个车床操作者的基本功体现之处又是一个能不能帮工厂做出贡献保持零件的精度稳定生产,把外圆车削成合格品是一门值得研究的一门学科,是车工、技术人员和科技人员在长期车削实践中不断总结、长期积累、逐步升华的专业理论知识和实操经验!车削外圆在机械车削加工应用中是不可缺失的重要组成环节,对于提高企业经济效益具有重要作用。
综上所述,车削外圆零件过程中零件是否变形,在车削加工中的应用的研究是很有现实意义的,它不仅体现了车削加工的优势和便利,而且有利于降低生产成本。
2 车削外圆的基本原理2.1 车削外圆的论述所谓车削,就是利用工件的所谓车削,就是在车床上利用工件的旋转运动和刀具的的直线运动(或曲线运动)来改变毛坯棒料的形状和尺寸,使毛坯材料加工成符合图样要求的工件。
可以理所当然地说车削是机械制造业中最基本最常用的加工方法。
车削外圆工件,一般分粗车和精车。
粗车的目的是切除加工表面的加工余量。
粗车时,对加工表面没有严格的要求,只需要留有一定的半精车余量(1~2mm)和精车余量(0.1-0.5mm)即可。
因此,粗车时主要考虑的是提高生产率和保证车刀一定的寿命。
在车床动力许可的条件下,粗车时采用的切削深度(通常是题词走刀切除应留余量之外所剩余的所有余量)和大的进给量,而切削速度不是很高。
由于粗车时切削力很大,所以工件装夹必须牢固可靠。
粗车的另一个作用是可以及时发现毛坯材料内部的缺陷,如渣、砂眼裂纹等,也能消除毛坯工件内部的残余应力和防止热变形等。
精车是指车削的末道加工,加工余量较小,主要考虑的是保证加工精度和加工表面质量。
精车时切削力较小,车刀磨损不突出,一般将车刀磨得较锋利,选择较高的切削速度,而进给两选得小些,以减小加工表面粗糙度Ra值。
粗车外圆时应使用粗车刀,要求有足够的强度,能一次进给车去较多的余量;前角和后角小些,增加强度,但过小会增加切削力;主偏角不宜过小,否则会振动,采用75度最好;刃倾角取0-3度,主切削刃上磨倒棱br1=(0.5-0.8)ƒ。
;刀尖处磨直线型过渡刃,偏角=1/2κr,长度=0.5-2mm ;应磨有断屑槽,断屑槽的尺寸主要取决于背吃刀量和进给量。
精车外圆时应使用精车刀,要求必须刀刃锋利,切削刃平直光洁,必要时可磨修光刃,切屑排向工件的待加工表面;前角和后角大些,使其锋利,减少摩擦;副偏角较小,可磨修光刃,长度=(1.2-1.5)ƒ。
;刃倾角取正值,一般=3-8度;刀刃应磨有断屑槽。
切削三要素通常指的是切削速度、进给量和背吃刀量(切削深度)。
这三要素在外圆车削时起了重要的作用。
切削速度是与工艺系统的切削热成正比的,切削速度高了工件就会受到切削热的影响产生热变形,如果工件局部受热,会产生形状误差,如果工件整体受热,工件会产生尺寸误差。
刀具受到切削热的影响,刀具硬度会下降,从而失去切削能力。
机床受到切削热的影响,机床会出现热变形,几何精度会下降,从而导致加工精度下降。
切削速度低了工件表面质量会下降,在中低速的加工时工件表面会产生积屑瘤和鳞刺,当然加工效率也会下降。
一般精加工时提倡高速切削。
进给量的提高,加工效率也提高了。
但工件表面留下的残留面积也增大了,影响了表面粗糙度值。
一般粗加工时进给量可提高些,精加工时要减少进给量。
背吃刀量的提高,加工效率也提高了。
但切削力也增加了。
工件受到切削力的影响会产生变形,特别是加工细长轴时,切削力的影响变形尤为明显。
常见外圆车削车刀:90°外圆车刀俗称偏刀,其主偏角кr=90°。
按车削时进给方向不同分成右偏刀和左偏刀两种。
右偏刀的主削刃在刀体左侧,一般用来车削工件的外圆、端面和右向台阶。
左偏刀的主削刃在刀体右侧,一般用来车削工件的外圆和左向台阶,也适用于车削直径较大而长度较短的工件的端面。
75°外圆车刀的刀尖角εr>90°,刀头强度高,较耐用,因此适用于粗车轴类工件的外圆和强力切削铸件、锻件等余量较大的工件。
图1 外圆车削2.2 车削外圆的基本操作首先做好车削前的准备工作要做好,包括加工设备的检查和车刀的选择,前期准备,首先根据图纸检查工件的加工余量,确定纵向切削进给的次数;检查毛坯的尺寸是否符合图纸要求,并划线确定车削的长度;启动车床,使卡盘带动工件旋转,左手摇动大滑板手轮,右手摇动中滑板手柄,使刀尖接近工件外圆表面并以此作为切削深度的起点位置俗称对刀。
对完刀后,反向摇动大滑板手轮,中滑板手柄位置不动,使车刀向右离开工件(称之为退刀);试车试量,摇动中滑板手轮使车刀做横向进给运动,即切削深度,车刀然后做纵向进给运动2mm左右时,纵向退刀,停车进行测量,如果测得的尺寸符合要求,可继续车削,反之尺寸如果大,可加大切削深度,若尺寸偏小,则应减小切削深度。
试车试量后工件的切削深度调整合适,可选择自动进给或手动纵向进给。
当车到一定位置时,退出车刀,停车进行测量,直到被加工的外圆柱表面达到尺寸要求为止;倒角自检外圆各部尺寸。
必须要熟悉刻度盘的读数原理,因为在机床上车削工件时,为了使操作更准确和快捷,必须掌握刻度盘的使用方法,即切削深度的控制方法。
通常情况下,我们依据中滑板或小滑板上的刻度盘来作为进刀的参数。
机床上中滑板的刻度盘安装在横向进给丝杠的一端,当用手摇动手柄横向进给丝杠旋转一周时,刻度盘也随之转动一周,这时固定在中滑板上的螺母就带动中滑板和刀架以及车刀一起移动一个螺距。
机床小滑板刻度原理与中滑板的刻度盘相同。
其主要是用来保证工件长度方向的切除量。
摇动中滑板手柄时,由于中滑板丝杆与螺母之间的配合有间隙存在,滑板与螺母之间会产生间隙,即空行程(也就是丝杆带动刻度盘已转动,而刀架并未跟着移动)。
所以使用刻度盘上的尺寸车削工件时,要反向转动适当角度,先消除丝杠与螺母的配合间隙,然后再慢慢转动刻度盘手柄到所需的格数。
在横向进给尺寸时,如果中滑板刻度盘不小心多转过了几格,不能只简单地退回多进的格数,而是必须向相反方向退1/2圈以上消除全部空行程后,再进到所需要的刻度位置。
由于加工的工件是旋转的,用中滑板刻度盘横向进刀所指的切削深度(也就是车刀切入工件的深度),其直径上被切除的金属层是切削深度的两倍(如图2所示)。
图2 小滑板进因此,当被加工工件外圆还留一定的加工余量时,中滑板的切削深度不能超过所剩加工余量的1/2。
例如被加工工件直径尺寸留1mm的精车余量,我们为了去除这1mm 的余量,利用中滑板横向进刀所进的最大切削深度为0.5mm。
3 车削外圆零件过程中变形分析3.1弯曲变形分析由于加工零件弯曲变形的影响,在车削细长轴类零件时,车削厚度随车削位置发生变化,造成最终的成型零件呈现两头小中间鼓起的木桶状,影响零件的精度。
偏差大小与毛坯零件的弯曲刚度有关,产生弯曲的切削力与切削参数有关,本文从切削参数入手,从理论上预测了车削力和车削轴类零件的加工精度,并与置氢钛合金零件的车削数据比较,两者具有较好的一致性。
3.2车削加工分析车削加工就是在车床上,利用工件的旋转运动和刀具的直线运动或曲线运动来改变毛坯的形状和尺寸,把它加工成符合图纸的要求。
车削加工是在车床上利用工件相对于刀具旋转对工件进行切削加工的方法。
车削加工的切削能主要由工件而不是刀具提供。
车削是最基本、最常见的切削加工方法,在生产中占有十分重要的地位。
车削适于加工回转表面,大部分具有回转表面的工件都可以用车削方法加工,如内外圆柱面、内外圆锥面、端面、沟槽、螺纹和回转成形面等,所用刀具主要是车刀。
在各类金属切削机床中,车床是应用最广泛的一类,约占机床总数的50%。
车床既可用车刀对工件进行车削加工,又可用钻头、铰刀、丝锥和滚花刀进行钻孔、铰孔、攻螺纹和滚花等操作。
按工艺特点、布局形式和结构特性等的不同,车床可以分为卧式车床、落地车床、立式车床、转塔车床以及仿形车床等,其中大部分为卧式车床。
3.3加工精度分析加工精度主要用于生产产品程度,加工精度与加工误差都是评价加工表面几何参数的术语。
加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。
加工精度高,就是加工误差小,反之亦然。
公差等级从IT01,IT0,IT1,IT2,IT3至IT18一共有20个,其中IT01表示的话该零件加工精度最高的,IT18表示的话该零件加工精度是最低的,一般上IT7、IT8是加工精度中等级别。
任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。
机器的质量取决于零件的加工质量和机器的装配质量,零件加工质量包含零件加工精度和表面质量两大部分。