中位数与众数[上学期]--北师大版
- 格式:pdf
- 大小:1006.01 KB
- 文档页数:9
北师大版数学八年级上册《中位数与众数》教学设计1一. 教材分析北师大版数学八年级上册《中位数与众数》是学生在学习了平均数、方差等统计量的基础上,进一步研究数据的集中趋势和离散程度。
中位数与众数是描述数据集中趋势的两种统计量,它们能够反映出数据的一些不同特点。
本节课的内容对于学生来说是比较抽象的,需要通过具体的数据和实例来帮助学生理解和掌握。
二. 学情分析学生在学习本节课之前,已经掌握了平均数的计算和意义,也有一定的数据分析基础。
但是,对于中位数与众数的计算方法和意义,可能还不够清楚。
因此,在教学过程中,需要通过具体的数据和实例,帮助学生理解和掌握中位数与众数的概念和方法。
三. 教学目标1.理解中位数与众数的含义,掌握求一组数据的中位数与众数的方法。
2.能够运用中位数与众数解决实际问题,提高数据分析的能力。
3.培养学生的合作意识和团队精神,提高学生的数学思维能力。
四. 教学重难点1.教学重点:中位数与众数的含义,求一组数据的中位数与众数的方法。
2.教学难点:理解中位数与众数在实际问题中的应用,能够灵活运用。
五. 教学方法采用问题驱动的教学方法,通过具体的数据和实例,引导学生探究中位数与众数的含义和求法。
同时,运用小组合作的学习方式,培养学生的团队精神和合作能力。
六. 教学准备1.教学PPT,包括中位数与众数的定义、求法、实例等。
2.数据材料,用于引导学生探究中位数与众数。
3.练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个具体的数据实例,引导学生思考:一组数据的集中趋势可以用哪些统计量来描述?进而引出中位数与众数的概念。
2.呈现(10分钟)讲解中位数与众数的定义,并通过PPT展示具体的例子,让学生直观地感受中位数与众数的特点。
3.操练(10分钟)让学生分组讨论,每组选取一组数据,计算其中位数与众数,并解释其含义。
4.巩固(10分钟)让学生独立完成练习题,巩固所学知识。
教师巡回指导,解答学生疑问。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第6单元中位数与众数一、选择题1.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.92.已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4B.中位数是5,平均数是5C.中位数是5,众数是4D.中位数是4.5,平均数是53.孔晓东同学在“低碳黄冈绿色未来”演讲比赛中,6位评委给他的打分如下表:评委代号ⅠⅡⅢⅣⅤⅥ评分859080959090则他得分的中位数为()A.95B.90C.85D.804.中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。
第六章数据的分析2中位数与众数教学目标教学反思1.掌握中位数、众数的概念;2.能求出一组数据的中位数和众数;3.在具体情境中体会平均数、中位数和众数三者的差别.教学重难点重点:中位数、众数的概念及求法;难点:平均数、中位数和众数三者的差别.教学过程情景导入在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的.下面请看一例:某次数学考试,小英得了78分,全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分.小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”.小英对妈妈说的情况属实吗?你对此有何看法?引导学生展开讨论,作出评判:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的.原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差.引出中位数与众数.新课讲授1.某公司员工的月工资如下:经理说:我公司员工收入很高,月平均工资为2 700元.职员C说:我的工资是1 900元,在公司算中等收入.教学反思职员D说:我们好几个人工资都是1 800元.一位应聘者心里在琢磨:这个公司员工收入到底怎样呢?问题1:你怎样看待该公司员工的收入?学生小组讨论,教师点拨:上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:(1)月平均工资2 700元,指所有员工工资的平均数是2 700元,但只有正、副经理的工资比平均工资高,是他两人的工资把平均工资“拉”高了.(2)职员C的工资是1 900元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1 900元是这组数据的中位数.(3)9个员工中有3个人的工资为1 800元,出现的次数最多,我们称1 800元是这组数据的众数.问题2:你认为用哪个数据表示该公司员工收入的平均水平更合适?学生讨论,教师总结用中位数1 900元或众数1 800元表示该公司员工收入的平均水平更合适些,因为平均数2 700元受到了极端值的影响.结合上述问题的探究,引入中位数、众数的概念:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.教师指出:平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平”.让学生用中位数、众数的概念,解释引例中小英的数学成绩的问题.求中位数的一般步骤:1.将这一组数据从大到小(或从小到大)排序;2.两种情况:a.如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.b.如果数据的个数是偶数,则处于中间两个数的平均数就是这组数据的中位数.求众数:不用排序,直接数每个数出现的次数.出现次数最多的数据就是众数.练习:对于一组数据:3,3,2,3,6,3,10,3,6,3,2,下列说法教学反思正确的是()A. 这组数据的众数是3B. 这组数据的众数与中位数的数值不相等C. 这组数据的中位数与平均数的数值相等D. 这组数据的平均数与众数的数值相等答案:A2.平均数、中位数和众数都是数据的代表,它们刻画了一组数据的“平均水平”.计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但它容易受极端值的影响.如体操比赛评分中,个别裁判不公正打分将直接影响运动员的成绩,为此一般先去掉一个最高分和一个最低分,然后求其余得分的平均数作为运动员的得分.中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据信息.一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一个量.如选举,就是选择名字出现次数最多的那个人,因而可以将当选者的名字当作“众数”,但各个数据的重复次数大致相等时,众数往往没有特别意义.课堂练习1.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别是 .2.某校八年级(1)班50名学生参加数学质量监测考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的平均分是__________,众数是 .(2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.3.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案1.25.5厘米 25.5厘米2.(1)85.08分 88分 (2)86分 (3)不能说张华同学的成绩处于全班中游偏上水平.因为全班同学总成绩的中位数是86分,张华同学的成绩为83分,低于全班成绩的中位数.3.(1)(2)①因为平均数都相同,八年级的众数最高, 所以八年级的成绩好一些.②因为平均数都相同,七年级的中位数最高, 所以七年级的成绩好一些.(3)因为七、八、九各年级前三名学生决赛成绩的平均分分别是93、91、94,所以从各年级参加决赛的选手中分别选出3人参加总决赛,九年级的实力更强一些.课堂小结(学生总结,老师点评) 中位数、众数的定义教学反思平均数、中位数、众数的特征布置作业习题6.3板书设计第六章数据的分析2中位数与众数。
初中-数学-打印版
中位数、平均数、众数的区别与联系是什么?
【问题】五、中位数、平均数、众数的区别与联系是什么?
难易度:★★★★★
关键词:区别和联系
答案:
三个量都体现一组数据的集中趋势,刻画了数据的“平均水平”;
平均数:在计算时,所有数据都参加运算,易受到极端值的影响;中位数:计算简单,受极端值影响小,但不能利用各数据的信息;众数:考查的是各数据所出现的频数,其大小至于部分数据有关。
【举一反三】
典题:一组数据85,81,83,82,83,78,这组数据的众数、平均数、中位数分别为__;__;__。
思路导引:在这组数据中83出现次数最多,众数是83;平均数是=(85+81+83×2+82+78)=82;将这组数据重新排列为78,81,82,83,83,85,中位数是82.5.
标准答案:83;82;82.5.
初中-数学-打印版。
北师大版八年级上册数学第六章知识点复习:平均数、中位数、众数
一、平均数、中位数、众数的概念
1.平均数
平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
3.众数
众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
二、平均数、中位数、众数的区别
1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
3.中位数仅与数据的排列有关,一般来说,部分数据
的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。
三、平均数、中位数、众数的联系
众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。
由为您提供的北师大版八年级上册数学第六章知识点复习:平均数、中位数、众数,祝您学习愉快!。