D3_6 函数图形的描绘
- 格式:ppt
- 大小:1.16 MB
- 文档页数:29
(第六章M aple的绘图功能)§6.3 三维图形绘制三绘图原理上,三维图形与二维图形没有本质的区别,但由于涉及到如何在二维的显示设备上表示的问题,在图形学中,三维图形增加了投影方式的选择。
然而在Maple系统中,用户却不需要考虑投影方面的问题,因为几乎所有的三维图形都是以斜投影的方式表示的。
用户可以改变的,只有物体的方向以及视点的远近。
由于三维图形绘制时可以选择的参数同二维图形基本类似,所以在对plot3d函数做基本介绍后,本节的重点将转移到一些plot程序库附带的其他三维图形绘制函数上,比如等高线、密度图等的绘制。
6.3.1 基本三维函数图形的生成由于现实中人们熟知的三维图形一般并非简单函数可以生成的,即使可以表示,也涉及到很多参数的设定,所以在实际三维绘图中,plot3d函数并不像plot函数那样常用。
一般只是用它对三维函数曲线进行绘绘制。
它的使用方法同plot函数几乎完全一样,比如利用简化输入绘制一个三维曲面:> f:=(x,y)->cos(x*y):> plot3d(f,-3..3,-2..2,orientation=[160,50]);之所以称这种输入方法为简化输入,因为我们在输入坐标范围的时候,并不是按照“x=a..b,y=c..d”这种规则形式书写的,而是直接写成“a..b,c..d”的形式。
注意这样的输入方法只对函数变量定义为“x,y”的形式有效,系统会自动将坐标x轴的范围定义为“a..b”,而将y轴定义为“c..d”。
同样,在plot函数中也可以对变量被定义为x的函数使用这种简化输入法。
相对于二维的plot函数,plot3d在坐标轴的形式,曲线、曲面的式样等一些方面有新的参数。
在上例中使用的orientation参数就是其中之一,它可以确定用户的观察角度。
“[ ]”中的数值分别对应三维工具栏中θ角与ϕ角。
由于这些参数同plot 函数中的参数大同小异,本节不再讲述。
《超级画板》第五篇函数图像函数及其图像,是中学数学课程的重要内容。
《超级画板》提供了制作动态函数图像的丰富的功能,并具有辅助教学和学习的一些附加的功能,例如在函数曲线上取点,作函数曲线的切线,列出函数值的表格,对曲线和x轴之间的面积填充或作细分,等等。
另外,还有许多办法作出教学所需要的特殊效果,那就要了解更多的操作方法了。
一函数图像配合函数表函数通常有三种表示方法:解析表达式、图像和表格。
用《超级画板》可以把三种表示方法紧密结合起来。
输入解析表达式,画出图像,再让图像和表格关联,以显示出函数值的表格。
请看本书配套资源中的文件5-1图像和列表.zjz,如图5-1。
图5-1这个课件有如下的功能:(1)显示曲线所对应的函数的表达式当鼠标指着左边对象工作区中编号为[5]的曲线条目时,旁边会显示出函数的表达式。
从图中看到,y是x的平方根。
(2)呈现函数的定义域所画的函数曲线,函数的定义域为[a,b]。
在左上部的两个测量数据文本中显示出,a的当前值为0,b的当前值为9。
(3)显示描点画线时所取的点和对应的函数值表函数曲线上,连同两端点共有19个点,把自变量x的范围[0,9]均匀分为18份。
曲线就是根据这19个点描出来的。
这19个点所对应的自变量x和函数y(x的平方根)的值可以在右上方的函数表里查出来。
(4)用一个按钮控制着函数表的显示或隐藏。
(5)改变描点的数目和对应的函数表描点的数目并非固定是19。
拖动下方参数n的变量尺上的滑钮,可以改变描点的数目。
点的数目越多,曲线就画得越准确。
当点的数目变化时,函数表也就随着改变。
例如,当描点的数目减少到5时,函数表里也就只有5组数据了。
(6)可以显示或不显示曲线上所取的点在函数曲线的属性对话框里,如图4-23,可以在左下角勾选或不勾选画点。
即使不把点显示出来,曲线仍然是根据这些点的位置而画出来的。
(7)可以选择用曲线或线段来组成图像曲线的画法有两种方案:一种是用曲线来连接这些点,一种是用线段来连接这些点。
第二章导数与微分一、考试大纲考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。
当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 二、主要内容三、基础题1.如果()f x 为偶函数,且(0)f '存在,证明(0)0f '=. 2.求曲线cos y x =上点1(,)32π处的切线方程和法线方程.3.讨论下列函数在0x =处的连续性与可导性:(1) |sin |y x = ; (2)21sin ,00,0x x y xx ⎧≠⎪=⎨⎪=⎩. 4.已知sin ,0(),0x x f x x x <⎧=⎨≥⎩,求'()f x .5.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .6.以初速度0v 竖直上抛的物体,其上升高度s 与时间t 的关系是2012s v t gt =-,求: (1) 该物体的速度;(2) 该物体达到最高点的时刻.7.设函数()f x 和()g x 可导,且22()()0f x g x +≠,试求函数y =的导数.8.设()f x 可导,求下列函数y 的导数dy dx: (1)2()y f x =; (2) 22(sin )(cos )y f x f x =+.9.若()f x ''存在,求下列函数y 的二阶导数22d ydx:(1) 2()y f x = (2) ln[()]y f x =.10.求由下列方程所确定的隐函数的导数:dydx(1)+-=3330x y ax ; (2)=-1y y xe . 11.求下列参数方程所确定的函数的导数:(1) 23x aty bt⎧=⎪⎨=⎪⎩; (2)2223131at x t at t ⎧=⎪+⎪⎨⎪⎪+⎩. 12.求下列参数方程所确定的函数的二阶导数22d ydx:(1)cos sin x a ty b t =⎧⎨=⎩ (2)32t tx e y e-⎧=⎨=⎩ 13.求下列函数的微分:(1) =sin2y x x ; (2) 2ln (1)y x =-. 14.计算下列反三角函数值的近似值::(1) arcsin 0.5002; (2) arccos 0.4995.四、提高题1.试从1dx dy y ='导出: (1) 223"(')d x y dy y =-; (2) 32353(")''''(')d x y y y dy y -=. 2.求下列函数所指定的阶的导数:(1) cos ,x y e x =求 (4)y ; (2) ,y xshx =求(100)y ;(3) 2sin 2,y x x =求 (50)y . 3.求函数2sin y x =的n 阶导数的一般表达式.4.求曲线222333x y a +=在点)处的切线方程. 5.求下列方程所确定的隐函数y 的二阶导数22d ydx:(1) tan()y x y =+:(2)1yy xe =+.6.用对数求导法求下列函数的导数:(1);(2)1xx y y x ⎛⎫==⎪+⎝⎭7.求下列参数方程所确定的函数的三阶导数33d ydx:(1) 231,;x t y t t ⎧=-⎨=-⎩ (2) 2ln(1),arctan .x t y t t ⎧=+⎨=-⎩ 8.溶液自水深18cm 顶直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中,开始时漏斗中盛满了溶液,已知当溶液在漏斗中深为12cm 时,其表面下降的速率为1/min cm ,问此时圆柱形筒中溶液表面上升的速率为多少?9.设3,0()||0,0x x f x x x ⎧≠⎪=⎨⎪=⎩,求复合函数()[()]x f f x Φ=的导数,并讨论'()x Φ的连续性.三、考研题1.(01,3分) 设=(0)0f ,则()f x 在点0x =可导的充要条件为(A) 201lim (1cosh)h f h→-存在. (B) 01lim (1)h h f e h →-存在.(C) 201lim (1sinh)h f h→-存在. (D) 01lim [(2h)()]h f f h h →-存在.2.(04.4分)设函数()f x 连续,且'(0)0,f >则存在0δ>,使得(A )()f x 在(,0)δ-内单调增加. (B) ()f x 在(0,)δ内单调减少.(C) 对任意的(0,)x δ∈有()(0).f x f > (D) 对任意的(,0)x δ∈-有()(0).f x f >3.(02.3分)已知函数()y y x =由方程2610y e x y x ++-=确定,则(0)y ''= .4.(03.12分)设函数()y y x =在(,)-∞+∞内具有二阶导数,且'0,()y x x y ≠=是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程322(sin )0d xdx y x dy dy ⎛⎫++= ⎪⎝⎭变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件3(0)0,'(0)2y y ==的解. 5.(92.3分) 设22()3||f x x x x =+,则使()(0)n f 存在的最高阶数n 为(A) 0. (B) 1. (C) 2. (D) 3.6.(05.3分)设函数()lim n f x =()f x 在(,)-∞+∞内 ( )( A )处处可导 ( B )恰有一个不可导点. ( C ) 恰有两个不可导点 (D)至少有三个不可导点. 7.(06.3分)设函数()=y f x 具有二阶导数,且'''>>∆()0,()0,f x f x x 为自变量x 在点0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应增量与微分,若0x ∆>,则 ( )( A )0.dy y <<∆ ( B )0y dy <∆<. ( C )0y dy ∆<<. ( D ) 0.dy y <∆< 8.(98.3分)函数23()(2)||f x x x x x =---不可导点的个数是(A )3. (B ) 2 ( C ) 1 . ( D ) 0 9.(97.3分) 对数螺旋线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为.10.(04.3分) 曲线ln y x =上与直线1x y +=垂直的切线方程为 .四、测试题1.填空题(1).已知函数()y y x =由方程2610y e xy x ++-=确定,由''=(0)y . (2.)设函数()y y x =由方程2xy x y =+所确定,则0|x dy == .(3) 曲线33cos sin x t y t⎧=⎪⎨=⎪⎩,上对应于6t π=点处的法线方程是 .(4). 设函数()y y x =由方程2cos()1x y e xy e +-=-所确定,则曲线()y f x =在点(1,0)处的法线方程为 .2.单项选择题(1).设函数()y y x =在任意点x 处的增量2,1y xy a x∆∆=++且当0x ∆→时,a 是x ∆的高阶无穷小,(0),y π=则(1)y 等于(A) 442.().().().B C e D e πππππ(2).()f x 在0x 处存在左、右导数,则()f x 在0x 点( A ) 可导 ( B ) 连续. ( C ) 不可导. ( D ) 不连续.(3).设''0lim ()lim ()x x f x f x a +-→→==,则(A) ()f x 在0x x =处必可导且'0().f x a = ( B ) ()f x 在0x x =处必连续,但未必可导. ( C ) ()f x 在0x x =处必E 有极限但未必连续. ( D ) 以上结论都不对. (4).设()f x 可导,且满足 0(1)(1)lim 1,2x f f x x→=-=-则曲线()y f x =在(1,(1))f 处的切线斜率为: ( A )2. ( B ) -2. (C )12. ( D ) -1.3.讨论2|2|,1(),1x x f x x x -≥⎧⎪=⎨<⎪⎩的可导性.4.求下列函数的导数:(1)0y a => (2) tan (tan )x x y x x =+(3)y =(4)|(3)|y x x x =-5.求下列隐函数的导数'y(1)y x x y = (2)2y x x y =6.求参数式函数的导数'y :2arctan 25tx ty ty e =⎧⎪⎨-+=⎪⎩ 7.求下列函数的微分:(1)(0)x y x x =>(2)21ln(12sin ),(2y x x θθ=-+为常数).8.设()f x 在[,)a +∞可导,lim ()x f x →+∞存在,→+∞'=lim ()x f x b ,求证:0b =.。
全国大学生数学竞赛(非数学类)大纲一、函数、极限、连续1. 函数的概念及表示法、简单应用问题的函数关系的建立. 2. 函数的性质:有界性、单调性、周期性和奇偶性.3. 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数. 4. 数列极限与函数极限的定义及其性质、函数的左极限与右极限. 5. 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较. 6. 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7. 函数的连续性(含左连续与右连续)、函数间断点的类型. 8. 连续函数的性质和初等函数的连续性.9. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理). 二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L ’Hospital )法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用. 9. 弧微分、曲率、曲率半径. 三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式. 4. 不定积分和定积分的换元积分法与分部积分法. 5. 有理函数、三角函数的有理式和简单无理函数的积分. 6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f yy(yfy'),,=''.=''),x(yy'f4.线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7.欧拉(Euler)方程.8.微分方程的简单应用五、向量代数和空间解析几何1.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2.两向量垂直、平行的条件、两向量的夹角.3.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4.曲面方程和空间曲线方程的概念、平面方程、直线方程.5.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法. 7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier )系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l ,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数2009年 第一届全国大学生高等数学竞赛预赛试题及答案(非数学类)一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=,dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(22-=+-=--=⎰,解得34=A 。
009.三维绘图一.绘制三维曲线(空间曲线)一一plot3()是二维绘图函数plot()的扩展,其调用格式为:plot3(x1, y1, z1,选项1' x2, y2, z2,选项2' , )•••例1绘制参数方程表示的空间曲线:x 8cost, y W2si nt, z 242s intt=0:pi/50:2*pi; x=8*cos(t); y=4*sqrt(2)*si n( t); z=-4*sqrt(2)*si n( t);plot3(x,y,z,'p');title('Line in 3-D Space'); text(0,0,0,'origi n');xlabel('X'); ylabel('Y'); zlabel('Z'); grid;运行结果:二.三维曲面即二元函数z=f(x,y)的图像,定义域(x, y的范围)选XY平面上矩形区域,然后把矩形定义域分割成若干小矩形块(中间生成网格点),再根据函数在各个网格点上的取值(z值)绘制三维图形。
1 .利用meshgrid函数分割定义域生成网格点x=a:dx:b;y=c:dy:d;[X, Y]=meshgrid(x,y);当x=y时,可以写成meshgrid(x)2.绘制三维曲面mesh()用来绘制三维网格图,而surf()用来绘制三维曲面图, 各线条之间的补面用颜色填充。
其调用格式为:mesh(x, y, z, c)surf(x, y,乙c)一般x, y是两个一维向量,按照前面分析,z必须是二维矩阵【le ngth(y) x len gth(x) J; c用于指定在不同高度下的颜色范围,默认c=z,即颜色的与图形的高度成正比。
例2 (1) mesh()绘制三维网格图示例【线条有颜色,线条间补面无颜色】x=0:0.1:2*pi;[x,y]=meshgrid(x);z=s in (y).*cos(x);mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis'); title('mesh'); pause;运行结果:颜色,且网格图线条颜色和补面颜色都是沿 z 轴按照图形高度变化的】x=0:0.1:2*pi; [x,y]=meshgrid(x);z=si n(y).*cos(x);surf(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');surf()绘制三维曲面图示例 【线条都是黑色,线条间补面有y-axis 0 x-ax.3title('surf); pause;运行结果:(3) plot3()绘制三维曲面图示例【三维曲线组合而成】 x=0:0.1:2*pi;[x,y]=meshgrid(x);z=si n(y).*cos(x);plot3(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('plot3-1'); grid;运行结果:y-ayls /-axisplot3-13.特殊功能的mesh()和surf()函数【其用法类似】meshc()和surfc() -------- 在xy平面上绘制曲面在z轴方向的等高线;meshz() ------ 在xy平面上绘制曲面的底座;surfl() ----- 具有光照效果。
D3画完整柱状图(带坐标轴、标签) 昨天晚上本来打算花⼀点时间把之前学的柱状图改⼀下,⽤CSV⽂件来替换⾃定义数据。
这⼀替换可不得了,⼀晚上就搭进去了,还好今早找到了问题的所在,原因在于我的数据引⽤出了问题。
现在就来讲解⼀下如何画⼀个柱状图吧: 柱状图的画法和折线图其实很类似,只要掌握了⽐例尺的⽤法和坐标轴的画法,我们只要在此基础上添加“rect”元素添加矩形就可以了,但这其中也有⼀些要点,我会在其中标出,希望对你有⽤。
对于d3不同版本带来的代码不适⽤的解决办法:1)、下载对应的v3或者v4版本加到代码引⽤⾥可以解决。
2)、对于我博客的代码,只要你确保⽹络畅通,应该不会出错<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>⽂档的标题</title></head><body><script src="https:///d3/3.5.15/d3.js"></script>//⽹页引⽤d3库</body></html>好了,接下来就是完整代码:<!DOCTYPE html><html><head><meta charset="utf-8"><title>绘制图形</title></head><style>/* 给body添加⼤⼩ */body,html {height: 100%;}{padding: 0;margin: 0;}.axis path,.axis line {fill: none;stroke: black;shape-rendering: crispEdges;}.axis text {font-family: sans-serif;font-size: 11px;}.MyRect {fill: palevioletred;}.MyText {fill: black;text-anchor: middle;font-size: 10px;}</style><body><script src="https:///d3/3.5.15/d3.js"></script><script>var width = 500;var height = 500;var svg = d3.select("body").append("svg").attr("width", width).attr("height", height);var padding = {left: 30,right: 30,top: 20,bottom: 20};/////s/blog_ad72a03a0102v1nx.html 含解释d3.csv("../bardata.csv", function(error, data, i) {if (error) {console.log(error);}console.log(data);var datavalue = []for (let i = 0; i < data.length; i++) {datavalue.push(data[i].value)} // var xp = d3.scale.ordinal()// // .domain(d3.range(dataset.length))// // 使⽤map来输⼊data数组中的字符// .domain(data.map(function(d,i){// // console.log(d.items)// return d.items// }))// .rangeRoundBands([0,width-padding.left-padding.right]);// var xp = d3.scale.ordinal()// .domain(data.map(function(d){ return d.items;}))// .rangeBands([0,width-padding.left-padding.right]);//以上定义xp(即xscale)横坐标序数⽐例尺的⽅法都可以试⼀下,会有不同的体验var xp = d3.scale.ordinal().domain(data.map(function(d) {return d.items;})).rangeRoundBands([0, width - padding.left - padding.right], 0.1);var yp = d3.scale.linear().domain([0, d3.max(datavalue)]).range([height - padding.top - padding.bottom, 0]) //反过来?为什么呢(之前似乎讲过哦0w0)var xAxis = d3.svg.axis().scale(xp).orient("bottom");var yAxis = d3.svg.axis().scale(yp).orient("left");var rectPadding = 4;var rects = svg.selectAll(".MyRect").data(data).enter().append("rect").attr("class", "MyRect").attr("transform", "translate(" + padding.left + "," + padding.top + ")").attr("x", function(d, i) {return xp(d.items);}).attr("y", function(d) {return yp(d.value);}).attr("width", xp.rangeBand() - rectPadding).attr("height", function(d) {return height - padding.top - padding.bottom - yp(d.value);}).on("mouseover", function(d, i) {d3.select(this).style("fill", "aliceblue");}).on("mouseout", function(d, i) {d3.select(this).style("fill", "greenyellow");// 使⽤style替换attr才会有交互的效果});var texts = svg.selectAll(".MyText").data(data) //害我出错的就是这⼉了,我之前写的是.data(datavalue),datavalue⼜是哪⼉来的呢?为什么引⽤错误,会导致tips的位置错乱呢?.enter().append("text").attr("class", "MyText").attr("transform", "translate(" + padding.left + "," + padding.top + ")").attr("x", function(d) {return xp(d.items);//上⾯问题的答案都在这⼉,d=》data,数据的意思,那data是哪⼉来的呢?当然是我们传进来的,那为什么data不会出错,⽽datavalue会错呢?//是由于xp()是我们之前定义的序数⽐例尺,我们如果想要使⽤就必须传⼊适合的数据(包含x,y),如果只是传⼊datavalue就只有y值,⽽我们并没有将x传⼊。
第1章 极限与连续1.1 函数1、(1) x -- (2) ]3,0()0,(Y -∞ (3) 时,210≤<a a x a -≤≤1,φ时,21>a(4) 奇函数 (5))(101log 2<<-x x x(6) )1(-≠x x (7) 22+x (8))(x g π2 (9) 1525++⋅x x(10) xe1sin 2-2、⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-==<<=e x e x e x e x e x e x g f 或或1011011)]([ 3、⎪⎩⎪⎨⎧>+-≤<--≤+=262616152)(2x x x xx x x f 4)(max =x f 1.2 数列的极限1、(1) D (2) C (3) D1.3 函数的极限1、(1) 充分 (2) 充要 3、 11.4 无穷小与无穷大1、(1) D (2) D (3) C (4) C1.5 极限运算法则1、 (1) 21-(2) 21(3) ∞ (4) 1- (5) 02、(1)B (2)D3、(1) 0 (2)23x (3)1-(4) 62(5) 1 (6) 4 4、a = 1 b = -11.6 极限存在准则 两个重要极限1、(1) 充分 (2) ω,3 (3) 2 ,23(4) 0,22t (5) 3e ,2e2、(1) x (2)32(3) 2 (4) 1 (5) 3-e (6) 1-e 1.7 无穷小的比较1、(1) D (2) A (3) B (4) C2、(1) 1 (2) 2 (3) 23- (4) 21- (5) 23 (6) 32-3、e1.8 函数的连续性与间断点1、(1) 充要 (2) 2 (3) 0,32 (4) 跳跃 ,无穷 ,可去2、(1) B (2) B (3) B (4) D3、(1) 1-e (2)21-e4、a =1 , b = 25、 (1))(2,0Z k k x x ∈+==ππ是可去间断点,)0(≠=k k x π是无穷间断;(2) 0=x 是跳跃间断点,1=x 是无穷间断点 6、e b a ==,01.10 总习题1、(1) 2 (2) },,,max{d c b a (3)21(4) 2 (5) 2 8- (6) 2 (7) 23 (8) 0 1- (9) 跳跃 可去 (10) 2 2、(1) D (2) D (3) D (4) C (5) D (6) B (7) D (8) D (9) B (10) B (11) B 3、(1)⎪⎩⎪⎨⎧≥<<-≤≤=11575115100190100090)(x x x x x p(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=11515115100130100030)60(2x x x x x x xx p P(3)15000=P (元)。
《超级画板》第五篇函数图像函数及其图像,是中学数学课程的重要内容。
《超级画板》提供了制作动态函数图像的丰富的功能,并具有辅助教学和学习的一些附加的功能,例如在函数曲线上取点,作函数曲线的切线,列出函数值的表格,对曲线和x轴之间的面积填充或作细分,等等。
另外,还有许多办法作出教学所需要的特殊效果,那就要了解更多的操作方法了。
一函数图像配合函数表函数通常有三种表示方法:解析表达式、图像和表格。
用《超级画板》可以把三种表示方法紧密结合起来。
输入解析表达式,画出图像,再让图像和表格关联,以显示出函数值的表格。
请看本书配套资源中的文件5-1图像和列表.zjz,如图5-1。
图5-1这个课件有如下的功能:(1)显示曲线所对应的函数的表达式当鼠标指着左边对象工作区中编号为[5]的曲线条目时,旁边会显示出函数的表达式。
从图中看到,y是x的平方根。
(2)呈现函数的定义域所画的函数曲线,函数的定义域为[a,b]。
在左上部的两个测量数据文本中显示出,a的当前值为0,b的当前值为9。
(3)显示描点画线时所取的点和对应的函数值表函数曲线上,连同两端点共有19个点,把自变量x的范围[0,9]均匀分为18份。
曲线就是根据这19个点描出来的。
这19个点所对应的自变量x和函数y(x的平方根)的值可以在右上方的函数表里查出来。
(4)用一个按钮控制着函数表的显示或隐藏。
(5)改变描点的数目和对应的函数表描点的数目并非固定是19。
拖动下方参数n的变量尺上的滑钮,可以改变描点的数目。
点的数目越多,曲线就画得越准确。
当点的数目变化时,函数表也就随着改变。
例如,当描点的数目减少到5时,函数表里也就只有5组数据了。
(6)可以显示或不显示曲线上所取的点在函数曲线的属性对话框里,如图4-23,可以在左下角勾选或不勾选画点。
即使不把点显示出来,曲线仍然是根据这些点的位置而画出来的。
(7)可以选择用曲线或线段来组成图像曲线的画法有两种方案:一种是用曲线来连接这些点,一种是用线段来连接这些点。