数学建模-第八章装箱问题PPT课件
- 格式:ppt
- 大小:1.12 MB
- 文档页数:11
P181 锁具装箱1.某厂生产一种弹子锁具,每个锁具有n个槽,每个槽的高度从{1,2,3,4}这4个数(单位略)中任取一个,限制至少有一个相邻的槽高之差等于3,且至少有3个不同的槽高,每个槽的高度取遍这4个数且满足上面这两个限制时生产出一批锁(例如,当n等于3时,3个槽高为1,4,2的锁符合要求,而3个槽高为1,4,4的锁不满足要求)。
求一批锁的把数。
解:取不同的n的值,通过matlab编程,求出对应的锁的把数(1)当n=3时:源程序:s=0;n=3;for j1=1:n+1for j2=1:n+1for j3=1:n+1a1=j1;a2=j2;a3=j3;amax=max([a1,a2,a3]');amin=min([a1,a2,a3]');numbers=(amax-a1)*(a1-amin)+(amax-a2)*(a2-amin)+(amax-a3)*(a3-amin);neighbors=max([abs(a1-a2),abs(a2-a3)]');if numbers>0.5if neighbors==3s=s+1;endendendendends输出结果:s =8所以当每个锁具有3个槽时,满足要求的这批锁的把数为8把。
(2)当n=4时:源程序:s=0;n=3;for j1=1:n+1for j2=1:n+1for j3=1:n+1for j4=1:n+1a1=j1;a2=j2;a3=j3;a4=j4;amax=max([a1,a2,a3,a4]');amin=min([a1,a2,a3,a4]');numbers=(amax-a1)*(a1-amin)+(amax-a2)*(a2-amin)+(amax-a3)*(a3-amin)+( amax-a4)*(a4-amin);neighbors=max([abs(a1-a2),abs(a2-a3),abs(a3-a4)]');if numbers>0.5if neighbors==3s=s+1;endendendendendends输出结果:s =64所以当每个锁具有4个槽时,满足要求的这批锁的把数为64把。
箱子的摆放策略摘要本文针对箱子的摆放的优化铺设问题,采用了循环嵌套式算法,建立了利用率最优化的整数规划模型,使用LINGO、MATLAB求解,并用Excel进行画图,实现了箱子最优摆放与评价。
对于问题一,建立在不允许箱子超出底边的情况下,所能摆放最多箱子的数学模型。
借助于循环嵌套式算法,采用改进后的由外至内逐步优化的模型:首先对各边的外层进行摆放,使其边界利用率最高,再对内层剩余矩形空间进行摆放,一直循环,至内部剩余空间无法放入箱子为止。
用MATLAB编程、求解分析:以此模型摆放,第一种箱子个数为16、第二种箱子个数为4、第三种箱子个数为20。
对于问题二,建立在允许箱子超出上、左、右边的情况下,所能摆放最多箱子的数学模型。
建立由下至上逐步优化模型:以底边为基,将其两边各向外扩充半个长边的长度,先对底边进行摆放,使其边界利用率最高,再向上堆叠,使箱子间无空隙,使面积利用率最大,至上侧最多超出半个箱子边长为止。
用lingo编程、求解分析:以此模型摆放,第一种箱子个数为23、第二种箱子个数为8、第三种箱子个数为28。
对于问题三,我们采用左右对称,箱子横放,向上堆叠,左、右、上边各超出少许的方案。
引入箱子个数、稳定性两个指标,通过线性加权评价的方式,对此方案与模型一进行评价分析。
得出了在在实际情况中,当考虑不同权重的综合指数时,模型一与模型三的摆放方式各有优劣性的结论。
关键词:利用率最高循环嵌套式算法线性加权评价一、问题重述叉车是指对成件货物进行装卸、堆垛和作业的各种轮式搬运车辆。
如何摆放箱子,使得叉车能将最多的货物从生产车间运输至仓库是众多企业关心的问题。
现将箱子的底面统一简化为形状、尺寸相同的长方形,叉车底板设定为一个边长为1.1米的正方形。
要求建立一个通用的优化模型,在给定长方形箱子的长和宽之后,就能利用这个模型算出使得箱子数量最多的摆放方法。
本题需要解决的问题有:问题一:在不允许箱子超出叉车底板,也不允许箱子相互重叠的情况下,构建一个优化模型,并根据题目中提供的三种型号箱子的数据,确定可以摆放的个数及摆放示意图。
长三角高校数学建模竞赛快递包裹装箱优化问题随着电子商务的迅速发展,快递行业成为中国物流行业中的重要组成部分。
快递包裹的及时送达和安全运输是快递企业必须面对的重要挑战之一。
针对如何在有限的空间中最大化地装载包裹,优化装箱方案已成为快递企业的一项重要课题。
本文将重点讨论长三角高校数学建模竞赛中的快递包裹装箱优化问题。
快递包裹装箱问题涉及到如何在有限的空间中合理地摆放不同尺寸和重量的包裹,以便最大化地利用空间并保证包裹的安全运输。
在实际应用中,我们可以将快递箱视为一个三维的容器,而包裹则是不同形状和大小的物体。
装箱优化问题可以归结为如何在给定的容器和包裹条件下,找到最优的摆放方案,使得总体积最小化或者总重量最小化。
对于快递包裹装箱优化问题,我们可以采用数学建模的方法来解决。
首先,我们需要确定一个合适的目标函数,它可以衡量不同装箱方案的优劣。
对于总体积最小化的问题,我们可以将目标函数定义为所有包裹体积的和。
对于总重量最小化的问题,我们可以将目标函数定义为所有包裹重量的和。
在确定目标函数之后,我们可以建立一个数学模型来描述这个优化问题。
在数学模型中,我们需要定义相关的变量和约束条件。
变量可以表示每个包裹的位置和方向,而约束条件则可以限制包裹之间的相互位置以及与容器的边界的关系。
例如,我们可以定义一个二维数组来表示容器的布局,其中每个元素表示一个位置,0表示空位置,1表示有包裹。
我们还可以引入一些约束条件来控制包裹的位置和方向,例如,每个包裹的底部必须在一个平面上,不能旋转等。
在实际应用中,我们可以采用启发式算法来求解这个优化问题。
启发式算法是一种基于经验和直觉的求解方法,它可以在合理的时间内找到一个较好的解。
常见的启发式算法包括遗传算法、模拟退火算法和禁忌搜索算法等。
这些算法都可以通过不断地调整包裹的位置和方向来搜索最优解。
快递包裹装箱优化问题是一个复杂而实际的问题,它涉及到多个变量和约束条件。
通过数学建模和启发式算法,我们可以找到一个较好的装箱方案,以最大化地利用空间并保证包裹的安全运输。
锁具装箱摘要(第06组)本文针对锁具如何装箱问题,建立了模型,并对其进行了分析和评价。
首先根据排列组合知识,用Matlab编程列举出所有符合条件的锁具,得到一批锁具的个数为5880,可装58箱。
就如何装箱及销售问题,本文根据如何对每一批锁具进行装箱和标记才能是消费者的满意度最高的模型,再具体分析实际销售情况,建立了按槽高进行序贯销售的模型。
即先把槽高和为偶数的锁具按字典序列排序装箱,之后装槽高和为奇数的锁具,并对每一个锁具进行编号,计算锁具“安全”距离的极小值为2562,即42.7箱,得到序贯销售时团体顾客最大购买量为42箱时不会出现互开现象。
顾客抱怨互开程度可用所购的一箱或二箱锁具中平均有多少对可能互开来衡量。
本文运用计算机模拟,得到平均一箱中可以互开的个数为2.33,平均两箱中可以互开的个数为9.41。
关键词:排列组合,数学模型,互开,奇偶,概率一、问题重述某厂生产一种弹子锁具,该锁具的锁匙共有5个槽,每个槽可取6种不同的高度,分别以1-6的整数表示。
在生产中要求每把锁匙的5个槽至少具有3种不同的高度且相邻两槽的高差不能是5。
满足上述条件的互不相同的锁具称为一批。
由于工艺条件的限制,当两把锁匙对应的5个槽的高度有4个相同,另一个槽的高差为1时,两锁具可能互开,否则不能互开。
在锁具出厂时,工厂对锁具按批进行随意装箱,每60付装1箱。
当遇到购买量较大时团体顾客时(买几箱到几十箱),由于装箱的随意性,容易引起他们对锁具互开现象的抱怨,现要求解决以下几个问题:(1)每批锁具有多少个,可装多少箱;(2)为售销部门提供一种方案,包括如何装箱,如何给箱子以标记,出售时如何利用这些标记,从而使团体顾客不再或减少抱怨;(3)当团体顾客的购买量不超过多少箱时,可以保证一定不会出现互开的情形;(4)按原来的随意装箱方法,如何定量地衡量团体顾客抱怨互开的程度,并对购买一、二箱者给出具体结果。
二、问题假设(1)随机装箱对锁具来说是等可能概率。