分期付款中的有关计算(第一课时)
- 格式:docx
- 大小:18.52 KB
- 文档页数:5
分期付款中的有关计算(第一课时)分期付款中的有关计算(第一课时)2. 搜集、整理信息:(1)分期付款中规定每期所付款额相同;⑵每月利息按复利计算,即上月利息要计入下月本金例如,由于月利率为0.4575%,款额a元过一个月就增值为a(1+0.4575%)=1.004575a(元);3. 独立探究方案14. 提出解答,并给答辩:由商品价格二付款额,逆向思维:按利率0.4575%,从2月底起每2 个月存入x元,到年底(也付x元)等于去年年底存入10000元的本息总和;得10000X (1+0.4575%)12=x+(1+0.4575%)2x+(1+0.4575%)4x+(1+0.457 5%)6x+(1+0.4575%)8x+(1+0.4575%)10x,解得=(用计算器求值)5 .创建数学模型:比较方案1结果,经过猜想得:分期付款购买售价为a元的商品,分n次经过m个月还清贷款,每月还款x元,月利率为p,则方案2中,7.结论分析:方案类别付款次数付款方法每期所付款表达式每期付款付款总额16X16x1212X212x233X33x32.“方案2、3宀模型T方案3”是由特殊到一般,再由一般到特殊的研究方法;研究性课题的基本过程:生活实际中的问题存在的可行方案启迪思维留有余地搜集整理信息独立探究个案提出解答并给答辩创建数学模型验证并使用模型结论分析3•问题来源于现实,问题处处存在,要善于发现问题并抓住问题本质;而探究问题时往往不会一帆风顺,要勇于战胜困难,磨砺自己意志.优品课件,意犹未尽,知识共享,共创未来!!!。
分期付款中的有关计算课题:分期付款中的有关计算(一)教学目的:1、知识目标:使学生掌握等比数列前n项和公式在购物付款方式中的应用;2、能力目标:培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识和创新能力;3、德育目标:使学生抓住社会现象的本质,用科学的、辨证的眼光观察事物,建立科学的世界观;4、情感目标:通过学生之间、师生之间的交流与配合培养学生的合作意识和团队精神;通过独立运用数学知识解决实际问题培养学生勇于克服困难的坚强意志,也使学生体会学习数学知识的重要性,增强他们对数学学习的自信心和对数学的情感.教学重点:引导学生对例题中的分期付款问题进行独立探究教学难点:独立解决方案授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本节课是等比数列的前n项和公式在购物方式上的一个应用.此前学生已掌握等比数列的通项公式及其前n项和公式,并学习了教材中的阅读材料:有关储蓄的计算(单利计息问题),也就其次,《全日制普通高中数学教学大纲(试验修订版)》将研究性课题列为必修内容,是为迎,是所学知识的实际应用,因此对培养学生的应用意识也具有很高的价值.又由于它在本小节中首次出现,学生对如何学习研究性课题比较模糊,所以能否将研究性课题中以实际问题为载体,以学生独立探究为主体的特点突现出来,也影响着今后研究性课题的教学效果.问题是数学的心脏.而爱因斯坦有句名言:提出问题比解决问题更重要.而培养学生提问题的能力就很有必要在研究课题之前让学生了解课题的产生背景.所以我利用现代网络技术等多媒体教学手段将学生带入问题情境,既自然地创建了轻松愉快的气氛和生动活泼的环境,更重要的是引起学生的认知冲突.教学过程:一、引入:1..幽默故事:一位中国老太太与一位美国老太太在黄泉路上相遇.美国老太太说,她住了一辈子的宽敞房子,也辛苦了一辈子,昨天刚还清了银行的住房贷款.而中国老太太却叹息地说,她三代同堂一辈子,昨天刚把买房的钱攒足.指出:我国现代都市人的消费观念正在变迁——花明天的钱圆今天的梦对我们已不再陌生;贷款购物,分期付款已深入我们生活.但是面对商家和银行提供的各种分期付款服务,究竟选择什2.基本公式:1.等差数列的前n项和公式:n(a1+an)n(n-1)dSn=, Sn=na1+ 222.等比数列的前n项和公式:a1(1-qn)a-anq 当q≠1时,Sn= ① 或Sn=1 ② 1-q1-q当q=1时,Sn=na1特殊数列求和--常用数列的前n项和:1+2+3+ +n=n(n+1) 21+3+5+ +(2n-1)=n2n(n+1)(2n+1) 6n(n+1)213+23+33+ +n3=[] 23.求和的常用方法:特殊数列求和公式法、拆项法、裂项法、错位法 12+22+32+ +n2=二、问题:某学生的父母欲为其买一台电脑售价为1万元,除一次性付款方式外,商家还提供在1年内将款全部还清的前提下三种分期付款方案(月利率为1%):⑴购买后2个月第1次付款,再过2个月第2次付款…购买后12个月第6次付款;⑵购买后1个月第1次付款, 过1个月第2次付款…购买后12个月第12次付款;⑶购买后4个月第1次付款,再过4个月第2次付款,再过4个月第3你能帮他们参谋选择一下吗?”三解决问题的过程:1.启迪思维,留有余地:问题1:按各种方案付款每次需付款额分别是多少?每次付款额是10000的平均数吗?(显然不是,而会偏高)那么分期付款总额就高于电脑售价,什么引起的呢?(利息)问题2:按各种方案付款最终付款总额分别是多少?(事实上,它等于各次付款额之和,于是,本课题的关键在于按各种方案付款每次需付款额分别是多少?——设为2.搜集、整理信息:(1)分期付款中规定每期所付款额相同;(2)每月利息按复利计算,即上月利息要计入下月本金.例如,由于月利率为1%,款额a元过一个月就增值为a(1+1%)=1.01a(元);再过一个月又增值为1.01a(1+1%)=1.01a(元)3.独立探究方案1可将问题进一步分解为:1. 商品售价增值到多少? 22. 各期所付款额的增值状况如何?3.当贷款全部付清时,电脑售价与各期付款额有什么关系?4.提出解答,并给答辩:由商品价格=付款额,得10000×(1+1%)=x+(1+1%)x+(1+1%)x+(1+1%)x+(1+1%)x+(1+1%)x, 1224681010000⨯1.0112⨯(1.012-1)解得x==1785.86 1.0112-15.创建数学模型:比较方案1结果,经过猜想得:分期付款购买售价为a元的商品,分n次经过m个月还清贷款,m⎡⎤a(1+p)⎢(1+p)n-1⎥⎣⎦每月还款x元,月利率为p,则x= (1+p)m-1m6.验证并使用模型:10000⨯1.0112⨯(1.01-1)方案2中,x==888.49 121.01-112410000⨯1.01⨯(1.01-1)=3607.62 方案3中,x=1.0112-17.结论分析:方案1中,x=1785.86元,付款总额6x=10721.16元;方案2中,x=888.49元,付款总额12x=10661.85元;《考试说明》明确指出:“能阅读、理解、对问题进行陈述的材料,能综合运用所学的数学知复习了等比数列的应用,体现了数学的实际应用价值,尤其是从实际出发来表述问题,课堂气氛异常热烈,更四、小结1.分期付款中的计算涉及的数学知识:等比数列前n项和公式;数学思想:列方程解未知2.“方案2、3→模型→方案3”是由特殊到一般,再由一般到特殊的研究方法; 研究性课题的基本过程:生活实际中的问题→存在的可行方案→启迪思维留有余地→搜集整理信息→独立探究个案→提出解答并给答辩→创建数学模型→验证并使用模型→结论分析3.问题来源于现实,问题处处存在,要善于发现问题并抓住问题本质;而探究问题时往往不会一帆风顺,要勇于战胜困难,磨砺自己意志.4.促进学生知识迁移——五、课后作业:提出一个熟悉的日常生活中的分期付款问题,并探究解决六、板书设计(略)七、课后记:。
研究性课题:分期付款中的有关计算江苏省太仓高级中学(215400)张惠良[教学目的]:要求学生会将一个以分期付款为背景的实际问题转化为数学问题,培养学生运用已学的数学知识分析问题和解决问题的能力.[教学重点]:引导学生分析和解决实际问题[教学难点]:将实际问题转化为数学问题。
即数学的建模过程[教学方法]:学生自主探索,教师启发引导[教学手段]:多媒体辅助教学[教学过程]:一.复习引入,介绍课题1、复习有关复利计息知识来源于生活,数学知识也是如此,在我们的日常生活中,存在有大量的数学素材。
例如新教材P.91例2就是一个以复利计算利息的储蓄问题,我们先来重温一下。
(1)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。
答:x期后的本利和为y=a(1+r)x(2)如果存入本金a元,每月的利率为0.8%,试分别计算1月后,2月后,3个月后, (12)个月后的本利和是多少?解:已知本金为a元,1月后的本利和为a(1+0.8%)2月后的本利和为a(1+0.8%)23月后的本利和为a(1+0.8%)3……12月后的本利和为a(1+0.8%)12数学的应用非常广泛,数学已渗透到现代科学的各个领域、国民经济的各个部门,正如华罗庚教授所说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。
”今天,我们就以数学为工具一起来研究一个与人们生活密切相关的分期付款问题。
这是一个新教材首次出现的研究性课题,现在我先来简要介绍一下研究性课题。
2、介绍研究性课题研究性课题是新教材中的一个专题性栏目。
这一个专题具有探索性和应用性的特点,它要求同学们从数学角度,对日常生活、生产和其它学科的问题及某些数学问题进行深入探讨,它既是所学内容的实际应用,又对同学们探究和解决问题具有较好的训练价值,是培养同学们综合实践能力和创新精神的极好教材。
研究性课题与我们是初次接触,初次见面,还请同学们多多关照!3、关于分期付款今天所学的“研究性课程”,是一个有关分期付款的问题.分期付款方式在今天的商业活动中应用日益广泛,为越来越多的顾客所接受,这一方面是因为很多人一次性支付售价较高商品的款额有一定的困难,另一方面是因为不少商店也在不断改进营销策略,方便顾客购物和付款,由于分期付款与每个家庭、每个人的日常生活密切相关,对本课题的探究肯定会引起同学们的兴趣。
课题:研究性课题:分期付款中的有关计算教学目的:知识目标:使学生在理解的基础上掌握等比数列前n项和公式在购物付款方式中的应用;能力目标:培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识和创新能力;德育m标:使学生抓住社会现象的本质,用科学的、辨证的眼光观察事物,建立科学的世界观;教学重点:引导学生对例题中的分期付款问题进行独立探究;教学难点:独立解决方案1授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:幽默故事:一位中国老太太与一位美国老太太在黄泉路上相遇。
美国老太太说,她住了一辈子的宽敞房子,也辛苦了一辈子,昨天刚还清了银行的住房贷款;而中国老太太却叹息地说,她三代同堂一辈子,昨天刚把买房的钱攒足;指出:我国现代都市人的消费观念正在变迁一花明天的钱园今天的梦对我们已不再陌生;贷款购物,分期付款已深入我们生活.但是面对商家和银行提供的各种分期付款服务,究竟选择什么样的方式好呢?二、讲解新课:i.例:一台电脑传价为1万元.如果采取分期付款,在1年内将款全部还清的前提下,商家还提供下表所示的几种付款方案(月利率为1%)方案付款燧付款方法16次购买后2个月第1次付款,再过2个月第2 次付款…购买后12个月第6次付款212次购买后1个月第1次付款,过1个月第2 次付款…购买后12个月第12次付款33次购买后4个月第1次付款,再过4个月第2 次付款,再过4个月第3次付款2、应用题篇幅较长,且有列表,教师用电脑显示清晰快捷,提高课堂效率.假定学生是当事人——“你的父母为给你创建更好的学习条件,打算买台电脑,除一次性付款外商家还提供三种分期付款方式。
你能帮他们参谋选择一下吗?”2.培养学生创新精神的主要内涵就是要更加突出学生在学习活动中的“自主性”和思维的“开放性”.为此,我将教材中的例题稍做改动,使问题更口常生活化,并假定学生是当事人,这样必然会引起学生认知期待,激活了学生的思维,充分调动起学生参与和探求的欲望,使学生由问题引出中的“兴”,而产生探索新知识的“情”.3.[启迪思维,留有余地]问题1:按各种方案付款每次需付款额分别是多少?每次付款额是10000的平均数吗?(显然不是,而会偏高)那么分期付款总额就高于电脑传价,什么引起的呢?(利息)问题2:按各种方案付款最终付款总额分别是多少?(事实上,它等于各次付款额之和,于是可以归结为上一问题)。
分期付款中的有关计算(第一课时)引言在日常生活中,我们经常会遇到需要分期付款的情况,例如购买家电、手机、汽车等。
分期付款可以帮助我们分摊购买的成本,减轻经济负担。
然而,是否能够正确计算和理解分期付款的利率、月供等相关概念,往往决定了我们是否能够做出明智的购买决策。
本课时我们将学习分期付款中的有关计算。
1. 利息的计算在分期付款中,我们通常需要支付利息。
利息的计算方式取决于分期付款合同中的利率类型和计算方法。
常见的利率类型包括年利率、月利率和日利率。
1.1 年利率计算年利率是最常见的利率类型,通常以百分比的形式表示。
年利率的计算方式如下:利息 = 本金 × 年利率例如,假设购买了一台价值10000元的电视机,并且根据分期付款合同,年利率为5%。
那么每年需要支付的利息为500元(10000元 × 5%)。
1.2 月利率和日利率计算有时候,分期付款合同中所规定的利率类型是月利率或日利率。
在这种情况下,我们需要根据合同中的利率计算出每个月或每天需要支付的利息。
月利率的计算方式如下:利息 = 本金 × 月利率假设购买的电视机分期付款合同中的月利率为0.5%,则每月需要支付的利息为50元(10000元 × 0.5%)。
日利率的计算方式如下:利息 = 本金 × 日利率假设购买的电视机分期付款合同中的日利率为0.01%,则每天需要支付的利息为1元(10000元 × 0.01%)。
2. 月供的计算除了利息,分期付款合同还规定了每月需要支付的固定金额,通常称为月供。
月供包括两部分:本金部分和利息部分。
2.1 本金部分的计算本金部分是购买商品的总价值除以分期付款的期数,即:本金部分 = 商品总价值 / 分期付款的期数例如,购买的电视机总价值为10000元,分期付款期数为12期,则每个月的本金部分为833.33元(10000元 / 12期)。
2.2 利息部分的计算利息部分是根据之前提到的年利率、月利率或日利率计算出来的。
分期付款中的有关计算(第一课时)教学目的:1、知识目标:使学生掌握等比数列前n项和公式在购物付款方式中的应用;2、能力目标:培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识和创新能力;3、情感目标:通过学生之间、师生之间的交流与配合培养学生的合作意识和团队精神;通过独立运用数学知识解决实际问题培养学生勇于克服困难的坚强意志,也使学生体会学习数学知识的重要性,增强他们对数学学习的自信心和对数学的情感.教学重点:引导学生对例题中的分期付款问题进行独立探究教学难点:独立解决方案教学过程:一、引入:我国现代都市人的消费观念正在变迁——花明天的钱圆今天的梦对我们已不再陌生;贷款购物,分期付款已深入我们生活.但是面对商家和银行提供的各种分期付款服务,究竟选择什么样的方式好呢?。
二、问题:某村民欲买一台售价为1万元的背投式电视,除一次性付款方式外,商家还提供在1年内将款全部还清的前提下三种分期付款方案(月利率为0.4575%):⑴购买后2个月第1次付款,再过2个月第2次付款…购买后12个月第6次付款;⑵购买后1个月第1次付款, 过1个月第2次付款…购买后12个月第12次
付款;⑶购买后4个月第1次付款,再过4个月第2次付款,再过4个月第3次付款。
你能帮他参谋选择一下吗?”三解决问题的过程:1.启迪思维,留有余地:问题1:按各种方案付款每次需付款额分别是多分别是多少?每次付款额是10000的平均数吗?(显然不是,而会偏高)那么分期付款总额就高于电视售价,什么引起的呢?(利息)问题2:按各种方案付款最终付款总额分别是多分别是多少?(事实上,它等于各次付款额之和,于是可以归结为上一问题)。
于是,本课题的关键在于按各种方案付款每次需付款额分别是多分别是多少?——设为x。
2.搜集、整理信息:(1)分期付款中规定每期所付款额相同;(2)每月利息按复利计算,即上月利息要计入下月本金.例如,由于月利率为0.4575%,款额a元过一个月就增值为a(1+0.4575%)=1.004575a(元);再过一个月又增值为1.004575a(1+0.4575%)=1.004575 a(元)3.独立探究方案1可将问题进一步分解为:1. 商品售价增值到多少?2. 各期所付款额的增值状况如何?3.当贷款全部付清时,电视售价与各期付款额有什么关系?4.提出解答,并给答辩:由商品价格=付款额,逆向思维:按利率0.4575%,从2月底起每2个月存入x元,到年底(也付x元)等于去年年底存入10000元的本息总和;得10000×
(1+0.4575%)12=x+(1+0.4575%)2x+(1+0.4575%)4x+(1+0.4575%)6x+(1+0. 4575%)8x+(1+0.4575%)10x,解得=(用计算器求值)5.创建数学模型:比较方案1结果,经过猜想得:分期付款购买售价为a元的商品,分n次经过m个月还清贷款,每月还款x元,月利率为p,则6.验证并使用模型:方案2中,方案3中,7.结论分析:方案类别
付款次数
付款方法
每期所付款表达式
每期付款
付款总额
16
每隔2个月付款1次,付6次x= x1
6x1
2
12
每月付款1次,付12次x= x2
12x2
3
3
每隔4个月付款1次,付3次x= x3
3x3
比较上述三种方案付款总额,结合经济收入情况,即可选择最佳方案.共2页,当前第1页12《考试说明》明确指出:“能阅读、理解、对问题进行陈述的材料,能综合运用所学的数学知识、思想和方法、解决问题。
包括解决带有实际意义的或相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述”。
本节课以经常碰到的银行储蓄和分期付款为背景,复习了等比数列的应用,体现了数学的实际应用价值,尤其是从实际出发来表述问题,课堂气氛异常热烈,更加接近了数学与生活的距离,增加了学生的兴趣,提高了数学的育人功效。
四、小结1.分期付款中的计算涉及的数学知识:等比数列前n项和公式;数学思想:列方程解未知数。
2.“方案2、3→模型→方案3”是由特殊到一般,再由一般到特殊的研究方法; 研究性课题的基本过程:生活实际中的问题存在的可行方案启迪思维留有余地搜集整理信息独立探究个案提出解答并给答辩创建数学模型验证并使用模型结论分析 3.问题来源于现实,问题处
处存在,要善于发现问题并抓住问题本质;而探究问题时往往不会一帆风顺,要勇于战胜困难,磨砺自己意志. 4.促进学生知识迁移——分期贷款及以复利增长型问题可类似解决。
五、课后作业:提出一个熟悉的日常生活中的分期付款问题,并探究解决共2页,当前第2页12。