哈尔滨市平房区九年级上册期末考试数学试题有答案【最新】
- 格式:doc
- 大小:409.02 KB
- 文档页数:7
2016-2017学年黑龙江省哈尔滨市平房区九年级(上)期末数学试卷一、选择题(每题3分共30分) 1.﹣3的相反数是( )A .﹣3B .C .3D .﹣2.下列计算中,正确的是( )A .a 0=1B .a ﹣1=﹣aC .a 3•a 2=a 5D .2a 2+3a 3=5a 53.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.点(﹣2,4)在反比例函数y=(k ≠0)的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8)C .(﹣2,﹣4)D .(4,﹣2)5.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .6.将二次函数y=x 2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是( ) A .y=(x ﹣2)2+1 B .y=(x +2)2+1C .y=(x ﹣2)2﹣1D .y=(x +2)2﹣17.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是( ) A .10% B .20% C .25% D .40%8.如图,为测量学校旗杆的高度,小东用长为3.2m 的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( )m .A.8.8 B.10 C.12 D.149.如图,飞机飞行高度BC为1500m,飞行员看地平面指挥塔A的俯角为α,则飞机与指挥塔A的距离为()m.A.B.1500sinαC.1500cosαD.10.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为.12.函数中自变量的取值范围是.13.计算2﹣的结果是.14.把多项式ax2+2a2x+a3分解因式的结果是.15.若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为°.16.不等式组的解集为.17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为.18.矩形ABCD中,AB=3,AD=5,点E在BC边上,△ADE是以AD为一腰的等腰三角形,则tan∠CDE=.19.已知,如图,CB是⊙O的切线,切点为B,连接OC,半径OA⊥OC,连接AB交OC于点D,若OD=1,OA=3,则BC=.20.如图,直线DE过等边△ABC的顶点B,连接AD、CE,AD∥CE,∠E=30°,若BE:AD=1:,CE=4时,则BC=.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)21.先化简,再求代数式:÷(﹣x)的值,其中x=2sin 60°+2cos60°.22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC的面积;(2)在图2中画出一个面积是10的等腰直角三角形.23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?24.在▱ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.(1)求证:△BFO≌△DEO;(2)若EF平分∠AEC,试判断四边形AFCE的形状,并证明.25.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B 需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?26.已知,△ADB内接于⊙O,DG⊥AB于点G,交⊙O于点C,点E是⊙O上一点,连接AE分别交CD、BD于点H、F.(1)如图1,当AE经过圆心O时,求证:∠AHG=∠ADB;(2)如图2,当AE不经过点O时,连接BC、BH,若∠GBC=∠HBG时,求证:HF=EF;(3)如图3,在(2)的条件下,连接DE,若AB=8,DH=6,求sin∠DAE的值.27.在平面直角坐标系中,抛物线y=x2﹣bx+c与x轴交于点A(8,0)、B(2,0)两点,与y轴交于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PB并延长交y轴于点D,若点P的横坐标为t,CD 长为d,求d与t的函数关系式(并求出自变量t的取值范围);(3)如图3,在(2)的条件下,连接AC,过点P作PH⊥x轴,垂足为点H,延长PH交AC于点E,连接DE,射线DP关于DE对称的射线DG交AC于点G,延长DG交抛物线于点F,当点G为AC中点时,求点F的坐标.2016-2017学年黑龙江省哈尔滨市平房区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分共30分)1.﹣3的相反数是()A.﹣3 B.C.3 D.﹣【考点】相反数.【分析】依据相反数的定义回答即可.【解答】解:﹣3的相反数是3.故选:C.2.下列计算中,正确的是()A.a0=1 B.a﹣1=﹣a C.a3•a2=a5 D.2a2+3a3=5a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和合并同类项法则以及同底数幂的乘法运算法则化简求出答案.【解答】解:A、a0=1(a≠0),故此选项错误;B、a﹣1=(a≠0),故此选项错误;C、a3•a2=a5,正确;D、2a2+3a3,无法计算,故此选项错误;故选:C.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.4.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4) B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】将(﹣2,4)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵点(﹣2,4)在反比例函数y=(k≠0)的图象上,∴k=﹣2×6=﹣8,四个选项中只有D符合.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.将二次函数y=x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣1 D.y=(x+2)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),再确定平移后顶点坐标,然后写出平移的顶点式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移2个单位,再向上平移1个单位得到点(2,1),所以平移后的抛物线的解析式为y=(x﹣2)2+1.故选A.7.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【考点】一元二次方程的应用.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.8.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()m.A.8.8 B.10 C.12 D.14【考点】相似三角形的应用.【分析】利用相似三角形对应边成比例解题.【解答】解:因为竹竿和旗杆均垂直于地面,所以构成两个相似三角形,若设旗杆高x米,则,∴x=12.故选C.9.如图,飞机飞行高度BC为1500m,飞行员看地平面指挥塔A的俯角为α,则飞机与指挥塔A的距离为()m.A.B.1500sinαC.1500cosαD.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形,可得Rt△ABC中,∠C=90°,BC=1500m,运用三角函数定义解Rt△ABC即可求出AB.【解答】解:由题意得:Rt△ABC中,∠A=∠α,∠C=90°,BC=1500m,∴sinA=sinα=,∴AB==m.故选A.10.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】①根据图象中t=0时,s=120实际意义可得;②根据图象中t=1时,s=0的实际意义可判断;③由④可知小汽车的速度是货车速度的2倍;④由图象t=1.5和t=3的实际意义,得到货车和小汽车的速度,进一步得到1.5小时后的路程,可判断正误.【解答】解:(1)由图象可知,当t=0时,即货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①错误;(2)当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;(3)由(3)知小汽车的速度为:120÷1.5=80(千米/小时),货车的速度为40(千米/小时),∴小汽车的速度是货车速度的2倍,故③正确;(4)根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故货车的速度为:120÷3=40(千米/小时),出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A地,即小汽车1.5小时行驶路程为120千米,故出发1.5小时,小汽车比货车多行驶了60千米,∵故④正确.∴正确的有②③④三个.故选:C二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为 5.4×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400 000用科学记数法表示为5.4×106,故答案为:5.4×106.12.函数中自变量的取值范围是.【考点】函数自变量的取值范围;分式有意义的条件.【分析】该函数由分式组成,故分母不等于0,依次解得自变量的取值范围.【解答】解:2x+1≠0,解得x.故答案为x≠.13.计算2﹣的结果是﹣.【考点】二次根式的加减法.【分析】根据二次根式的乘除,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:原式=﹣3=﹣,故答案为:﹣.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为216°.【考点】扇形面积的计算;弧长的计算.【分析】首先根据题意求出扇形的半径,然后运用弧长公式求出圆心角,即可解决问题.【解答】解:设这个扇形的半径为λ,弧长为μ,圆心角为α°;由题意得:,μ=6π,解得:λ=5;由题意得:,解得:α=216,故答案为216.16.不等式组的解集为﹣1<x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<1,解②得x>﹣1,则不等式组的解集是:﹣1<x<1.故答案是:﹣1<x<1.17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为.【考点】列表法与树状图法.【分析】画树状图展示所有9种等可能的结果数,再找出两次摸出的小球都是黑球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球都是黑球的结果数为4,所以两次摸出的小球都是黑球的概率=.故答案为.18.矩形ABCD中,AB=3,AD=5,点E在BC边上,△ADE是以AD为一腰的等腰三角形,则tan∠CDE=或.【考点】矩形的性质;等腰三角形的性质;解直角三角形.【分析】需要分类讨论:AD=AE和AD=DE两种情况,由勾股定理和三角函数即可得出结果.【解答】解:在矩形ABCD中,AB=CD=3,BC=AD=5,∠C=∠B=90°,①当DE=DA=5时,如图1所示:∴CE==4,∴tan∠CDE==;②当AE=AD=5时,BE==4,∴CE=BC﹣BE=1,∴tan∠CDE==;故答案为:或.19.已知,如图,CB是⊙O的切线,切点为B,连接OC,半径OA⊥OC,连接AB交OC于点D,若OD=1,OA=3,则BC=4.【考点】切线的性质;勾股定理;垂径定理.【分析】连接OB,由垂直定义得∠A+∠ADO=90°,由切线的性质可得∠CBO=90°,再由AO=BO,可得∠OAD=∠OBD,进而可证明CB=CD,设BC=x,则CD=x,在Rt△OBC中利用勾股定理可求出x的长,问题得解.【解答】解:连接OB,∵OA⊥OC,∴∠A+∠ADO=90°,∵CB是⊙O的切线,∴∠OBC=90°,∴∠OBD+∠CBD=90°,∵AO=BO,∴∠OAD=∠OBD,∴∠OAD=∠OBD,∴CB=CD,设BC=x,则CD=x,在Rt△OBC中,OB=OA=3,OC=OD+CD=x+1,∵OB2+BC2=OC2,∴32+x2=(x+1)2,解得:x=4,即BC的长为4,故答案为:4.20.如图,直线DE过等边△ABC的顶点B,连接AD、CE,AD∥CE,∠E=30°,若BE:AD=1:,CE=4时,则BC=2.【考点】等边三角形的性质;旋转的性质;相似三角形的判定与性质.【分析】作辅助线,构建全等三角形和直角三角形,由旋转得:∠PCE=60°,∠APC=∠E=30°,根据BE:AD=1:,设AD=x,BE=x,则AP=BE=x,根据三角函数表示PF、PH、AH、GH的长,根据PG=GH+PH 列式求x的长,得BE=2,在△BGC中,利用勾股定理求得BC的长.【解答】解:将△CBE绕C逆时针旋转60°到△CAP,BC与AC重合,延长DA交PC于H,过H作HF ⊥AP于F,CP交DE于G,∴∠PCE=60°,∵∠E=30°,∴∠CGE=90°,由旋转得:CE=CP,Rt△CGE中,CE=CP=4,∴CG=CE=2,∴GP=PC﹣CG=2,∵AD:BE=:1,设AD=x,BE=x,则AP=BE=x,∵AD∥BE,∴∠ADE=∠E=30°,Rt△DGH中,∠DHG=60°,由旋转得:∠APC=∠E=30°,∴∠HAP=60°﹣30°=30°,∴∠HAP=∠APC=30°,∴AH=PH,AF=PF=x,cos30°=,∴PH==x,∴DH=AD+AH=x+x=x,∴GH=DH=x,∵PG=2=GH+PH,∴2=x+x,x=2,∴BE=x=2,由勾股定理得:EG===6,∴BG=6﹣2=4,在Rt△BGC中,BC===2;故答案为:.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)21.先化简,再求代数式:÷(﹣x)的值,其中x=2sin 60°+2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先将代数式进行化简,然后求出x的值并代入代数式求解即可.【解答】解:∵x=2sin 60°+2cos60°=+1,∴÷(﹣x)=÷=×==﹣.22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC的面积;(2)在图2中画出一个面积是10的等腰直角三角形.【考点】作图-轴对称变换.【分析】(1)作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC的面积即可;(2)先求出等腰直角三角形的直角边长,再画出三角形即可.=AD•BC=×6×4=12;【解答】解:(1)如图1,四边形ABDC即为所求,S四边形ABDC(2)如图2,△ABC即为所求..23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总数减去其他各小组的人数即可求得喜欢足球的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.【解答】解:(1)∵10÷25%=40,答:本次被调查的学生人数为40人;(2)40﹣15﹣2﹣10=13,如图所示,(3),答:估计全校最喜爱足球的人数比最喜爱篮球的人数大约少50人.24.在▱ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.(1)求证:△BFO≌△DEO;(2)若EF平分∠AEC,试判断四边形AFCE的形状,并证明.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,即可得出四边形是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,AD∥BC,AD=BC,∴∠OBF=∠ODE,在△BFO和△DEO中,,∴△BFO≌△DEO(ASA);(2)解:四边形AFCE是正方形;理由如下:∵△BFO≌△DEO,∴BF=DE,∴CF=AE,∵AD∥BC,∴四边形AFCE是平行四边形,又∵AF⊥BC,∴∠AFC=90°,∴四边形AFCE是矩形,∵EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AEF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,∴四边形AFCE是正方形.25.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B 需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设设A款a元,B款b元,根据题意列方程组求解;(2)设让利的羽绒服有x件,总获利不低于3800元,列不等式,求出最大整数解.【解答】解:(1)设A款a元,B款b元,可得:,解得:,答:A款400元,B款300元.(2)设让利的羽绒服有x件,则已售出的有(20﹣x)件600 (20﹣x)+600×60% x﹣400×10﹣300×10≥3800,解得x≤5,答:最多让利5件.26.已知,△ADB内接于⊙O,DG⊥AB于点G,交⊙O于点C,点E是⊙O上一点,连接AE分别交CD、BD于点H、F.(1)如图1,当AE经过圆心O时,求证:∠AHG=∠ADB;(2)如图2,当AE不经过点O时,连接BC、BH,若∠GBC=∠HBG时,求证:HF=EF;(3)如图3,在(2)的条件下,连接DE,若AB=8,DH=6,求sin∠DAE的值.【考点】圆的综合题.【分析】(1)如图1中,连接BE,由DG∥BE,推出∠AEB=∠AHG,由∠ADB=∠AEB,即可推出∠ADB=∠AHG.(2)连接AC、DE,EB、AC、BC.只要证明HG=CG,∠EDB=∠CDB,根据等腰三角形三线合一即可证明.(3)过点O作ON⊥DE,OM⊥AB垂足分别为N、M,连接OD、OE、OA、OB.只要证明△NOE≌△MBO,推出NE=OM=3,OB==5,在RT△OMB中,根据sin∠OBM=,计算即可.【解答】证明:(1)如图1中,连接BE,∵AE是⊙O的直径∴∠ABE=90°,∵DG⊥AB,∴∠ABE=∠AGD=90°,∴∠AEB=∠AHG,∵∠ADB=∠AEB∴∠ADB=∠AHG.(2)连接AC、DE,EB、AC、BC.∠GBC=∠HBG,DG⊥AB∴∠GHB=∠BCH,BH=BC,∴HG=CG,∴AH=AC,∠AHC=∠HCA,∠BAC=∠HAG∵∠AED=∠ACH,∠DHE=∠AHC,∴∠AED=∠DHE,∴DH=DE,∵∠EDB=∠EAB,∠CDB=∠BAC,∴∠EDB=∠CDB,∴HF=EF.(3)过点O作ON⊥DE,OM⊥AB垂足分别为N、M,连接OD、OE、OA、OB.∴BM=AB=4,∵DH=DE=6,HF=EF,∴∠DAE+∠BDA=90°,∵∠E O D=2∠DAE∠AO B=2∠ADB,∴∠BOA+∠EOD=180°,∵∠DOE=2∠NOE∠AOB=2∠BOM,∴∠NOE+∠BOM=90°∠NOE+∠NEO=90°,∵∠NEO=∠BOM,OE=OB,∴△NOE≌△MBO∴NE=OM=3,∴OB==5,∵∠ADB=∠BOM,∴∠DAF=∠OBM,在RT△OMB中sin∠OBM==∴sin∠DAE=.27.在平面直角坐标系中,抛物线y=x2﹣bx+c与x轴交于点A(8,0)、B(2,0)两点,与y轴交于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PB并延长交y轴于点D,若点P的横坐标为t,CD 长为d,求d与t的函数关系式(并求出自变量t的取值范围);(3)如图3,在(2)的条件下,连接AC,过点P作PH⊥x轴,垂足为点H,延长PH交AC于点E,连接DE,射线DP关于DE对称的射线DG交AC于点G,延长DG交抛物线于点F,当点G为AC中点时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线解析式;(2)先表示出BH,PH,进而得出∠HBP的正切值,再用等角的同名三角函数即可表示出OD,即可得出结论;(3)先求出直线AC解析式,进而判断出四边形DOMN是矩形,最后用三角函数和对称性求出t,即可得出OD和tan∠GDN=,即可得出结论.【解答】证明:(1)∵抛物线过A(8,0)、B(2,0)两点,∴,∴,∴抛物线的解析式为:y=x2﹣x+4(2)如图2,过点P作PH⊥AB于点H,设点P(t,)∴BH=t﹣2,PH=∴tan∠HBP==,∵∠OBD=∠HBP,∴tan∠OBD=tan∠HBP,∴,∴OD=,∴CD=4﹣OD=∴d=(2<t<8),(3)如图3,设直线AC的解析式为y=kx+b,∴∴,∴直线AC的解析式为,∴点E(t,)∴EH=OD=,∵EH∥OD,∴四边形DOHE是矩形,∴DE∥OH,取AO的中点M,连接GM,交DE于点N,∴GM∥OC,∴GN⊥DE,∴四边形DOMN是矩形,∴OD=NM=,NG=2﹣MN=,∵DN=OM=4tan∠GDN=,∵由对称性得∠PDE=∠GDE=∠HBPtan∠GDN=tan∠HBP,∴,∴t=∴OD=,∴tan∠GDN=,设点F(m,过点F作FK⊥DE交延长线于点K,tan∠GDN=,∴,∴F(10,4),2017年2月10日。
2020-2021学年黑龙江省哈尔滨市平房区九年级(上)期末数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.−23的倒数是()A. 23B. 32C. −1D. −322.下列运算中,结果正确的是()A. (a+b)2=a2+b2B. (−a2b)3=a6b3C. (a3)2=a 6D. a6÷a2=a33.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.4.若反比例函数y=3−kx的图象经过点(3,−2),则下列各点在该函数图象上的为()A. (2,3)B. (6,1)C. (−1,6)D. (−2,−3)5.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.6.在Rt△ABC中,∠C=90°,∠B=36°,若BC=m,则AB的长为()A. mcos36∘B. m⋅cos36°C. m⋅sin36°D. m⋅tan36°7.如图,PA、PB是⊙O的两条切线,点C在⊙O上,若∠APB=80°,则∠ACB的度数为()A. 40°B. 45°C. 50°D. 55°8.分式方程x−33x =2x的解为()A. x=0B. x1=0,x2=9C. x=9D. 此方程无解9.如图,F为▱ABCD的边AD上一点,射线BF交CD的延长线于点E,则下列结论正确的是()A. ABED =EFBFB. AFBC =ABCEC. AFFD =EFBFD. FDBC =EDCD10.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示,则乙比甲晚到()小时.A. 0.4B. 0.3C. 0.2D. 0.1二、填空题(本大题共10小题,共30.0分)11.将数2020000用科学记数法表示为______.12.计算√18−4√12的结果是______.13.函数y=x−13+x中,自变量x的取值范围是______ .14.把多项式x3−4x2+4x分解因式的结果是______ .15.不等式组{2x−3<11−x≤2的正整数解为______ .16.一个扇形的面积为12π,弧长为4π,则此扇形的圆心角为______ .17.在一个不透明的袋子中装有除颜色外完全相同的2个红球和2个黑球,摸出一个不放回再摸一次,则两次都摸到红球的概率为______ .18.某商品每件300元,经过两次降价后,售价为243元,若每次降价的百分比相同,则第一次降价后的售价为每件______ 元.19.在边长为4的正方形ABCD中,点E在AB边上,点N在AD边上,点M为BC中点,连接DE、MN、CN,若DE=MN,tan∠ADE=14,则CN的长为______ .20.如图,在△ABD中,点C为BD边中点,连接AC,点E在AC上,连接BE,若AB=AC,tan∠BAC=34,∠BAC=2∠EBC,BC=√10,则AD的长为______ .三、解答题(本大题共7小题,共60.0分)21.先化简,再求代数式aa+2−a2−2a+1a2−4÷a−1a−2的值,其中a=3tan30°−2√2cos45°.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为边的菱形ABCD(不是正方形),点C、D在小正方形的顶点上;(2)在图中画一个以AB为底的等腰三角形ABE,点E在小正方形的顶点上,且△ABE是锐角三角形.请直接写出cos∠AEB的值.23.为了更有针对性开展课后服务,振兴中学开展了以“我最想参加的课后服务活动小组”为主题的调查活动,围绕“在学习、体育、艺术、科普四类课后服务活动小组中你最想参加哪一个小组?(必选且只选一类)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的条形统计图,其中最想参加体育活动小组的占所调查人数的25%.请根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若振兴中学共有1200名学生,请你估计该中学最想参加科普学小组的学生有多少名?24.已知:在矩形ABCD中,点E在BC边上,连接DE,且DE=BC,过点A作AF⊥DE于点F.(1)如图1,求证:AB=AF;(2)如图2,连接AE,当BE=DF时,在不添加任何辅助线的情况下,请直接写出图2中所有长度等AB的线段.于2√3325.为响应阳光体育运动的号召,学校决定从体育用品商店购买一批篮球和足球.按标价若购买2个篮球和3个足球需600元,若购买3个篮球和1个足球需550元.(1)求篮球、足球每个分别是多少元?(2)由于购买数量较多,商店决定给予一定的优惠,篮球每个优惠20%,足球每个优惠10%,若学校决定买两种球共40个,在购买资金不超过4500元时,则购买篮球至多是多少个?26.已知:△ABC内接于⊙O,直径CD交AB于点E,点F在CD上,连接BF,∠CBF=∠BAC.(1)如图1,求证:BF⊥CD;(2)如图2,延长BF交⊙O于点G,连接AG,若AE=AG,求证:BC=EC;(3)如图3,在(2)的条件下,点H在BC上,连接EH,若∠BEH=45°,DE=1,BH=2,求线段AG长.x2+bx+c交x轴于A、B两点,交y轴于点C,过点B的直线y=−x+6交抛27.已知:抛物线y=−12物线于点E,点E的横坐标为1,交y轴于点D.(1)如图1,求抛物线的解析式;(2)如图2,点P是第一象限内抛物线上一点,连接AP交y轴于点F,设点P的横坐标为t,DF长为d,求d与t的函数关系式(不要求写出自变量t的的取值范围);(3)如图3,在(2)的条件下,连接BC,点G为ED延长线上一点,连接OG,过点O作OK⊥OG交BC于点K,连接PK交x轴于点H,连接EH,若OG=2OK,∠PHB=∠EHA时,求d的值.答案和解析1.【答案】D【解析】解:−23的倒数为−32.故选:D .根据倒数的定义即可得到−23的倒数.本题考查了倒数的定义:a 与1a 互为倒数(a ≠0). 2.【答案】C【解析】解:A 、(a +b)2=a 2+2ab +b 2,错误;B 、(−a 2b)3=−a 6b 3,错误;C 、(a 3)2=a 6,正确;D 、a 6÷a 2=a 4,错误;故选:C .根据同底数幂的除法和幂的乘方计算即可.此题考查同底数幂的除法和幂的乘方,关键是根据同底数幂的除法和幂的乘方解答.3.【答案】B【解析】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;B 、既是轴对称图形,又是中心对称图形,故本选项符合题意;C 、是轴对称图形,不是中心对称图形,故本选项不合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B .根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【答案】C【解析】解:∵反比例函数y=3−kx的图象经过点(3,−2),∴xy=3−k=−6,A、(2,3),此时xy=2×3=6≠−6,不合题意;B、(6,1),此时xy=6×1=6≠−6,不合题意;C、(−1,6),此时xy=−1×6=−6,合题意;D、(−2,−3),此时xy=−2×(−3)=6≠−6,不符合题意;故选:C.直接利用反比例函数图象上点的坐标特点进而得出答案.此题主要考查了反比例函数图象上点的坐标特征,正确得出3−k的值是解题关键.5.【答案】D【解析】解:左视图有2列,从左到右每列小正方形数目分别为2,1.故选:D.找到从几何体的左边看所得到的图形即可.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【答案】A【解析】解:∵∠C=90°,∠B=36°,BC=m,∴cosB=BCAB,∴AB=BCcosB =mcos36∘,故选:A.直接根据锐角三角函数定义求解即可.本题考查了解直角三角形,熟练掌握锐角三角函数定义是解题的关键.7.【答案】C【解析】解:连接OA、OB,∵PA、PB与圆O分别相切于点A、B,∴OA⊥AP,OB⊥PB,∴∠OAP=∠OBP=90°,又∠APB=80°,∴∠AOB=360°−90°−90°−80°=100°,又∵∠ACB和∠AOB分别是AB⏜所对的圆周角和圆心角,∴∠ACB=12∠AOB=12×100°=50°,故选:C.连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠ACB的度数.此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.8.【答案】C【解析】解:去分母得:x(x−3)=6x,整理得:x2−9x=0,即x(x−9)=0,解得:x1=0,x2=9,经检验x=0是增根,则分式方程的解为x=9.故选:C.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,熟练掌握分式方程的解法是解本题的关键.9.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AB//CD,AD//BC,∴△ABF∽△DEF,△EFD∽△EBC,∴ABDE =BFEF,AFFD=BFEF,FDBC=EDEC,故选项A、C、D错误;∵△ABF∽△DEF,△EFD∽△EBC,∴△ABF∽△CEB,∴AFCB =ABCE,故选项B正确;故选:B.根据题意,利用三角形的相似,可以判断各个选项中的结论是否正确,本题得以解决.本题考查相似三角形的判定与性质、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】B【解析】解:根据0.5~1.5小时内,乙半小时跑2km,可得1小时跑4km,故1.5小时跑了12km,剩余的8km 需要的时间为8÷10=0.8小时,根据1.5+0.8−2=0.3,可得甲比乙晚到0.3小时,故选:B.根据函数图象中已知的数据,运用公式:路程÷时间=速度,速度×时间=路程,路程÷速度=时间,进行计算即可得到正确结论.本题考查了函数图象,观察函数图象的横坐标,可得时间,观察函数图象的纵坐标,可得相应的路程.11.【答案】2.02×106【解析】解:2020000=2.02×106.故答案为:2.02×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.12.【答案】√2【解析】解:√18−4√12=3√2−2√2=√2,故答案为:√2.先根据二次根式的性质把各个二次根式化简,合并同类二次根式即可.本题考查的是二次根式的加减,掌握二次根式的性质、二次根式的加减法法则是解题的关键.13.【答案】x≠−3【解析】解:由题意得,3+x≠0,解得,x≠−3,故答案为:x≠−3.根据分式有意义的条件列出不等式,解不等式得到答案.本题考查的是函数自变量的取值范围的确定,掌握分式的分母不为0是解题的关键.14.【答案】x(x−2)2【解析】解:x3−4x2+4x=x(x2−4x+4)=x(x−2)2.故答案为:x(x−2)2.直接提取公因式x,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法分解因式以及公式法分解因式,正确运用乘法公式是解题关键.15.【答案】1【解析】解:{2x−3<1①1−x≤2②,解①得x<2,解②得x≥−1,故不等式组的解集为−1≤x<2,故不等式组的正整数解为1.故答案为1.先分别解两个不等式得到不等式组的解集,再找出其中的整数解.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.16.【答案】120°【解析】解:设这个扇形所在圆的半径为r,所对的圆心角为n°,12×4π×r=12π,解得r=6,4π=nπ×6180,解得,n=120,故答案为:120°.根据一个扇形的面积为12π,弧长为4π,可以求得扇形所在圆的半径,然后根据弧长公式,即可求得扇形所对的圆心角的度数.本题考查扇形面积的计算、弧长的计算,解答本题的关键是明确题意,利用扇形面积公式和弧长公式解答.17.【答案】16【解析】解:列表如下由表知,共有12种等可能结果,其中两次都摸到红球的有2种结果,所以两次都摸到红球的概率为212=16,故答案为:16.列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】270【解析】解:设每次降价的百分比为x,依题意,得:300(1−x)2=243,解得:x1=0.1=10%,x2=−1.9(舍去),∴第一次降价后的售价为300×(1−10%)=270(元/件).故答案为:270.设每次降价的百分比为x,根据原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其正值,再利用第一次降价后的售价=原价×(1−降价的百分比)即可求出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.【答案】5或√17【解析】解:根据题意可分两种情况画图:①如图1,取AD的中点G,连接MG,∴AG=DG=12AD=2,∵点M为正方形ABCD的边BC中点,∴MG⊥AD,MG=AB=AD,∴∠MGN=∠A=90°,在Rt△ADE和Rt△GMN中,{ DE=MNAD=MG,∴Rt△ADE≌Rt△GMN(HL),∴∠GMN=∠ADE,∴tan∠GMN=tan∠ADE=14,∴GNGM =14,∵GM=AB=4,∴GN=1,∴DN=DG+GN=2+1=3,在Rt△CDN中,根据勾股定理,得CN=√CD2+DN2=√42+32=5;②如图2,取AD的中点G,同理可得Rt△ADE≌Rt△GMN(HL),∴∠GMN=∠ADE,∴tan∠GMN=tan∠ADE=14,∴GNGM =14,∵GM=AB=4,∴GN=1,∴DN=DG−GN=2−1=1,在Rt△CDN中,根据勾股定理,得CN=√CD2+DN2=√42+12=√17.综上所述:CN的长为5或√17.故答案为:5或√17.根据题意可分两种情况画图:①如图1,取AD的中点G,连接MG,证明Rt△ADE≌Rt△GMN,可得∠GMN=∠ADE,所以tan∠GMN=tan∠ADE=14,进而可得DN的长,再利用勾股定理即可求出CN的长;②如图2,取AD的中点G,同理可得Rt△ADE≌Rt△GMN,得GN=1,DN=DG−GN=1,再利用勾股定理即可得CN的长.本题考查了正方形的性质、全等三角形的判定与性质、解直角三角形,解决本题的关键是掌握正方形的性质.20.【答案】3√5【解析】解:作AF⊥BC于点F,∵AB=AC,∴AF平分∠BAC,BF=CF,∴∠CAF=12∠BAC,即2∠CAF=∠BAC,∵∠BAC=2∠EBC,∴∠CAF=∠EBC,∵∠CAF+∠ACF=90°,∴∠EBC+∠ACF=90°,∴∠BEC=90°,∴∠AEB=90°,∵tan∠BAC =34,∴设BE =3x ,则AE =4x , ∴AB =√(3x)2+(4x)2=5x , ∴AC =5x , ∴CE =x ,∵BC =√10,BE =3x ,CE =x , ∴10=(3x)2+x 2,解得x 1=1,x 2=−1(舍去), ∴AC =5x =5,∵∠AFC =90°,BF =12BC =√102,∴AF =√52−(√102)2=3√102, ∵点C 为BD 的中点, ∴FD =√102+√10=3√102, ∵∠AFD =90°, ∴AD =√(3√102)2+(3√102)2=3√5,故答案为:3√5.作辅助线AF ⊥BC ,然后根据等腰三角形的性质和勾股定理,可以求得AB 、AC 、CE 、BE 的值,再利用勾股定理可以得到AF 的值和AD 的值,本题得以解决.本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:原式=aa+2−(a−1)2(a+2)(a−2)⋅a−2a−1=a −a −1=a −a +1a +2=1a+2,当a =3×√33−2√2×√22=√3−2时,原式=√3−2+2=√33.【解析】先把分子分母因式分解和除法运算化为乘法运算,再约分后进行同分母的减法运算得到原式=1a+2,接着根据特殊角的三角函数值计算出a =√3−2,然后把a =√3−2代入1a+2中运算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.【答案】解:(1)如图,菱形ABCD 即为所求作.(2)如图,△ABE 即为所求作.cos∠AEB =45.【解析】(1)周长边长为√10的菱形即可. (2)作腰为5,底为AB 的等腰三角形即可.本题考查作图−应用与设计,等腰三角形的判定,菱形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:(1)15÷25%=60(名),答:在这次调查中,一共抽取了60名学生;(2)60−9−15−12=24(名)补全条形统计图如图所示:(3)1200×1260=240(名),答:振兴中学1200名学生中最想参加科普学小组的大约有240名.【解析】(1)从条形统计图中可知“最想参加体育活动小组”的有15人,占调查人数的25%,可求出调查人数;(2)计算出“最想参加文艺活动小组”的人数,即可补全条形统计图;(3)样本中“最想参加科普活动小组”的占调查人数的1260,因此估计总体1200名学生的1260是“最想参加科普活动小组”的人数.本题考查条形统计图的意义,频数、频率、总数之间的关系,掌握频数、频率、总数之间的关系是正确解答的关键.24.【答案】证明:(1)∵四边形ABCD是矩形,AF⊥DE,∴AD//BC,AD=BC,AB=CD,∠C=∠AFD=90°,∴∠ADE=∠DEC,∵DE=BC,∴AD=DE,在△ADF和△DEC中,{∠AFD=∠C=90°∠ADE=∠DECAD=DE,∴△ADF≌△DEC(AAS),∴AF=CD,∴AF=AB;(2)AD,BC,DE的长度等于2√33AB,理由如下:∵△ADF≌△DEC,∴CE=DF,∴BE=EF,∵BE=DF,∴BE=EC=DF=EF,∴DE=2EC,∵DE2=EC2+CD2,∴DE=2√33AB,∴AD=BC=DE=2√33AB.【解析】(1)由“AAS”可证△ADF≌△DEC,可得AF=CD=AB;(2)由全等三角形的性质可得BE=EC=DF=EF,由勾股定理可求解.本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是本题的关键.25.【答案】解:(1)设篮球的单价是x元,足球的单价是y元.根据题意,得{2x +3y =6003x +y =550,解得{x =150y =100.答:篮球的单价为150元,足球单价为100元;(2)优惠后篮球单价150×(1−20%)=120,足球单价100×(1−10%)=90, 设购买z 个篮球,则购买(40−z)个足球, 根据题意,得120z +90×(40−z)≤4500, 解得:z ≤30,答:该校最多可以购买30个篮球.【解析】(1)设篮球的单价是x 元,足球的单价是y 元,根据购买2个篮球和3个足球需600元,购买3个篮球和1个足球需550元,列出方程组,求解即可;(2)设购买z 个篮球,则购买(40−z)个足球,根据购买资金不超过4500元,列不等式解答即可. 本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.26.【答案】证明:(1)如图1中,连接BD .∵CD 是直径, ∴∠DBC =90°, ∴∠D +∠DCB =90°, ∵∠A =∠D ,∠A =∠CBF , ∴∠CBF =∠D , ∴∠CBF +∠DCB =90°, ∴∠BFC =90°, ∴BF ⊥CD .(2)证明:如图2中,连接CG.∵CD是直径,CD⊥BG,∴BC⏜=CG⏜,∴CB=CG,∠CAE=∠CAG,∵AE=AG,AC=AC,∴△CAE≌△CAG(SAS),∴CE=CG,∴BC=EC.(3)解:如图3中,连接BD,CG,AD,过点C作CK⊥AB于K,交EH于W,连接BW,延长BW交CD 于点P.∵BC=EC,CK⊥BE,∴BK=KE,∠CBE=∠CEB,∴WE=WB,∴∠PBE=∠HEB=45°,∴∠BWE=∠PWE=90°,∵BE=EB,∴△PBE≌△HBE(SAS),∴PE=BH=2,∴CP=CH,设CP=PH=x,∵BD是直径,∴∠CBD=90°,∴∠DBP+∠CBOP=90°,∵∠CBP=∠CEH,∠CEH+∠DPB=90°,∴∠DPB=∠DBP,∴DB=DP=DE+EP=1+2=3,∵BD2+BC2=CD2,∴32+(2+x)2=(3+x)2,∴x=2,∴CD=5,∵∠ADJ=∠ABC,∠AED=∠BEC,∠ABC=∠CEB,∴∠ADE=∠AED,∴AD=AE,∵AJ⊥DE,∴DJ=JE=12,∴CD是直径,∴∠DAC=90°,∴∠DAJ+∠CAJ=90°,∠CAJ+∠ACD=90°,∴∠DAJ=∠ACD,∵∠AJD=∠DAC,∴△AJD∽△CAD,∴ADCD =JDAD,∴AD=√102,∵△CAG≌△CAE,∴∠ACG=∠ACD,∴AD⏜=AG⏜,∴AG=AD=√102.【解析】(1)如图1中,连接BD.想办法证明∠CBF+∠DCB=90°即可.(2)如图2中,连接CG.利用垂径定理证明CB=CG,再利用全等三角形的性质证明CE=CG即可.(3)如图3中,连接BD,CG,AD,过点C作CK⊥AB于K,交EH于W,连接BW,延长BW交CD于点P.首先证明BH=EP=2,CH=PC,DB=DP=3,在Rt△BCD中,利用勾股定理求出CP=CH=2,再利用相似三角形的性质求出AD,再证明AG=AD即可.本题属于圆综合题,考查了垂径定理,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形和相似三角形解决问题,属于中考压轴题.27.【答案】解:(1)∵过点B的直线y=−x+6交抛物线于点E,点E的横坐标为1,∴y=−1+6=5,∴E(1,5),B(6,0),∵点B,E均在抛物线y=−12x2+bx+c上,∴{5=−12×12+b+c0=−12×62+6b+c,∴{b=5 2c=3,∴y=−12x2+52x+3.(2)由题意知,且A在抛物线上,且在x轴上,∴A(−1,0),∵P在抛物线上且横坐标为t,设P(t,−12t2+52t+3),过点P作PM⊥x轴于点M,tan∠PAM=PMAM =−12t2+52t+3t+1=−12(t−6),∴△AOF~△PAM,∴PMAM =OFOA,∴OF=−12t+3,∴OD=6,由题意知,DF=d,DF+FO=OD,∴d=6−(−12+3),d=12t+3.(3)过点K作KR⊥OB,过点B作BN⊥BE交OK延长线于点N,∵OG⊥OK,∴∠DOB=∠GON,∴∠DOB+∠DON=∠DON+∠BON,即∠DOG=∠BON,∵OB=OD,∴∠BDO=∠OBD=45°,∴∠GDO=∠OBN=135°,∴△GDO~△OBN,∵OG=2OK,∴OG=ON,∴OG=ON=2OK,∵B(6,0),C(0,3),∴BC解析式为:y=−12x+3,设点K(m,−12m+3)过点N作NS⊥x轴于S,∵△KOR与△NOS相似,KR//NS,∴KRSN =OROS=12,∴OS=2m,∴BS=2m−6,NS=2KR=6−m,∵∠OBN=135°,∴∠NBS=45°,∴BS=NS,即2m−6=6−m,∴m=4,∴K(4,1),延长EH交PM延长线于点T,过点E作EQ⊥PM于点Q,∴∠PHB=∠EHA,HM⊥PT,∴HP=HT,∴PM=MT=−12t2+52t+3,EQ=x P−x E,EQ=t−1,QT=y Q+MT=−12t2+52t+8,过点K作KL⊥PM,KL=t−4,PL=−12t2+52t+2,∴tan∠TPH=tan∠T=QEQT =KLPL=t−1−12t2+52t+8=t−4−12t2+52t+2,∴t2−t−20=0,∴t1=5,t2=4(舍去),∴d=12t+3=112.【解析】(1)根据已知,可确定点E和点B的坐标,然后将两点坐标代入抛物线的解析式即可确定出b、c 的值,得出结论;(2)先确定点A的坐标,设出点P的坐标.过点P作PM⊥x轴于点M,然后根据相似三角形的判定与性质列出方程,求解即可得到问题的答案;(3)过点K作KR⊥OB,过点B作BN⊥BE交OK延长线于点N,然后根据相似三角形的判定与性质得到OG= ON=2OK,设出K点坐标,最后由三角函数关系求得答案.此题是二次函数综合题,主要考查了抛物线的顶点坐标,旋转的性质,抛物线和直线的交点坐标,解方程组,解本题的关键是确定出直线BC的解析式,是一道中等难点的中考常考题.。
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )A .(543+10) cmB .(542+10) cmC .64 cmD .54cm2.如图,在四边形ABCD 中,AD BC ∕∕,点,E F 分别是边,AD BC 上的点,AF 与BE 交于点O ,2,1AE BF ==,则AOE ∆与BOF ∆的面积之比为( )A .12B .14C .2D .43.已知一块圆心角为300︒的扇形纸板,用它做一个圆锥形的圣诞帽(接缝忽略不计)圆锥的底面圆的直径是30cm ,则这块扇形纸板的半径是( )A .16cmB .18cmC .20cmD .12cm4.如图,空地上(空地足够大)有一段长为10m 的旧墙MN ,小敏利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长100m ,矩形菜园ABCD 的面积为900m 1.若设AD =xm ,则可列方程( )A .(60﹣2x )x =900B .(60﹣x )x =900C .(50﹣x )x =900D .(40﹣x )x =900 5.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是( )A .2:1B .4:1C .3:1D .2:16.已知33,33a b =+=-,则22a ab b -+的值是( )A .32B .33C .32±D .187. “凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 8.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x 名同学,则根据题意列出的方程是( ).A .x (x +1)=182B .x (x +1)=182×12C .x (x -1)=182D .x (x -1)=182×2 9.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转42°得到Rt △A'B'C',点A 在边B'C 上,则∠B'的大小为( )A .42°B .48°C .52°D .58° 10.一次函数(0)y ax b a =+≠与二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( ).A .B .C .D .二、填空题(每小题3分,共24分)11.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 1.12.已知⊙O 的半径为6cm ,圆心O 到直线L 的距离为5cm ,则直线L 与⊙O 的位置关系是___________.13.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k ,则既能使函数y =k x的图象经过第一、第三象限,又能使关于x 的一元二次方程x 2﹣kx +1=0有实数根的概率为_____.14.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x ,可列方程________.15.已知函数()2321f x x x =--,如果2x =,那么()f x =___________. 16.如图,A 、B 、C 、D 是O 上四个点,连接OA 、OC ,过A 作AE OC ⊥交圆周于点E ,连接OE ,若140ABC ∠=︒,则OEA ∠的度数为___________.17.如图,在△ABC 中,∠C =90°,∠ADC =60°,∠B =30°,若CD =3cm ,则BD =_____cm .18.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______.三、解答题(共66分)19.(10分)已知关于x 的方程:(m ﹣2)x 2+x ﹣2=0(1)若方程有实数根,求m 的取值范围.(2)若方程的两实数根为x 1、x 2,且x 12+x 22=5,求m 的值.20.(6分)已知正比例函数y =x 的图象与反比例函数y =k x (k 为常数,且k ≠0)的图象有一个交点的纵坐标是1. (Ⅰ)当x =4时,求反比例函数y =k x的值; (Ⅱ)当﹣1<x <﹣1时,求反比例函数y =k x的取值范围. 21.(6分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为x 轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?22.(8分)如图,在△ABC 中,sinB=35,cosC=22,AB=5,求△ABC 的面积.23.(8分)如图,已知反比例函数1k y x=与一次函数2y ax b =+的图象相交于点A 、点D ,且点A 的横坐标为1,点D 的纵坐标为-1,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数y=ax+b 的图像与x 轴交于点C ,求∠ACO 的度数.(3)结合图像直接写出,当12y y >时,x 的取值范围.24.(8分)列方程解应用题.青山村种的水稻2010年平均每公顷产6000kg ,2012年平均每公顷产7260kg ,求水稻每公顷产量的年平均增长率.25.(10分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问从2015到2017年这三年共建设了多少万平方米廉租房?26.(10分)(1)计算:()2020122cos30tan 601-︒-︒+-.(2)用适当的方法解下列方程;①()22160x --=;②25210x x +-=.参考答案一、选择题(每小题3分,共30分)1、C【分析】过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,则可得AE 和BF 的长,依据端点A 与B 之间的距离为10cm ,即可得到可以通过闸机的物体的最大宽度.【详解】如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,则Rt △ACE 中,AE=12AC=12×54=27(cm ), 同理可得,BF=27cm ,又∵点A 与B 之间的距离为10cm ,∴通过闸机的物体的最大宽度为27+10+27=64(cm ),故选C .【点睛】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.2、D【分析】由AD ∥BC ,可得出△AOE ∽△FOB ,再利用相似三角形的性质即可得出△AOE 与△BOF 的面积之比.【详解】:∵AD ∥BC ,∴∠OAE=∠OFB ,∠OEA=∠OBF ,∴~AOE FOB ∆∆, ∴所以相似比为2AE BF=, ∴224BOFAOE S S ∆∆==. 故选:D .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.3、B【分析】利用底面周长=展开图的弧长可得【详解】设这个扇形铁皮的半径为rcm ,由题意得30030180r ππ= 解得r =1.故这个扇形铁皮的半径为1cm ,故选:B .【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.4、B【分析】若AD =xm ,则AB =(60−x )m ,根据矩形面积公式列出方程.【详解】解: AD =xm ,则AB =(100+10)÷1−x =(60−x )m ,由题意,得(60−x )x =2.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5、A【分析】设原矩形的长为2a ,宽为b ,对折后所得的矩形与原矩形相似,则2a b b a= 【详解】设原矩形的长为2a ,宽为b , 则对折后的矩形的长为b ,宽为a ,∵对折后所得的矩形与原矩形相似,∴2a b b a=, 2:1;故选A .【点睛】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.6、A【解析】先把二次根式化简变形,然后把a 、b 的值代入计算,即可求出答案. 【详解】解:∵33,33a b == 222()a ab b a b ab -+=-+ 2(3333)(33)(33)+-+++-1293+-=32故选:A.【点睛】本题考查了二次根式的化简求值,解题的关键是熟练掌握完全平方公式和平方差公式进行化简.7、B【详解】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.8、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.9、B【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=42°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=48°.【详解】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=42°,∴∠B′=90°﹣∠ACA′=48°.故选:B.【点睛】此题主要考查角度的求解,解题的关键是熟知旋转的性质.10、C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【详解】A. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B. ∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.故选C.【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.二、填空题(每小题3分,共24分)11、35π.【解析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm1.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12、相交【分析】先根据题意判断出直线与圆的位置关系即可得出结论.【详解】∵⊙O的半径为6cm,圆心O到直线l的距离为5cm,6cm>5cm,∴直线l与⊙O相交,故答案为:相交.【点睛】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l的距离为d,当d<r时,直线与圆相交是解答此题的关键.13、16.【分析】确定使函数的图象经过第一、三象限的k的值,然后确定使方程有实数根的k值,找到同时满足两个条件的k的值即可.【详解】解:这6个数中能使函数y=kx的图象经过第一、第三象限的有1,2这2个数,∵关于x的一元二次方程x2﹣kx+1=0有实数根,∴k2﹣4≥0,解得k ≤﹣2或k ≥2,能满足这一条件的数是:﹣3、﹣2、2这3个数,∴能同时满足这两个条件的只有2这个数, ∴此概率为16, 故答案为:16. 14、25(1-x )²=16【解析】试题分析:对于增长率和降低率问题的一般公式为:增长前数量×()1+增长次数增长率=增长后的数量,降低前数量×()1-降低次数降低率=降低后的数量,故本题的答案为:()2251x 16.-= 15、1【分析】把x=2代入函数关系式即可求得.【详解】f (2)=3×22-2×2-1=1, 故答案为1.【点睛】此题考查二次函数图象上点的坐标特征,解题关键在于掌握函数图象上点的坐标适合解析式.16、10︒【分析】由140ABC ∠=︒,利用圆的内接四边形求,D ∠ 进而求解AOC ∠,利用垂径定理与等腰三角形的三线合一可得答案.【详解】解:140,ABC ∠=︒ 四边形ABCD 是O 的内接四边形,40,D ∴∠=︒80,AOC ∴∠=︒,,OA OE OC AE =⊥80,AOC EOC ∴∠=∠=︒18016010.2OAE OEA ︒-︒∴∠=∠==︒ 故答案为:10.︒【点睛】 本题考查的是垂径定理,同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半,圆的内接四边形的性质,等腰三角形的三线合一,掌握以上知识是解题的关键.17、1【分析】根据30°直角三角形的比例关系求出AD,再根据外角定理证明∠DAB=∠B,即可得出BD=AD .【详解】∵∠B =30°,∠ADC =10°,∴∠BAD =∠ADC ﹣∠B =30°,∴AD =BD ,∵∠C =90°,∴∠CAD =30°,∴BD =AC =2CD =1cm ,故答案为:1.【点睛】本题考查30°直角三角形的性质、外交定理,关键在于熟练掌握基础知识并灵活运用.18、-5.【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =.三、解答题(共66分)19、(1)m≥158;(2)m =3 【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m ﹣2≠0时,△=1+8(m ﹣2)≥0,∴m≥158且m≠2, 当m ﹣2=0时,x ﹣2=0,符合题意, 综上所述,m≥158(2)由根与系数的关系可知:x 1+x 2=12m --,x 1x 2=22m --, ∵x 12+x 22=5,∴(x 1+x 2)2﹣2x 1x 2=5, ∴21(2)m -+42m - =5, ∴12m -=1或12m -=﹣5, ∴m =3或m =95(舍去). 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20、(Ⅰ)1;(Ⅱ)﹣4<y <﹣1.【解析】(Ⅰ)首先把y =1代入直线的解析式,求得交点坐标,然后利用待定系数法求得反比例函数的解析式,最后把x =4代入求解;(Ⅱ)首先求得当x =﹣1和x =﹣1时y 的值,然后根据反比例函数的性质求解.【详解】解:(Ⅰ)在y =x 中,当y =1时,x =1,则交点坐标是(1,1),把(1,1)代入y =k x,得:k =4, 所以反比例函数的解析式为y =4x, 当x =4,y =4k =1; (Ⅱ)当x =﹣1时,y =2k -=﹣1; 当x =﹣1时,y =1k -=﹣4, 则当﹣1<x <﹣1时,反比例函数y =k x 的范围是:﹣4<y <﹣1. 【点睛】此题考查了反比例函数与一次函数的交点问题,以及反比例函数的增减性,两函数的交点即为同时满足两函数解析式的点,其中用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.21、(1)()2161608555y x x x =-++≤≤;(2)王师傅必须在7米以内. 【分析】(1)由抛物线的顶点坐标为(3,5),设抛物线解析式为y=a(x-3)+5,把(8,0)单人宽求出a 的值,即可得抛物线解析式;(2)把y=1.8代入解析式求出x 的值,根据函数图像的对称性求出负半轴的坐标即可.【详解】(1)设()235y a x =-+,过点()80,∴代入,解得15a =- ∴抛物线(第一象限部分)的函数表达式为()2161608555y x x x =-++≤≤ (2)091.85y ==∴200916165555x x =-++ 07x ∴=或-108x ≤≤,图象对称∴负半轴为-7答:王师傅必须在7米以内.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x 的值.22、212【分析】过A 作AD ⊥BC ,根据三角函数和三角形面积公式解答即可. 【详解】过A 作AD ⊥BC .在△ABD 中,∵sin B =35,AB =5,∴AD =3,BD =1.在△ADC 中,∵cos C =22,∴∠C =15°,∴DC =AD =3,∴△ABC 的面积=12133422⨯⨯+=().【点睛】本题考查了解直角三角形,关键是根据三角函数和三角形面积公式解答.23、(1)2y x=,1y x =+;(2)∠ACO=45°;(3)0<x <1 ,x <-2 【分析】(1)由△AOB 的面积为1,点A 的横坐标为1,求点A 的纵坐标,确定反比例函数解析式,利用反比例函数解析式求D 点坐标,利用“两点法”求一次函数解析式;(2)由一次函数解析式求C 点坐标,再求AB 、BC ,在Rt △ABC 中,求tan ∠ACO 的值,再求∠ACO 的度数; (3)当y 1>y 2时,y 1的图象在y 2的上面,由此求出x 的取值范围.【详解】解(1)如图:S ∆AOB =1,则122k k ==,则反比例函数的解析式:2y x= ∴A (1,2),D (-2,-1)设一次函数的解析式为y kx b =+,则b 121k k b +=⎧⎨-+=-⎩, 解得:11k b =⎧⎨=⎩. ∴一次函数的解析式为:1y x =+(2)由直线y=x+1可知,C (-1,0),则BC=OB+OC=2,AB=2,所以,在Rt △ABC 中,tan ∠ACO=AB BC=1, 故∠ACO=45°;(3)由图象可知,当y 1>y 2时,x <-2或0<x <1.【点睛】此题考查反比例函数与一次函数的交点问题.解题关键是由已知条件求交点坐标,根据交点坐标求反比例函数、一次函数的解析式,利用解析式,形数结合解答题目的问题.24、10%【分析】根据增长后的产量=增长前的产量(1+增长率),设增长率是x ,则2012年的产量是6000(1+x )2,据此即可列方程,解出即可.【详解】解:设水稻每公顷产量的年平均增长率为x ,依题意得6000(1+x )2=7260,解得:x 1=0.1,x 2=﹣2.1(舍去).答:水稻每公顷产量的年平均增长率为10%.【点睛】此题考查了一元二次方程的应用,解答本题的关键是利用增长率表示出2012年的产量是6000(1+x )2,然后得出方程. 25、 (1)50% ;(2)57万平方米【分析】(1)设每年市政府投资的增长率为x ,由3(1x +)2=2017年的投资,列出方程,解方程即可;(2)2016年的廉租房=12(1+50%),2017年的廉租房=12(1+50%)2,即可得出结果.【详解】(1)设每年市政府投资的增长率为x ,根据题意得:3(1x +)2=6.75,解得:0.5x =,或 2.5x =-(不合题意,舍去),∴0.550%x ==,即每年市政府投资的增长率为50%;(2)∵12+12(1+50%)+12(1+50%)2=12+18+27=57,∴从2015到2017年这三年共建设了57万平方米廉租房.【点睛】本题考查了一元二次方程的应用;熟练掌握列一元二次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.26、(1)1;(2)①x 1=﹣2,x 2=6;②x 1x 2. 【分析】(1)根据二次根式的乘法公式、30°的余弦值、60°的正切值和乘方的性质计算即可;(2)①利用直接开方法解一元二次方程即可;②利用公式法:x =解一元二次方程即可【详解】(1﹣2cos30°﹣tan60°+(﹣1)2018=212-⨯- 1=(2)①∵(x ﹣2)2﹣16=0,∴(x ﹣2)2=16,∴x ﹣2=4或x ﹣2=﹣4,解得:x 1=﹣2,x 2=6;②∵a =5,b =2,c =﹣1,∴△=b 2-4ac=22﹣4×5×(﹣1)=24>0,则225x -±==⨯,即x 1=15-+,x 2=15-. 【点睛】此题考查的是含特殊角的锐角三角函数值的混合运算和解一元二次方程,掌握二次根式的乘法公式、30°的余弦值、60°的正切值、乘方的性质和利用直接开方法和公式法解一元二次方程是解决此题的关键.。
九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.-67的绝对值是()A. 67B. −76C. −67D. 762.下列运算正确的是()A. (3x2)3=9x6B. a6÷a2=a3C. (a+b)2=a2+b2D. (a−b)(a+b)=a2−b23.下列图形既是轴对称又是中心对称图形是()A. B.C. D.4.下列大小相同5个正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是()A. 25∘B. 65∘C. 50∘D.75∘6.抛物线y=-3x2-1是由抛物线y=-3(x+1)2+1怎样平移得到的()A. 左移1个单位上移2个单位B. 右移1个单位上移2个单位C. 左移1个单位下移2个单位D. 右移1个单位下移2个单位7.方程2−xx−5−35−x=0的解为()A. −2B. 2C. 5D. 无解8.矩形的边长是4cm,一条对角线的长是43cm,则矩形的面积是()A. 32cm2B. 322cm2C. 162cm2D. 83cm29.若反比例函数y=2−kx的图象在二、四象限,则k的值可以是()A. 3B. 0C. 1D. −110.已知,在△ABC中,点D为AB上一点,过点D作DE∥BC,DH∥AC分别交AC、BC于点E、H,点F是BC延长线上一点,连接FD交AC于点G,则下列结论中错误的是()A. ADDB=AEDHB. CFDE=DHCGC. FDFG=ECCGD. CHBC=AEAC二、填空题(本大题共10小题,共30.0分)11.将数12000000科学记数法表示为______.12.函数y=xx−1的自变量x的取值范围是______.13.把多项式x3-4x分解因式的结果为______.14.计算213-12=______.15.不等式组x−1>13+2x≥4x−3的解集是______.16.抛物线y=2(x+1)2-3的顶点坐标为______.17.一枚质地均匀的正方体骰子,六个面分别刻有1到6的点数,小涛同学掷一次骰子,骰子的正面朝上的点数是2的倍数的概率是______.18.已知扇形的弧长是3π,半径是3,则扇形的圆心角度数是______.19.菱形ABCD的边长为5,面积为20,则∠ACB的正切值为______.20.在△ABC中,∠B=45°,点D在BC边上,连接AD,CF⊥AD于E,交AB于点E,AD=CF,BF=2,AC=10,则AF的长为______.三、解答题(本大题共7小题,共56.0分)21.先化简,再求代数式x2x2−1÷x23(x+1)的值,其中x=tan60°+2sin45°.22.图1,图2均为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积等于20.(2)以EG为对角线,画一个成轴对称的四边形EFGH,使其面积等于20.并直接写出这个四边形的周长.23.某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.24.已知:四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,延长AE交BC的延长线于点F,交DC于点G,若BE=BC,且∠CBE:∠BCE=1:2,在不添加其他辅助线的情况下,请直接写出图中的所有与△BCE全等的三角形.25.学校准备从文教商店购买A、B两种不同型号的笔记本奖励学生,已知购买2本A型和3本B型笔记本共需23元,购买3本A型和4本B型笔记本共需32元(1)分别求出A、B型笔记本的单价?(2)学校准备购买A、B两种笔记本共100本,经过协商文教店老板给一定的优惠,A型笔记本打九折,B型笔记本打八折,已知A型笔记本进价2.6元,B型笔记本进价2.8元,若文教店老板想这次交易中赚到不少于110元钱,则卖出A型笔记本不超过多少本?26.已知:AB是⊙O的直径,PB切⊙O于点B,AP交⊙O于点C,D是⊙O上一点,连接AD、CD.(1)如图1,求证:∠APB=∠ADC;(2)如图2,点G在CD上,∠CGB=∠BAD,OF⊥AC于点F,求证:BG=2OF;(3)如图3,在(2)的条件下,连接AG并延长交⊙O于点H,若CD为⊙O直径,当∠CGB=∠HGB,OF=3时,求线段GH的长.27.在平面直角坐标系xOy中,▱OABC边OA在x轴正半轴上,BC边交y轴于点D,点C的坐标是(-1,6),直线AB所在的直线解析式为y=kx-6k(1)如图1,求k值;(2)如图2,点E是DB上一点,连接OE,过点A作AF⊥OE交OD于点F,过点A作AN⊥AB交y轴于点N,设DE长为t,FN长为d,求d与t的函数关系式;(3)如图3,在(2)的条件下,点G为OE上一点,点H是DE上一点,DH=2,连接FG、HG,当∠HGE=45°,∠DFG=2∠FAO时,求△NFG的面积.答案和解析1.【答案】A【解析】解:-的绝对值是.故选:A.根据负数的绝对值是它的相反数即可求解.考查了绝对值,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.2.【答案】D【解析】解:A、积的乘方等于乘方的积,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、和的平方等于平方和加积的二倍,故C错误;D、两数和乘以这两个数的差等于这两个数的平方差,故D正确;故选:D.根据积的乘方等于乘方的积;同底数幂的除法底数不变指数相减;和的平方等于平方和加积的二倍;平方差公式:两数和乘以这两个数的差等于这两个数的平方差,可得答案.本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.【答案】B【解析】解:A.此图案是轴对称图形,不是中心对称图形;B.此图案是轴对称图形,也是中心对称图形;C.此图案不是轴对称图形,是中心对称图形;D.此图案是轴对称图形,不是中心对称图形;故选:B.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【解析】解:从上边看第一列是2个小正方形,第二列是1个小正方形,第三列式1个小正方形,如图:故选:B.根据俯视图是从上边看得到的图形,可得答案.本题考查了简单组合体的三视图,解题时注意:从上边看得到的图形是俯视图.5.【答案】C【解析】解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∠COD=2∠A=40°,∴∠C=90°-40°=50°,故选:C.连接OD,根据切线的性质得到∠ODC=90°,根据圆周角定理得到∠COD=2∠A,计算即可.本题考查的是切线的性质和圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.【答案】D【解析】解:由抛物线y=-3(x+1)2+1右移1个单位下移2个单位得到抛物线y=-3x2-1.故选:D.按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.7.【答案】D【解析】解:两边都乘以x-5,得:2-x+3=0,解得:x=5,检验:当x=5时,x-5=0,所以方程无解.故选:D.根据解分式方程的步骤依次计算可得.本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.8.【答案】C【解析】解:如图,∵四边形ABCD是矩形,∴∠BAD=90°,AB=4cm,BD=AC=4cm,∴AD==4∴矩形ABCD的面积=4×4=16cm2,故选:C.由矩形的性质得出∠BAD=90°,AC=BD=4,由勾股定理求出BC,矩形的面积=AB×AD,即可得出结果.本题考查了矩形的性质、勾股定理,矩形面积的计算,熟练掌握矩形的性质,并能进行推理计算是解决问题的关键,9.【答案】A【解析】:∵反比例函数y=的图象在二、四象限,∴2-k<0,解得k>2,∴k的值可以是3,故选:A.根据反比例函数的性质:y=,k>0时,图象位于一三象限,k<0时,图象位于二四象限,可得答案.本题考查了反比例函数的性质,利用反比例函数的性质得出关于k的不等式是解题关键.10.【答案】B【解析】解:∵DE∥BC,DH∥AC,∴四边形DECH是平行四边形,∴DH=CE,DE=CH,∵DE∥BC,∴==,故选项A正确,不符合题意,∵DH∥CG,∴==,故C正确,不符合题意,∵DE∥BC,∴=,∴=,故D正确,不符合题意,故选:B.首先证明四边形DECH是平行四边形,再利用平行线分线段成比例定理一一判断即可.本题考查平行线分线段成比例定理,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.【答案】1.2×107【解析】解:12 000000=1.2×107,故答案是:1.2×107,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x≠1【解析】解:由题意得,x-1≠0,解得x≠1.故答案为:x≠1.根据分母不等于0列式计算即可得解.本题考查的知识点为:分式有意义,分母不为0.13.【答案】x(x+2)(x-2)【解析】解:x3-4x,=x(x2-4),=x(x+2)(x-2).先提取公因式x,然后再利用平方差公式进行二次分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,关键在于要进行二次分解因式.14.【答案】-433【解析】解:2-=-2=-.故答案为:-.直接化简二次根式进而合并得出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.【答案】2<x≤3【解析】解:解不等式x-1>1,得:x>2,解不等式3+2x≥4x-3,得:x≤3,所以不等式组的解集为2<x≤3,故答案为:2<x≤3.分别求出不等式组中两不等式的解集,找出解集的公共部分即可.本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.【答案】(-1,-3).【解析】解:顶点坐标是(-1,-3).故答案为:(-1,-3).直接利用顶点式的特点可知顶点坐标.此题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点同学们应熟练掌握.17.【答案】12【解析】解:掷一次骰子,向上的一面出现的点数是2的倍数的有2、4,6,故骰子向上的一面出现的点数是2的倍数的概率是:.故答案为:.共有6种等可能的结果数,其中点数是2的倍数有2、4和6,从而利用概率公式可求出向上的一面出现的点数是2的倍数的概率.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.【答案】180°【解析】解:∵扇形的弧长为3π,半径为3,∴3π=,解得:n=180.故答案为:180°.根据l=,结合题意可得出扇形圆心角的度数.此题考查了弧长的计算,属于基础题,解答本题的关键是掌握弧长的公式:l=(弧长为l,圆心角度数为n,圆的半径为R).19.【答案】2或12【解析】解:依题意得:,解得或.故∠ACB的正切值为2或,故答案为:2或,根据菱形的性质、菱形面积公式结合勾股定理得出BO的长,进而求出答案.此题主要考查了菱形的性质以及勾股定理,正确掌握菱形的性质是解题关键.20.【答案】22【解析】解:过A点作AN⊥BC交FC于O点,交BC于N点,过F点作FM⊥BC于M 点.∵∠FCM+∠NOC=90°,∠DAN+∠AOE=90°,且∠NOC=∠AOE,∴∠DAN=∠FCM.又∠AND=∠CMF=90°,AD=CF.∴△ADN≌△CFM(AAS).∴MC=AN.∵∠B=45°,BF=,∴BM=FM=1.AN=BN.∴BN=MC,∴NC=BM=1.在Rt△ANC中,利用勾股定理可得AN==3.则在等腰Rt△ANB中,AB==3,∴AF=3-=2.故答案为2.过A点作AN⊥BC交FC于O点,交BC于N点,过F点作FM⊥BC于M点.证明△ADN≌△CFM,得到MC=AN,依据∠B=45°得到等腰直角三角形,推导出NC=BM=1,在Rt△ANC中,利用勾股定理可得AN长度,则在等腰Rt△ANB 中可求AB,最后用AF=AB-BF求解.本题主要考查了全等三角形的判定和性质以及勾股定理,解题的关键是正确作出辅助线,构造全等三角形.21.【答案】解:原式=x2(x+1)(x−1)•3(x+1)x2=3x−1,当x=tan60°+2sin45°=3+2×22=3+2时,原式=33+2−1=3[3−(2−1)][3+(2−1)][3−(2−1)]=3[3−(2−1)]22=32[3−(2−1)]22×2=36−6+324【解析】先化简分式,再化简x的值,把化简后的x的值代入化简后的分式,计算即可.本题主要考查分式的化简求值、特殊角的三角函数值及二次根式的化简,化简二次根式是解决本题的关键.22.【答案】解:(1)如图1所示,平行四边形ABCD即为所求;(2)如图2所示,正方形EFGH即为所求.【解析】(1)以AB为边,作一个平行四边形,使其另一边长为5,且这条边上的高为4即可得;(2)作一线段FH,使其平分EG,且等于EG,首尾顺次连接E,F,G,H即可得.本题主要考查作图-旋转变换和轴对称变换,熟练掌握旋转变换与轴对称变换的定义和性质及平行四边形和正方形的性质是解题的关键.23.【答案】解:(1)总人数=5÷10%=50(人);(2)本次调查中喜欢踢足球人数=50-5-20-8-5=12(人),条形图如图所示:(3)估计我校喜欢跳绳学生有1200×850=192(人).【解析】(1)根据打篮球的人数和百分比即可解决问题;(2)求出本次调查中喜欢踢足球人数即可解决问题;(3)总人数乘以样本中喜欢跳绳学生人数所占比例可得;本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:在△ADE与△CDE中,AD=CDDE=DEEA=EC,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)解:在△ABE与△CBE中AB=BCAE=CEBE=BE,,∴△ABE≌△CBE(SSS),∵BE=BC,∴AB=BE,∴∠BAE=∠AEB,∵∠CBE:∠BCE=1:2,∵∠CBE=12∠ABC,∴∠ABC=∠ADC=∠BCE=∠AEC∠BAE,∵AB∥CD,∴∠DCF=∠ABC,∠CGF=∠BAF,∴∠AGD=∠ABC=∠ADG,∴AD=AG=BC,∴△ADG≌△BCE(AAS),∴∠DAG=∠CBE=∠ADE,∴AE=DE=CE,∵∠DAE=∠EFB,∴∠EBF=∠EFB,∴BE=EF,∴△FDE≌△BCE(AAS),∴∠DFE=∠CBE,∴∠DFB=∠BCE,∵BC=CD,∴△DCF≌△BCE(AAS),∴图中的所有与△BCE全等的三角形是△BAE,△ADG,△FDE,△DCF.【解析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)根据全等三角形的判定和性质定理和菱形的性质以及等腰三角形的性质即可得到结论.本题考查了菱形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.25.【答案】解:(1)设购买一本A型笔记本和一本B型笔记本分别需要x元、y元,根据题意得,2x+3y=233x+4y=32,解得:x=4y=5,答:购买一本A型笔记本和一本B型笔记本分别需要4元、5元;(2)卖出A型笔记本不超过x本,则B型笔记本为(100-x)本,根据题意得,(4×90%-2.6)x+(5×80%-2.8)(100-x)≥110,解得:x≤50,答:卖出A型笔记本不超过50本.【解析】(1)根据题意可以列出二元一次方程组,从而可以解答本题;(2)根据题意列不等式,即可得到结论.本题考查了二元一次方程组的应用,一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件.利用方程的思想解答.26.【答案】(1)证明:如图1中,连接BC.∵PB是⊙O的切线,∴AB⊥PB,∴∠ABP=90°,∵AB是直径,∴∠ACB=90°,∵∠P+∠PBC=90°,∠PBC+∠ABC=90°,∴∠P=∠ABC,∵∠ADC=∠ABC,∴∠P=∠ADC.(2)证明:如图2中,连接BC.∵OF⊥AC,∴AF=OF,∵OA=OB,∴BC=2OF,∵∠CGB=∠BAD,∠BCD=∠BAD,∴∠BCG=∠BGC,∴BG=BC=2OF.(3)解:如图3中,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.∵CD,AB是直径,∴OA=OD=OC=OB,∵∠AOD=∠BOC,∴△AOD≌△BOC(SAS),∴AD=BC=2OF=6,∵OA=OB,∠AON=∠BOM,∠ANO=∠BMO=90°,∴△AON≌△BOM(AAS),∴OM=ON,AN=BM,设OM=ON=a,∵∠CGB=∠HGB,∴∠OGH=2∠CGB,∵∠BOG=∠OCB+∠OBC=2∠GCB,∠GCB=∠BGC,∴∠BOG=∠OGH,∴∠AOG=∠AGO,∴AO=AG,∵AN⊥OG,∴ON=NG=a,∵BG=AD,BM=AN,∠AND=∠BMG=90°,∴Rt△BMG≌Rt△AND(HL),∴MG=DN=3a,OD=OA=OB=OC=4a,∴BM=OB2−OM2=15a,在Rt△CBM中,∵BC2=BM2+CM2,∴36=15a2+9a2,∵a>0,∴a=62,∴MG=3a=362,∵∠BGH=∠BGM,∠BMG=∠H=90°,BG=BG,∴△BGH≌△BGM(AAS),∴GH=MG=362.【解析】(1)如图1中,连接BC,只要证明∠P=∠ABC,∠ABC=∠ADC即可解决问题;(2)如图2中,连接BC,只要证明BC=2OF,BG=BC即可解决问题;(3)如图3中,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.想办法证明OM=ON=GN,MG=DN,设OM=ON=a,构建方程求出a即可解决问题;本题属于圆综合题,考查了切线的性质,圆周角定理,全等三角形的判定和性质,角平分线的性质定理,勾股定理,等腰三角形的频道合作,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.27.【答案】解:(1)∵C(-1,6),∴直线OC的解析式为y=-6x,∵四边形ABCO是平行四边形,∴AB∥OC,∴k=-6.(2)如图2中,由(1)可知:直线AB的解析式为y=-6x+36,∴A(6,0),∴OA=6,∵C(-1,6),CB∥OA,∴D(0,6),∴OD=OA=6,∴∠AOE+∠FAO=90°,∵∠DOE+∠AOE=90°,∴∠DOE=∠FAO,∵∠AOF=∠ODE=90°,∴△AOF≌△ODE(ASA),∴DE=OF=t,∵AN⊥AB,∴∠NAB=90°,∴∠NAO+∠BAO=90°,∵四边形ABCO是平行四边形,∴∠C=∠OAB,CB=OA=6,∴B(5,6),∵∠COD+∠C=90°,∴∠OAN=∠COD,∵∠ODC=∠AON=90°,OD=OA,∴△OAN≌△DOC(ASA),∴CD=ON=1,∴d=FN=t+1(0≤t≤5).(3)如图3中,连接AG,GN,作HJ⊥EG于J,GM⊥OD于M.∵∠DFG=2∠FAO,∠FAO=∠DOE,∠DFG=∠DOE+∠FGO,∴∠FOG=∠FGO,∴FO=FG=DE=t,∵AF⊥OF,∴AF垂直平分线线段OG,∴AG=AO=6,∵AF=OE=OA2+OF2=36+t2,又∵12•AF•OG=2×12×OA×OF,∴OG=12t36+t2,∴EG=36+t2-12t36+t2,∵△EJH∽△EDO,∴EHOE=HJOD=EJDE,∴t−236+t2=HJ6=EJt,∴HJ=6(t−2)36+t2,EJ=t(t−2)36+t2,∵∠HGJ=45°,∠HJG=90°,∴HJ=JG,∵EG=GJ+JE,∴36+t2-12t36+t2=6(t−2)36+t2+t(t−2)36+t2,经检验t=3是原方程的解.∴OF=FG=DE=3.OG=1255,OE=35,∵GM∥DE,∴GM:DE=OG:OE,∴GM:3=1255:35,∴GM=125,∴S△FGN=12•FN•GM=12×4×125=245.【解析】(1)求出直线OC的解析式,根据两直线平行k相同即可解决问题;(2)证明△AOF≌△ODE(ASA),可得DE=OF=t,证明△OAN≌△DOC(ASA),可得ON=CD=1,由此即可解决问题;(3)如图3中,连接AG,GN,作HJ⊥EG于J,GM⊥OD于M.想办法构建方程求出t,再求出GM,FN即可解决问题;本题属于一次函数综合题,考查了一次函数的应用,全等三角形的判定和性质,相似三角形的判定和性质,三角形的面积等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.。
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列方程中,没有实数根的是()A.x2﹣2x﹣3=0 B.(x﹣5)(x+2)=0C.x2﹣x+1=0 D.x2=12.已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有()①abc<0②3a+c>0③4a+2b+c<0④2a+b=0⑤b2>4acA.2 B.3 C.4 D.53.若关于x的分式方程1122mx x=+--有增根,则m为()A.-1 B.1 C.2 D.-1或2 4.抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1)B.(﹣1,1)C.(1,3)D.(﹣1,3)5.下列事件中,是随机事件的是( )A.画一个三角形,其内角和是180°B.在只装了红色卡片的袋子里,摸出一张白色卡片C.投掷一枚正六面体骰子,朝上一面的点数小于7D.在一副扑克牌中抽出一张,抽出的牌是黑桃66.在Rt △ABC 中,∠C =90°,若AC =4,AB =5,则cos B 的值( ) A .45B .35C .34D .437.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x 2+60x+800,则利润获得最多为( ) A .15元B .400元C .800元D .1250元8.已知a 、b 满足a 2﹣6a +2=0,b 2﹣6b +2=0,则b aa b+=( ) A .﹣6B .2C .16D .16或29.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,9510.一组数据-3,2,2,0,2,1的众数是( ) A .-3B .2C .0D .1二、填空题(每小题3分,共24分)11.如图,将ABC ∆绕点A 逆时针旋转140,得到ADE ∆,这时点,,B C D 恰好在同一直线上,则B 的度数为______.12.在平面直角坐标系中,抛物线y =﹣(x ﹣1)2+2的顶点坐标是_____.13.如图,一块含30°的直角三角板ABC (∠BAC =30°)的斜边AB 与量角器的直径重合,与点D 对应的刻度读数是54°,则∠BCD 的度数为_____度.14.从地面竖直向上抛出一小球,小球离地面的高度h (米)与小球运动时间t (秒)之间关系是h=30t ﹣5t 2(0≤t ≤6),则小球从抛出后运动4秒共运动的路径长是________米. 15.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.16.写出一个具有性质“在每个象限内y 随x 的增大而减小”的反比例函数的表达式为________.17.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;18.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向 上的概率是 . 三、解答题(共66分)19.(10分)如图,抛物线2y x bx c =-++与x 轴交于点()()2,0,4,0A B -,直线24y x =-与y 轴交于点,D 与y 轴左侧抛物线交于点C ,直线BD 与y 轴右侧抛物线交于点E .(1)求抛物线的解析式;(2)点P是直线AC上方抛物线上一动点,求PAC面积的最大值;M N C E为顶点的四边形是平行四边(3)点M是抛物线上一动点,点N是抛物线对称轴上一动点,请直接写出以点,,,形时点M的坐标.20.(6分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x≤100 b c合计■ 1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.21.(6分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A 、B 、C 、D 四个等级,其中相应等级的得分依次为100分,90分,80分,70分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在80分及其以上的人数是_______人; (2)补全下表中a 、b 、c 的值: 平均数(分)中位数(分)众数(分)方差一班 87.6b 90106.24 二班a80c138.24(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.22.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)23.(8分)如图,三角形ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图象与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图象上,且该二次函数图象上存在一点D 使四边形ABCD 能构成平行四边形.(1)试求b 、c 的值,并写出该二次函数表达式;(2)动点P 沿线段AD 从A 到D ,同时动点Q 沿线段CA 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动过程中能否存在PQ AC ⊥?如果不存在请说明理由;如果存在请说明点的位置? ②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?24.(8分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB ,按要求画图. (1)在图1中画一条格点线段CD 将AB 平分. (2)在图2中画一条格点线段EF .将AB 分为1:1.25.(10分)如图,AB 为ABC ∆外接圆O 的直径,点P 是线段CA 延长线上一点,点E 在圆上且满足2·PE PA PC =,连接CE ,AE ,OE ,OE 交CA 于点D .(1)求证:PAE PEC ∆∆∽.(2)过点O 作OM PC ⊥,垂足为M ,30B ∠=︒,12AP AC =,求证:OD PD =. 26.(10分)对于平面直角坐标系xOy 中的点(),P x y 和半径为1的O ,定义如下:①点(),P x y 的“派生点”为()',P x y x y +-;②若O 上存在两个点A B 、,使得60APB ∠=︒,则称点P 为O 的“伴侣点”.应用:已知点()()11,,0,2,23,022D E F ⎛⎫--⎪⎝⎭(1)点D 的派生点'D 坐标为________;在点'D D E F 、、、中,O 的“伴侣点”是________;(2)过点F 作直线l 交y 轴正半轴于点G ,使30GFO ∠=︒,若直线l 上的点()P m n ,是O 的“伴侣点”,求m 的取值范围;(3)点P 的派生点P'在直线26y x =-+,求点P 与O 上任意一点距离的最小值.参考答案一、选择题(每小题3分,共30分) 1、C【分析】分别计算出各选项中方程的判别式或方程的根,从而做出判断.【详解】解:A .方程x 2﹣2x ﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等的实数根,不符合题意; B .方程(x ﹣5)(x +2)=0的两根分别为x 1=5,x 2=﹣2,不符合题意;C .方程x 2﹣x +1=0中△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根,符合题意;D .方程x 2=1的两根分别为x 1=1,x 2=﹣1,不符合题意; 故选:C . 【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.2、B【解析】根据二次函数的图象与性质即可求出答案. 【详解】①由抛物线的对称轴可知:2ba->1,∴ab <1. ∵抛物线与y 轴的交点可知:c >1,∴abc <1,故①正确; ②∵2ba-=1,∴b =﹣2a ,∴由图可知x =﹣1,y <1,∴y =a ﹣b +c =a +2a +c =3a +c <1,故②错误; ③由(﹣1,1)关于直线x =1对称点为(3,1),(1,1)关于直线x =1对称点为(2,1),∴x =2,y >1,∴y =4a +2b +c >1,故③错误; ④由②可知:2a +b =1,故④正确;⑤由图象可知:△>1,∴b 2﹣4ac >1,∴b 2>4ac ,故⑤正确. 故选B . 【点睛】本题考查了二次函数的图象,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型. 3、A【分析】增根就是分母为零的x 值,所以对分式方程去分母,得m=x-3,将增根x=2代入即可解得m 值. 【详解】对分式方程去分母,得:1=﹣m+2-x , ∴m=x-3, ∵方程有增根, ∴x-2=0,解得:x=2, 将x=2代入m=x-3中,得: m=2-3=﹣1, 故选:A . 【点睛】本题考查分式方程的解,解答的关键是理解分式方程有增根的原因. 4、A【解析】分析:把函数解析式整理成顶点式形式,然后写出顶点坐标即可. 详解:∵y=x 2-2x+2=(x-1)2+1, ∴顶点坐标为(1,1). 故选A .点睛:本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键. 5、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 画一个三角形,其内角和是180°,是必然事件,故不符合题意;B. 在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故不符合题意;C. 投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件,故不符合题意;D. 在一副扑克牌中抽出一张,抽出的牌是黑桃6,是随机事件,故符合题意;故选:D【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】根据勾股定理计算出BC长,再根据余弦定义可得答案.【详解】如图所示:∵AC=4,AB=5,∴BC22AB AC-2516-3,∴cos B=CBAB=35.故选:B.【点睛】考查了锐角三角函数,解题关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.7、D【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.【点睛】此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.8、D【分析】当a=b时,可得出b aa b+=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入b aa b+=2()2a b abab+-中即可求出结论.【详解】当a=b时,b aa b+=1+1=2;当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,∴a、b为一元二次方程x2-6x+2=0的两根,∴a+b=6,ab=2,∴b aa b+=222226222()b a a b abab ab++--⨯===1.故选:D.【点睛】此题考查根与系数的关系,分a=b及a≠b两种情况,求出b aa b+的值是解题的关键.9、B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,1,1,1,92,95,∴中位数是按从小到大排列后第4个数为:1.众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选B.10、B【解析】一组数据中出现次数最多的数据是众数,根据众数的定义进行求解即可得.【详解】数据-3,2,2,0,2,1中,2出现了3次,出现次数最多,其余的都出现了1次,所以这组数据的众数是2,故选B.【点睛】本题考查了众数的定义,熟练掌握众数的定义是解题的关键.二、填空题(每小题3分,共24分)11、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形12、(1,2).【分析】根据题目中抛物线的解析式,可以直接写出该抛物线的顶点坐标.【详解】解:∵抛物线y=﹣(x﹣1)2+2,∴该抛物线的顶点坐标为(1,2),故答案为:(1,2).【点睛】本题主要考查抛物线的顶点坐标,掌握抛物线的顶点坐标的形式是解题的关键.13、1.【分析】先利用圆周角定理的推论判断点C、D在同一个圆上,再根据圆周角定理得到∠ACD=27°,然后利用互余计算∠BCD的度数.【详解】解:∵∠C=90°,∴点C在量角器所在的圆上∵点D对应的刻度读数是54°,即∠AOD=54°,∴∠ACD=12∠AOD=27°,∴∠BCD=90°﹣27°=1°.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14、1【分析】根据题目中的函数解析式可以求得h的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h=30t−5t2=−5(t−3)2+45(0≤t≤6),∴当t=3时,h取得最大值,此时h=45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=1(米),故答案为1.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.15、1【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=1.故答案为1.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.16、y=3x(答案不唯一)【解析】根据反比例函数的性质,只需要当k >0即可,答案不唯一.故答案为y=3x(答案不唯一). 17、-1<x <2【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x 轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18、12【解析】∵抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现, ∴他第二次再抛这枚硬币时,正面向上的概率是:12三、解答题(共66分)19、 (1) 228y x x =--+;(2)当2t =-时,()max 64PAC S =;(3)点M 的坐标为()()10,72,2,8---或()8,72-.【分析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点C 的坐标,过点P 作//PQ y 轴交直线AC 于点Q ,设P ()2,28t t t --+,则(),24Q t t -,则得到线段PQ 的长度,然后利用三角形面积公式,即可求出答案;(3)先求出直线BD ,然后得到点E 的坐标,由以点,,,M N C E 为顶点的四边形是平行四边形,设点M 为(m ,228m m --+),则可分为三种情况进行分析:①当CN 与ME 为对角线时;②当CE 与MN 为对角线时;③当EN 与CM 为对角线时;由平行四边形对角线互相平分,即可得到m 的值,然后求出点M 的坐标.【详解】解:(1)把()()2,0,4,0A B -代入中得2y x bx c =-++, 420,1640,b c b c -++=⎧⎨--+=⎩ 解得28b c =-⎧⎨=⎩, ∴抛物线的解析式为:228y x x =--+.(2)由228,24y x x y x ⎧=--+⎨=-⎩得11616x y =-⎧⎨=-⎩,2220x y =⎧⎨=⎩, ()6,16C ∴--.过点P 作//PQ y 轴交直线AC 于点Q ,设()2,28P t t t --+,则(),24Q t t -, ()()()222824216PQ t t t t ∴=--+--=-++,()12PAC A C S PQ x x ∴=⨯- ()2121682t ⎡⎤=⨯-++⨯⎣⎦ ()24264(62)t t =-++-<<.∴当2t =-时,()max 64PAC S =;∴PAC 面积的最大值为64.(3)∵直线24y x =-与y 轴交于点D ,∴点D 的坐标为:(0,4-),∵点B 为(40-,), ∴直线BD 的方程为:4y x =--;联合抛物线与直线BD ,得:2428y x y x x =--⎧⎨=--+⎩, 解得:1137x y =⎧⎨=-⎩或2240x y =-⎧⎨=⎩(为点B ), ∴点E 的坐标为:(3,7-);∵抛物线228y x x =--+的对称轴为:2122(1)b x a -=-=-=-⨯-, ∴点N 的横坐标为1-;∵以点,,,M N C E 为顶点的四边形是平行四边形,且点C (616--,),点E (3,7-), 设点M 为(m ,228m m --+),则可分为三种情况进行分析:①当CN 与ME 为对角线时,由平行四边形对角线互相平分, ∴3617222m +--==-, 解得:10m =-;∴点M 的纵坐标为:2(10)2(10)872---⨯-+=-,∴点M 的坐标为:(1072--,); ②当CE 与MN 为对角线时,由平行四边形对角线互相平分, ∴1633222m --+==-, 解得:2m =-,∴点M 的纵坐标为:2(2)2(2)88---⨯-+=,∴点M 的坐标为:(28-,); ③当EN 与CM 为对角线时,由平行四边形对角线互相平分, ∴613122m --+==, 解得:8m =,∴点M 的纵坐标为:2828872--⨯+=-;∴点M 的坐标为:(872-,); 综合上述,点M 的坐标为:()()10,72,2,8---或()8,72-.【点睛】本题考查了二次函数的综合问题,二次函数的性质和二次函数的最值问题,二次函数与一次函数的交点问题,求二次函数的解析式,以及平行四边形的性质,坐标与图形,解题的关键是熟练掌握二次函数的性质,运用数形结合的方法和分类讨论的方法进行解题.20、(1)a=0.24,b=2,c=0.04;(2)600人;(3)25人. 【分析】(1)利用50≤x <60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a ,b ,c 的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:8÷0.16=50(名) a=12÷50=0.24,70≤x <80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有: 1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A ,B 从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB ,BA 共8种情况,∴抽取的2名同学来自同一组的概率P=820=25【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.21、(1)21;(2)87.6a =;90b =;100c =;(3)见解析.【分析】(1)根据条形统计图得到参赛人数,然后根据扇形统计图求得C 级的百分率,即可求出成绩在80分及以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求得平均数、中位数、众数;(3)根据数据波动大小来选择.【详解】(1)由条形统计图知,参加竞赛的人数为:6122525+++=(人),此次竞赛中二班成绩在80分的百分率为:116%44%4%36%---=,∴此次竞赛中二班成绩在80分及其以上的人数是:()2544%4%36%21⨯++=(人),故答案为:21;(2)二班成绩分别为:100分的有2544%11⨯=(人),90分的有254%1⨯=(人),80分的有2536%9⨯=(人),70分的有2516%4⨯=(人), 1001190180970487.625a ⨯+⨯+⨯+⨯==(分), ∵一班成绩的中位数在第1132n +=位上, ∴一班成绩的中位数是:90b =(分),∵二班成绩中100分的人数最多达到11个,∴二班成绩的众数为:100c =故答案为:87.6a =,90b =,100c =(3)选一班参加市级科学素养竞赛,因为一班方差较小,比较稳定.【点睛】本题考查了平均数、中位数、众数、方差的意义以及各种统计图之间的相互转化的知识,在关键是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.22、14. 【分析】利用画树状图法得到总的可能和可能发生的结果数,即可求出概率.【详解】解:画树状图为:共有16种等可能的结果数,其中红色和蓝色的结果数4,所以摸到的两个球的颜色能配成紫色的概率=41164=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.23、(1)143b c ⎧=-⎪⎨⎪=-⎩,211384y x x =--;(2) ①当点P 运动到距离A 点259个单位长度处,有PQ AC ⊥;②当点P 运动到距离点A 52个单位处时,四边形PDCQ 面积最小,最小值为818. 【分析】(1)根据一次函数解析式求出A 和C 的坐标,再由△ABC 是等腰三角形可求出点B 的坐标,根据平行四边形的性质求出点D 的坐标,利用待定系数法即可得出二次函数的表达式;(2)①设点P 运动了t 秒,PQ ⊥AC ,进而求出AP 、CQ 和AQ 的值,再由△APQ ∽△CAO ,利用对应边成比例可求出t 的值,即可得出答案;②将问题化简为△APQ 的面积的最大值,根据几何关系列出APQ S 关于时间的二次函数,根据二次函数的性质,求出函数的最大值,即求出△APQ 的面积的最大值,进而求出四边形PDCQ 面积的最小值.【详解】解:(1)由334y x =-+, 令0x =,得3y =,所以点()0,3A ;令0y =,得4x =,所以点()4,0C ,∵ABC ∆是以BC 为底边的等腰三角形,∴B 点坐标为()4,0-,又∵四边形ABCD 是平行四边形,∴D 点坐标为()8,3,将点()4,0B -、点()8,3D 代入二次函数218y x bx c =++,可得240883b c b c -+=⎧⎨++=⎩, 解得:143b c ⎧=-⎪⎨⎪=-⎩, 故该二次函数解析式为:211384y x x =--. (2)∵3OA =,4OB =,∴5AC =.①设点P 运动了t 秒时,PQ AC ⊥,此时AP t =,CQ t =,5AQ t =-,∵PQ AC ⊥,∴90AQP AOC ∠=∠=︒,PAQ ACO ∠=∠,∴APQ CAO ∆∆∽, ∴AP AQ AC CO =,即554t t -=, 解得:259t =. 即当点P 运动到距离A 点259个单位长度处,有PQ AC ⊥. ②∵APQ APQ ACD PDCQ S S S S ∆∆∆==+四边形,且183122ACD S ∆=⨯⨯=, ∴当APQ ∆的面积最大时,四边形PDCQ 的面积最小,当动点P 运动t 秒时,AP t =,CQ t =,5AQ t =-,设APQ ∆底边AP 上的高为h ,作QH AD ⊥于点H ,由AQH CAO ∆∆∽可得:535h t -=, 解得:()355h t =-, ∴()()2133552510APQS t t t t ∆=⨯-=-+235151028t ⎛⎫=--+ ⎪⎝⎭, ∴当52t =时,APQ S ∆达到最大值158,此时15811288PDCQ S =-=四边形, 故当点P 运动到距离点A 52个单位处时,四边形PDCQ 面积最小,最小值为818.【点睛】本题考查的是二次函数的综合题,难度系数较大,解题关键是将四边形PDCQ 面积的最小值转化为△APQ 的面积的最大值并根据题意列出APQ S 的函数关系式.24、(1)见解析;(2)见解析.【分析】(1)根据矩形ACBD 即可解决问题.(2)利用平行线分线段成比例定理解决问题即可.【详解】解:(1)如图,线段CD 即为所求.(2)如图,线段EF 即为所求,注意有两种情形.【点睛】本题考查作图-应用与设计,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.25、(1)见解析;(2)见解析.【分析】(1)利用两边对应成比例,夹角相等,两三角形相似即可;(2)构造全等三角形,先找出OD 与PA 的关系,再用等积式找出PE 与PA 的关系,从而判断出OM =PE ,得出△ODM ≌△PDE 即可.【详解】(1)证明:∵2·PE PA PC =, ∴PE PC PA PE=, ∵APE EPC ∠=∠,∴PAE PEC ∆∆∽.(2)证明:连接BE ,∴OBE OEB ∠=∠,∵OBE PCE ∠=∠,∴OEB PCE ∠=∠,∵PAE PEC ∆∆∽,∴PEA PCE ∠=∠,∴PEA OEB ∠=∠,AB 为直径,∴90AEB =︒∠,∴90OEB OEA ∠+∠=︒,∵90PEA OEA ∠+∠=︒,∴90OEP ∠=︒,设圆O 半径为r ,在RT ABC ∆中,∵30B ∠=︒, ∴12CA AB r ==,3CB r =, ∵OM PC ⊥,∴OM BC ,∴QMA BCA ∆∆∽,又O 为AB 中点, ∴1322OM CB r -=,1122AP AC r ==, ∵2·PE PA PC =,∴32PE r OM ==, 又OMD PED ∠=∠,ODM PDE ∠=∠,∴ODM PDE ∆∆≌,∴OD PD =.【点睛】此题是圆的综合题,主要考查了相似三角形的判定和性质,圆的性质,全等三角形的判定和学生,解本题的关键是构造全等三角形,难点是找OM =PE .26、(1)(1,0),E 、D 、'D ;(2)30m ≤≤;(3)31015-【分析】(1)根据定义即可得到点'D 的坐标,过点E 作O 的切线EM ,连接OM ,利用三角函数求出∠MEO=30°,即可得到点E 是O 的“伴侣点”;根据点F 、D 、'D 的坐标得到线段长度与线段OE 比较即可判定是否是O 的“伴侣点”;(2)根据题意求出tan 302323OG OF =⋅==,∠OGF=60°,由点()P m n ,是O 的“伴侣点”,过点P 作O 的切线PA 、PB ,连接OP ,OB ,证明△OPG 是等边三角形,得到点P 应在线段PG 上,过点P 作PH ⊥x 轴于H ,求出点P 的横坐标是P 的横坐标m 的取值范围;(3)设点P '(x ,-2x+6),P (m ,n ),根据派生点的定义得到3m+n=6,由此得到点P 在直线y=-3x+6上,设直线y=-3x+6与x 轴交于点A ,与y 轴交于点B ,过点O 作OH ⊥AB 于H ,交O 于点C ,求出AB 的长,再根据面积公式求出OH 即可得到答案. 【详解】(1)∵11,22D ⎛⎫ ⎪⎝⎭, ∴点D 的派生点'D 坐标为(1,0),∵E(0,-2),∴OE=2,过点E 作O 的切线EM ,连接OM ,∵OM=1,OE=2,∠OME=90°,∴sin ∠MEO=12OM OE =, ∴∠MEO=30°, 而在O 的左侧也有一个切点,使得组成的角等于30°,∴点E 是O 的“伴侣点”;∵()F -,∴OF=,∴点F 不可能是O 的“伴侣点”; ∵11,22D ⎛⎫ ⎪⎝⎭,'D (1,0),OD OE <,OD OE '<, ∴点D 、'D 是O 的“伴侣点”, ∴O 的“伴侣点”有:E 、D 、'D ,故答案为:(1,0),E 、D 、'D ;(2)如图,直线l 交y 轴于点G ,∵30GFO ∠=︒, ∴3tan 302323OG OF =⋅==,∠OGF=60° ∵直线l 上的点()P m n ,是O 的“伴侣点”, ∴过点P 作O 的切线PA 、PB ,且∠APB=60°,连接OP ,OB ,∴∠BOP=30°,∵∠OBP=90°,OB=1,∴OP=2=OG ,∴△OPG 是等边三角形,∴若点P 是O 的“伴侣点”,则点P 应在线段PG 上,过点P 作PH ⊥x 轴于H ,∵∠POH=90°-60°=30°,OP=2,∴PH=1,∴3P 的横坐标是3 ∴当直线l 上的点()P m n ,是O 的“伴侣点”时m 的取值范围是30m ≤≤;(3)设点P'(x,-2x+6),P(m,n),根据题意得:m+n=x,m-n=-2x+6,∴3m+n=6,即n=-3m+6,∴点P坐标为(m,-3m+6),∴点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交O于点C,如图,则A(2,0),B (0,6),∴2226210AB=+=∴1122OH AB OA OB ⋅⋅=⋅⋅,∴310210OH==,∴3101 CH=-,即点P与O 3101.【点睛】此题考查圆的性质,切线长定理,切线的性质,等腰三角形的性质,锐角三角函数,特殊角的三角函数值,勾股定理,正确掌握各知识点是解题的关键.。
人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠04.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S=4,△AOT 则此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.88.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为厘米.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =时,△AMN与原三角形相似.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x2+x﹣1=018.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.参考答案一、选择题1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.【分析】根据根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可求出答案.解:∵共有直行、左拐、右拐这3种选择,∴恰好直行的概率是,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.=4,4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 则此函数的表达式为()A.B.C.D.【分析】由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为2,又因为点M在第二象限内,所以可知反比例函数的系数.=8;解:由题意得: |k|=2S△AOT又因为点M在第二象限内,则k<0;所以反比例函数的系数k为﹣8.故选:D.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转是解决问题的关键.6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP =2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.8.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题. 解:∵点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,∴(﹣2,y 1),(﹣1,y 2)分布在第二象限,(3,y 3)在第四象限,每个象限内,y 随x 的增大而增大,∴y 3<y 1<y 2.故选:D .【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.9.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .【分析】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案.解:如图:,由勾股定理,得AC =,AB =2,BC =,∴△ABC 为直角三角形,∴tan ∠B ==,【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.【分析】利用底面周长=展开图的弧长可得.解:,解得r=.故答案为:.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为(﹣2,﹣).【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.解:由题意得:△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是[3×(﹣),1×(﹣)],即B′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.2 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为(﹣1)厘米.【分析】根据黄金分割点的定义,知AP是较长线段,得出AP=AB,代入数据即可得出AP的长.解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.【分析】首先由题意可证得:△ACB是等腰三角形,即可求得BC的长,然后由在Rt△CBD 中,CD=BC•sin60°,求得答案.解:过点C作CD⊥AB于点D,根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在Rt△CBD中,CD=BC•sin60°=2×=(km).故答案为:.【点评】此题考查了方向角问题.注意证得△ABC是等腰三角形是解此题的关键.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =2或4.5 时,△AMN与原三角形相似.【分析】分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.解:由题意可知,AB=9,AC=6,AM=3,①若△AMN ∽△ABC ,则=,即=, 解得:AN =2;②若△AMN ∽△ACB ,则=,即=, 解得:AN =4.5;故AN =2或4.5.故答案为:2或4.5.【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x 2+x ﹣1=0【分析】(1)利用特殊角的三角函数值计算;(2)先计算判别式的值,然后利用求根公式解方程.解:(1)原式=4×﹣3×+2××=2﹣3+1 =1﹣; (2)△=12﹣4×(﹣1)=5,x == 所以x 1=,x 2=.【点评】本题考查了解一元二次方程﹣公式法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了特殊角的三角函数值.18.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出==,据此即可得证.解:∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴==,∴△ABC∽△AED.【点评】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数的解析式,把点A(4,1)与点B(﹣1,﹣4)代入一次函数y=kx+b,即可得到一次函数解析式为y=x﹣3;(2)根据三角形的面积公式即可得到结论;(3)由图象即可得kx+b>的x的取值范围.解:(1)∵点A(4,1)与点B(﹣1,a)在反比例函数y=(m≠0)图象上,∴m=4,即反比例函数的解析式为y=,当x=1时,y=﹣4,即B(﹣1,﹣4),∵点A(4,1)与点B(﹣1,﹣4)在一次函数y=kx+b(k≠0)图象上,∴,解得:,∴一次函数解析式为y=x﹣3;(2)对于y=x﹣3,当y=0时,x=3,∴C(3,0),∴S△AOB =S△AOC+S△BOC=×3×1+×3×4=;(3)由图象可得,当﹣1<x<0或x>4时,kx+b>.【点评】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)【分析】过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD的长度和AC的长度,在直角△CBD中,解直角三角形求出BD的长度,再求出AD的长度,进而求出汽车从A地到B地比原来少走多少路程.解:过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC==40≈56.4(千米),∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴AD=40(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2≈27(千米).答:汽车从A地到B地比原来少走的路程为27千米.【点评】本题考查了勾股定理的运用以及解一般三角形的知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【解答】(1)解:∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴=,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.【分析】(1)根据抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P 的坐标.解:(1)∵抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=﹣x2+x+1;(2)∵y=﹣x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=x+1,设点P的坐标为(p,﹣p2+p+1),将x=p代入y=x+1的,y=p+1,∵△PBC面积为1,∴=1,解得,p1=1,p2=2,当p1=1时,点P的坐标为(1,),当p=2时,点P的坐标为(2,1),2即点P的坐标为(1,)或(2,1).【点评】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.九年级上学期期末考试数学试题(含答案)一、选择题(下列各题的备选答案中,只有一个是正确的;本题共8个小题,每小题2分,共16分)1.(2分)如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.2.(2分)关于x的一元二次方程x2+x+1=0的根的情况是()A.两个不等的实数根B.两个相等的实数根C.没有实数根D.无法确定3.(2分)有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是()A.B.C.D.4.(2分)下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线相等C.平行四边形的对角线相等D.对角线互相垂直的四边形是菱形5.(2分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4B.2C.D.6.(2分)已知反比例函数y=,下列结论不正确的是()A.该函数图象经过点(﹣1,1)B.该函数图象在第二、四象限C.当x<0时,y随着x的增大而减小D.当x>1时,﹣1<y<07.(2分)如图,在矩形ABCD中,AB=8厘米,BC=10厘米,点E在边AB上,且AE=2厘米,如果动点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,动点Q 在线段CD上由C点向D点运动,设运动时间为t秒,当△BPE与△CQP全等时,t的值为()A.2B.1.5或2C.2.5D.2或2.58.(2分)如图,已知∠MON=30°,B为OM上一点,BA⊥ON于点A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连接BE,若AB=2,则BE的最小值为()A.+1B.2﹣1C.3D.4﹣二、填空题(本题共8个小题,每小题3分,共24分)9.(3分)方程x2=2x的解是.10.(3分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只.11.(3分)小明的身高1.6米,他在阳光下的影长为0.8米,同一时刻,校园的旗杆影长为4.5米,则该旗杆高米.12.(3分)如图,已知点A在反比例函数图象上,AC⊥y轴于点C,点B在x轴的负半轴上,且△ABC的面积为3,则该反比例函数的表达式为.13.(3分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.14.(3分)如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.15.(3分)如图,在平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(0,4),(﹣3,0),E为AB的中点,EF∥AO交OB于点F,AF与EO交于点P,则EP的长为.16.(3分)如图,正方形A1ABC的边长为1,正方形A2A1B1C1边长为2.正方形A3A2B2C2边长为4,…依此规律继续做正方形A n+1A n B n∁n,其中点A,A1,A2,A3,…在同一条直线上,连接AC1交A1B1于点D1,连接A1C2交A2B2于点D2,…,若记△AA1D1的面积为S1,△A1A2D2的面积为S2…,△A n﹣1A n D n的面积为S n,则S2019=.三、解答题(本大题共2个题,17题6分,18题5分,共11分)17.(6分)用适当的方法解下列一元二次方程:(1)(x﹣1)2=2;(2)2x2+5x=﹣218.(5分)如图,在平面直角坐标系中,△ABC的顶点都在小方格的格点上.(1)点A的坐标是;点C的坐标是;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2,请在网格中画出△A1B1C1;(3)△A1B1C1的面积为.四、解答题(本大题共3个题,19题6分,20,21题各8分,共22分)19.(6分)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(单位:千帕)随气体体积V(单位:立方米)的变化而变化,P随V的变化情况如下表所示.(1)写出符合表格数据的P关于V的函数表达式;(2)当气球的体积为20立方米时,气球内气体的气压P为多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,依照(1)中的函数表达式,基于安全考虑,气球的体积至少为多少立方米?20.(8分)小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?21.(8分)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.五、解答题(本大题共3个题,22题8分,23题9分,24题10分,共27分)22.(8分)利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.(1)请分别用含x的代数式表示y和W(把结果填入下表):(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?23.(9分)如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A,B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为点M,BM=OM=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的表达式;(2)直线AB交x轴于点D,过点D作直线l⊥x轴,如果直线l上存在点P,坐标平面内存在点Q.使四边形OP AQ是矩形,求出点P的坐标.24.(10分)如图1,在正方形ABCD中,E是边BC上的点,将线段DE绕点E逆时针旋转90°得到EF,过点C作CG∥EF交BA(或其延长线)于点G,连接DF,FG.(1)FG与CE的数量关系是,位置关系是.(2)如图2,若点E是CB延长线上的点,其它条件不变.①(1)中的结论是否仍然成立?请作出判断,并给予证明;②DE,DF分别交BG于点M,N,若BC=2BE,求.2018-2019学年辽宁省锦州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的;本题共8个小题,每小题2分,共16分)1.【解答】解:一个空心圆柱体,其左视图为.故选:B.2.【解答】解:∵x2+x+1=0,∴△=12﹣4×1×1=﹣3<0,∴该方程无实数根,故选:C.3.【解答】解:列表如下:∴一共有9种等可能的结果,其中两次抽得纸牌均为红桃的有4种结果,∴两次抽得纸牌均为红桃的概率为,故选:A.4.【解答】解:A、错误.有3个角为直角的四边形是矩形.B、正确.矩形的对角线相等.C、错误.平行四边形的对角线不一定相等.D、错误.对角线互相垂直的四边形不一定是菱形.故选:B.5.【解答】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选:C.6.【解答】解:对于y=,当x=﹣1时,y=1,∴该函数图象经过点(﹣1,1),A正确,不符合题意;∵k=﹣1<0,∴该函数图象在第二、四象限,B正确,不符合题意;当x<0时,y随着x的增大而增大,C错误,符合题意;当x>1时,﹣1<y<0,D正确,不符合题意,故选:C.7.【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=8厘米,BC=10厘米,AE=2厘米,∴BE=CP=6厘米,∴BP=10﹣6=4厘米,∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=人教版数学九年级上册期末考试试题【答案】(1)人教版七年级数学下册第九章不等式与不等式组单元测试题。
哈尔滨市数学九年级上册期末试卷(带解析)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:33.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.44.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1 B .54-≤b ≤1 C .94-≤b ≤12D .94-≤b ≤1 5.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F、、.已知AB=1,BC=3,DE=1.2,则DF的长为()A.3.6B.4.8C.5D.5.26.如图,点A、B、C是⊙O上的三点,∠BAC= 40°,则∠OBC的度数是()A.80°B.40°C.50°D.20°7.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定8.下列图形,是轴对称图形,但不是中心对称图形的是()A.B.C.D.9.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D 是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为()A.3B.5C.4 D.610.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为()A.25°B.40°C.45°D.50°11.已知△ABC≌△DEF,∠A=60°,∠E=40°,则∠F的度数为()A.40 B.60 C.80 D.100 12.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.17 xx+=13.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣214.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A.1 个B.2 个C.3 个D.4 个15.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°二、填空题16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.18.数据2,3,5,5,4的众数是____.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.若m是方程5x2﹣3x﹣1=0的一个根,则15m﹣3m+2010的值为_____.21.数据8,8,10,6,7的众数是__________.22.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm,则较小的三角形的周长为__________cm.23.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为__________m.24.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.25.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.26.已知⊙O半径为4,点,A B在⊙O上,21390,sinBAC B∠=∠=OC的最大值为_____.27.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=_____.28.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,的面积为__________.与AD交于点F,则CDF29.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.30.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.三、解答题31.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.32.已知关于x 的方程x 2-(m+3)x+m+1=0.(1)求证:不论m 为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长. 33.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.34.已知二次函数y =x 2-22mx +m 2+m -1(m 为常数). (1)求证:不论m 为何值,该二次函数的图像与x 轴总有两个公共点;(2)将该二次函数的图像向下平移k (k >0)个单位长度,使得平移后的图像经过点(0,-2),则k 的取值范围是 . 35.(1)如图①,点A ,B ,C 在O 上,点D 在O 外,比较A ∠与BDC ∠的大小,并说明理由;(2)如图②,点A ,B ,C 在O 上,点D 在O 内,比较A ∠与BDC ∠的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点()1,0M ,()4,0N ,点P 在y 轴上,试求当MPN ∠度数最大时点P 的坐标.四、压轴题36.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.37.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?38.如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边BC相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.39.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.-为二次函数图像抛物线上两点,且抛物线的对称轴为直线40.已知点(4,0)、(2,3)x=.2(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】 【分析】根据两角对应相等证明△CAD ∽△CBA ,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.4.B解析:B【解析】【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出PB PA NA NC=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y的最大与最小值,进而求出b的取值范围. 【详解】 解:如图,延长NM 交y 轴于P点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA ,∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1,∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.5.B解析:B【解析】【分析】根据平行线分线段成比例定理即可解决问题.【详解】解:////AD BE CF ,AB DE BC EF ∴=,即1 1.23EF=, 3.6EF ∴=,3.6 1.24.8DF EF DE ∴++===,故选B .【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40°∴∠BOC=80°,∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C .7.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm ,∴直线和圆相切,故选B .【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.8.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.9.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425+=+=BC CD故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.10.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.11.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.12.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D 、方程x +1x=7是分式方程,不符合题意, 故选:C .【点睛】 本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.13.D解析:D【解析】x 2=4,x =±2.故选D.点睛:本题利用方程左右两边直接开平方求解.14.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴=5AE AF,=5BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.15.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m 解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m17.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.20.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.21.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.22.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.23.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.24.4【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.25.140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°.故答案为:140°【点睛】 本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.26.【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:41383+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC∠=∠⎧⎨∠=∠⎩ , ∴ABC AEO ∆∆,∴tan AC AO B AB AE∠==,∵sin B ∠=,∴cos 13B ∠==,∴sin 2tan cos 3B B n B ∠∠===∠, ∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE的最大值为:4,∴OC的最大值为:()284333=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 27.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE ,得出==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.28.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:3 2【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵CF与O相切于点E,与AD交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△CDF中,由勾股定理得:DF2=CF2-CD2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)证明见解析;(2)513;(3)53、5、15 【解析】【分析】(1)利用同角的余角相等,证明∠CEF =∠AFB ,即可解决问题;(2)过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H,由△FGE ∽△AHF 得出AH=5GF ,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD 中,∠B =∠C =∠D =90°由折叠可得:∠D =∠EFA =90°∵∠EFA =∠C =90°∴∠CEF +∠CFE =∠CFE +∠AFB =90°∴∠CEF =∠AFB在△ABF 和△FCE 中∵∠AFB =∠CEF ,∠B =∠C =90°△ABF ∽△FCE(2)解:过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H ,则∠EGF =∠AHF =90° 在矩形ABCD 中,∠D =90°由折叠可得:∠D =∠EFA =90°,DE =EF =1,AD =AF =5∵∠EGF =∠EFA =90°∴∠GEF +∠GFE =∠AFH +∠GFE =90°∴∠GEF =∠AFH在△FGE 和△AHF 中∵∠GEF =∠AFH ,∠EGF =∠FHA =90°∴△FGE ∽△AHF ∴EF AF =GF AH ∴15=GF AH∴AH =5GF在Rt △AHF 中,∠AHF =90°∵AH 2+FH 2=AF 2∴(5 GF )2+(5 -GF )2=52∴GF =513∴△EFC 的面积为12×513×2=513 ;(3)解:①当∠EFC=90°时,A 、F 、C 共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=22223534AD CD +=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF ∽△CAD, ∴CE EF CA AD =,即534x =,解得:ED=x=5(345)-; ②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF 221AF AB -设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°, 111CF E F AB ∠=∠∴11CEF ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、155(345)-. 【点睛】 本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.32.(1)见解析;(2)263 【解析】【分析】(1)根据判别式即可求出答案.(2)将x =4代入原方程可求出m 的值,求出m 的值后代入原方程即可求出x 的值.【详解】解:(1)由题意可知:△=(m+3)2﹣4(m+1)=m 2+2m+5=m 2+2m+1+4=(m+1)2+4,∵(m+1)2+4>0,∴△>0,∴不论m 为何值,方程都有两个不相等的实数根.(2)当x =4代入x 2﹣(m+3)x+m+1=0得164(3)10m m -+++=解得m =53, 将m =53代入x 2﹣(m+3)x+m+1=0得2148033x x -+=∴原方程化为:3x2﹣14x+8=0,解得x=4或x=2 3腰长为23时,2244333+=<,构不成三角形;腰长为4时,该等腰三角形的周长为4+4+23=263所以此三角形的周长为26 3.【点睛】本题考查了一元二次方程,熟练的掌握一元二次方程的解法是解题的关键.33.(1)见解析;(2)BP=7.【解析】【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP∽△ABD,然后利用相似三角形的对应边成比例求BP的长.【详解】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A =90°,∴∠P =∠D ,∵∠A =∠A ,∴△AOP ∽△ABD , ∴AP AD =AO AB ,即14BP +=21, 解得:BP =7.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.34.(1)证明见解析;(2)k ≥34. 【解析】【分析】(1)根据判别式的值得到△=(2m -1)2 +3>0,然后根据判别式的意义得到结论; (2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果. 【详解】(1)证:当y =0时 x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2 +3>0∴方程x 2-mx +m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-mx +m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为: y =x 2-mx +m 2+m -1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k ≥34. 【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.35.(1)B BAC DC >∠∠;理由详见解析;(2)BDC BAC ∠>∠;理由详见解析;(3)()10,2P , ()30,2P -【解析】【分析】(1)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(2)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(3)根据圆周角定理,结合(1)(2)的结论首先确定圆心的位置,然后即可得出点P 的坐标.【详解】(1)CD 交O 于点E ,连接BE ,如图所示:BDE ∆中BEC BDC ∠>∠又BAC BEC ∠=∠∴B BAC DC >∠∠(2)延长CD 交O 于点F ,连接BF ,如图所示:BDF ∆中BDC BFC ∠>∠又BFC BAC ∠=∠∴BDC BAC ∠>∠(3)由(1)(2)结论可知,当OP=2.5时,∠MPN 最大,如图所示:∴OM=2.5,MH=1.5∴2OH ===∴()10,2P ,()20,2P -【点睛】本题考查了圆周角定理、三角形的外角性质的综合应用,熟练掌握,即可解题. 四、压轴题36.(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析【解析】【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等;②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒,BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=,即54t -=,。
哈尔滨市数学九年级上册期末试卷(带解析)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3 B .6C .5D .72.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 4.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-4 5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰166.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( )A .45 B .34C .43 D .357.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A.60︒B.70︒C.72︒D.90︒8.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40°B.80°C.100°D.120°9.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α10.已知关于x的一元二次方程(x - a)(x - b)-12= 0 (a < b)的两个根为 x1、x2,(x1< x2)则实数 a、b、x1、x2的大小关系为()A.a < x1< b <x2B.a < x1< x2 < b C.x1< a < x2< b D.x1< a < b < x2 11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-13.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根14.如图,AB,AM,BN 分别是⊙O 的切线,切点分别为 P,M,N.若 MN∥AB,∠A=60°,AB=6,则⊙O 的半径是()A.32B.3 C.323D.315.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD =1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.3B.3C.7D.7二、填空题16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m ,则树的高度为_________m.17.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.18.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).19.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.20.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;21.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)22.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 23.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.24.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .25.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.26.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)27.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 29.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”) 30.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =4GB =,求O 的半径.32.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)33.小亮晚上在广场散步,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?34.如图,在平面直角坐标系中,一次函数y=12x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为5,其圆心P在x轴上运动.(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出12AG+OG的最小值.35.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.四、压轴题36.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?38.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.39.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 3.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa,当a、c异号时,可利用直接开平方法求解.5.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质 点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方6.A解析:A【解析】【分析】根据勾股定理求出AB 的长,在求出∠ACD 的等角∠B ,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3,∴2222AB AC BC 345=+=+=,∵CD ⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α, ∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.7.C解析:C【解析】【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可.【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°,∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒.故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.8.C解析:C【解析】【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键. 9.D解析:D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.10.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.11.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF-S△ABD=26021233602π⨯-⨯=233π故选B.13.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.14.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.15.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC7,∠ABC=30°,∴AB=2AC=7,BC3AC21,∵DE∥AB,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=3,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.二、填空题16.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m17.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.18.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.19.720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019 解析:720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x ,则2018的全年收入为:720×(1+x )2019的全年收入为:720×(1+x )2.那么可得方程:720(1+x )2=845.故答案为:720(1+x )2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).20.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343 【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴6AC ===,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图 ∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.21.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE ADAC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC=. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC=,∠A =∠A , ∴△ADE ∽△ABC ; 故答案为∠B =∠1或AD AE AB AC = 【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 22.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 23.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 24.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm ∴较小的三角形的周长为643484cm ⨯= 故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 25.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数k<解析:3【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.=方程有两个不相等的实数根,1a,b=-,c k241240b ac k∴∆=-=->,∴<.3kk<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.27.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.28.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.29.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.30.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC 的最长值是通过圆心的直线是解题关键.三、解答题31.(1)见解析;(2)O 的半径为4. 【解析】【分析】(1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可. 【详解】解:(1)证明:连接OE .∵AB BC =∴A C ∠=∠∵OE OC =∴OEC C ∠=∠∴A OEC ∠=∠∴OEAB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线(2)∵BF GE ⊥∴90BFG ∠=︒∵23GF =4GB =∴222BF BG GF =-=∵BF OE ∥∴BGF OGE ∆∆∽ ∴BF BG OE OG =∴244OE OE=+ ∴4OE =即O 的半径为4. 【点睛】本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.32.(1)x =﹣3或x =1;(2)x =1或x =4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x 2+2x ﹣3=0,∴(x+3)(x ﹣1)=0,∴x =﹣3或x =1;(2)∵(x ﹣1)2=3(x ﹣1),∴(x ﹣1)[(x ﹣1)﹣3]=0, ∴(x ﹣1)(x ﹣4)=0,∴x =1或x =4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.33.(1)如图,BE 为所作;见解析;(2)小亮(CD )的影长为3m .【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,连接PA 并延长交直线BO 于点E ,则可得到小亮站在AB 处的影子;(2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可.【详解】(1)如图,连接PA 并延长交直线BO 于点E ,则线段BE 即为小亮站在AB 处的影子:(2)延长PC 交OD 于F ,如图,则DF 为小亮站在CD 处的影子,AB =CD =1.6,OB =2.4,BE =1.2,OD =6,∵AB ∥OP ,∴△EBA ∽△EOP ,∴,AB EB OP EO =即1.6 1.2,1.2 2.4OP =+ 解得OP =4.8,∵CD ∥OP ,∴△FCD ∽△FPO ,∴CD FD OP FO =,即1.64.86FD FD =+, 解得FD =3答:小亮(CD )的影长为3m .【点睛】 本题考查的是相似三角形的判定及性质,解答此题的关键是根据题意画出图形,构造出相。
哈尔滨市平房区2025届九年级数学第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.下列二次根式中,与32是同类二次根式的是A.32B.3C.8D.122.下列方程中有一个根为﹣1的方程是()A.x2+2x=0 B.x2+2x﹣3=0 C.x2﹣5x+4=0 D.x2﹣3x﹣4=03.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为()A.12πB.C.D.4.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<25.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A .B .C .D .6.下列长度的三条线段能组成三角形的是( )A .1,2,3B .2,3,4C .3,4,7D .5,2,87.下列命题中,①直径是圆中最长的弦;②长度相等的两条弧是等弧;③半径相等的两个圆是等圆;④半径不是弧,半圆包括它所对的直径,其中正确的个数是( )A .1B .2C .3D .48.如图,在平面直角坐标系中,点A 在函数()30y x x =>的图象上,点B 在函数()0k y x x =<的图象上,AB y ⊥轴于点C .若3AC BC =,则k 的值为( )A .1-B .1C .2-D .29.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变11.如图所示,在矩形ABCD 中,点F 是 BC 的中点,DF 的延长线与AB 的延长线相交于点E ,DE 与AC 相交于点O ,若2COD S ∆=,则AOE S ∆=( )A .4B .6C .8D .1012.计算:x (1﹣21x )÷221x x x++的结果是( ) A .11x + B .x+1 C .11x x -+ D .1x x+ 二、填空题(每题4分,共24分)13.抛物线y=2(x −3)2+4的顶点坐标是__________________.14.如图,在菱形ABCD 中,∠B =60°,AB =2,M 为边AB 的中点,N 为边BC 上一动点(不与点B 重合),将△BMN沿直线MN 折叠,使点B 落在点E 处,连接DE 、CE ,当△CDE 为等腰三角形时,BN 的长为_____.15.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.16.如图,点O 为等边三角形ABC 的外心,连接,OA OB .①AOB ∠=___________C .②弧AC 以O 为圆心,2为半径,则图中阴影部分的面积等于__________.17.如图,在边长为2的菱形ABCD 中,60D ∠=︒,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折,点B 恰好与边AD 的中点G 重合,则BE 的长等于________.18.如图,点A (m ,2),B (5,n )在函数k y x =(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .三、解答题(共78分)19.(8分)如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.20.(8分)如图,在ABC 中,90C ∠=︒,10AB =,8AC =,将线段AB 绕点A 按逆时针方向旋转90︒到线段AD .EFG 由ABC 沿CB 方向平移得到,且直线EF 过点D .∠的大小;(1)求1(2)求AE的长.21.(8分)某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.(1)第一次购进的甲、乙两种水果各多少千克?(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.22.(10分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以202海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:2≈1.41,3≈1.73)23.(10分)如图,一艘船由A港沿北偏东65°方向航行302km至B港,然后再沿北偏西40°方向航行至C港,C 港在A港北偏东20°方向.求:(1)∠C的度数;(2)A,C两港之间的距离为多少km.AB=,点C为O上一点,连接AC、BC.24.(10分)如图,O的直径10(1)作ACB ∠的角平分线,交O 于点D ;(2)在(1)的条件下,连接AD .求AD 的长.25.(12分)如图, 90Rt ABC BAC AD BC ∠=︒⊥,,于D ,以AD 直径作O ,交AC 于点,E 恰有CE AD =,连接DE .(1)如图1,求证:CDE ABD ≌;(2)如图2,连接BE 分别交AD ,O 于点,,F G 连接,AG DG ,试探究DG 与BF 之间的数量关系,并说明理由;(3)在(2)的基础上,若2DG =,求AD 的长.26.如图,ABC ∆是等边三角形,ABD ∆顺时针方向旋转后能与CBD '∆重合.(1)旋转中心是___________,旋转角度是___________度,(2)连接DD',证明:BDD'∆为等边三角形.参考答案一、选择题(每题4分,共48分)1、C【分析】根据同类二次根式的定义即可判断.【详解】A. 326B. 3C. 822D. 12=23故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.2、D【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3、C【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=14π×(9-1)=2π.故选C.4、C【解析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.5、B【解析】试题分析:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选B.考点:列表法与树状图法.6、B【解析】根据三角形三边关系定理得出:如果较短两条线段的和大于最长的线段,则三条线段可以构成三角形,由此判定即可.【详解】A.1+2=3,不能构成三角形,故此选项错误;B.2+3>4,能构成三角形,故此选项正确;C.3+4=7,不能构成三角形,故此选项错误;D.5+2<8,不能构成三角形,故此选项错误.故选:B.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7、C【分析】根据弦、弧、等弧的定义即可求解.【详解】解:①直径是圆中最长的弦,真命题;②在等圆或同圆中,长度相等的两条弧是等弧,假命题;③半径相等的两个圆是等圆,真命题;④半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题.故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).8、A【分析】设A的横坐标为a,则纵坐标为3a,根据题意得出点B的坐标为13(,)3aa,代入y=kx(x<0)即可求得k的值.【详解】解:设A的横坐标为a,则纵坐标为3a,∵AC=3BC,∴B的横坐标为-13 a,∵AB⊥y轴于点C,∴AB∥x轴,∴B(-13a,3a),∵点B在函数y=kx(x<0)的图象上,∴k=-13a×3a=-1,故选:A.【点睛】本题主要考查了反比例函数图象上点的坐标特征,表示出点B的坐标是解题的关键.9、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.10、D【解析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OE OF AF =;设B 为(a ,1a -),A 为(b ,2b ),得到OE=-a ,EB=1a -,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=22为定值,即可解决问题.【详解】解:分别过B 和A 作BE⊥x 轴于点E ,AF⊥x 轴于点F ,则△BEO∽△OFA,∴BE OE OF AF=, 设点B 为(a ,1a-),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.11、C【解析】由矩形的性质得出AB=CD ,AB ∥CD ,∠ABC=∠BCD=90°,由ASA 证明△BEF ≌△CDF ,得出BE=CD=AB ,则AE=2AB=2CD ,再根据AOE ~COD,面积比等于相似比的平方即可。
上学期期末调研测试初 三(九年级) 数 学一、 选择题(每题3分共30分) 1.-3的相反数是( ) A.-3 B.3 C.31 D.31-2.下列计算中,正确的是( )A.10=a B.a a -=-1 C.523a a a =⋅ D.532532a a a =+3.下列图形中,既是轴对称图形,又是中心对称图形的是( )4.点(-2, 4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8) C .(﹣2,﹣4) D .(4,﹣2) 5.五个大小相同的正方体搭成的几何体如图所示,其左视图是( )6.将二次函数2x y =的图象向右平移2个单位,再向上平移1个单位后,所得图象的函数表达式是( )A.1)2(2+-=x y B.1)2(2--=x y C. 1)2(2++=x y D.1)2(2-+=x y7.某商品原价每盒25元,两次降价后每盒16元,则平均每次的降价百分率是( ) A .25% B. 20% C. 15% D. 10%8.如图,为测量学校旗杆的高度,小明用长为3.2m 的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( )m . A .8.8 B .10 C .12 D .149.如图,飞机飞行高度BC 为1500m ,飞行员看地平面指挥塔A 的俯角为α,则飞机与指挥塔A 的距离第8题图为( ) m.A.αsin 1500B.1500sin αC.1500cos αD.αtan 150010.一辆货车从A 地开往B 地,一辆小汽车从B 地开往A 地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s (千米),货车行驶的时间为t (小时),S 与t 之间的函数关系如图所示.下列说法中正确的有( )①A 、B 两地相距60千米;②出发1小时,货车与小汽车相遇; ③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米. A .1个 B .2个 C .3个 D .4个二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为 ______________. 12.函数y=12+x x中,自变量的取值范围是____________. 13.计算27312-的结果是____________________. 14.把多项式3222m x m mx ++分解因式的结果是____________________.15.一个扇形的弧长是π6cm ,面积是π152cm ,则此扇形的圆心角为 _________度 .16.不等式组⎩⎨⎧<-<+2221x x 的解集为 .17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为 . 18.矩形ABCD 中,AB=3,AD=5,点E 在BC 边上,△ADE 是以AD 为一腰的等腰三角形,则tan ∠CDE=___________.19.已知,如图,CB 是⊙O 的切线,切点为B ,连接OC ,半径OA ⊥OC ,连接AB 交OC 于点D ,若OD=1,OA=3,则BC =____________.20.如图,直线DE 过等边△ABC 的顶点B ,连接AD 、CE ,AD ∥CE , ∠E =30°,若BE :AD=1:3,CE=34时,则BC=____________.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)21.先化简,再求代数式:C第19题图第10题图第9题图)21(12x xx x x -+÷+的值,其中x =2sin 60°+2cos60°. 22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A 关于BC 对称点D ,顺次连接ABDC ,并求出四边形ABDC 的面积; (2)在图2中画出一个面积是10的等腰直角三角形.23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数; (2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?24.在□ABCD 中,对角线AC 、BD 相交于O ,EF 过点O ,且AF ⊥BC. (1)求证:△BFO ≌△DEO ;(2)若EF 平分∠AEC ,试判断四边形AFCE 的形状,并证明.25.“双11”期间,某个体户在淘宝网上购买某品牌A 、B 两款羽绒服销售,若购买3件A ,4件B 需支付2400元,若购买2件A ,2件B ,则需支付1400元. (1)求A 、B 两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A 、B 两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件? 26.已知,△ADB 内接于⊙O ,DG ⊥AB 于点G ,交⊙O 于点C ,点E 是⊙O 上一点,连接AE 分别交CD 、BD第24题图于点H 、F .(1)如图1,当AE 经过圆心O 时,求证:∠AHG =∠ADB ;(2)如图2,当AE 不经过点O 时,连接BC 、BH ,若∠GBC=∠HBG 时,求证:HF=EF ; (3)如图3,在(2)的条件下,连接DE ,若AB=8,DH=6,求sin ∠DAE 的值.27.在平面直角坐标系中,抛物线c bx x y +-=241与x 轴交于点A (8,0)、B(2,0)两点,与y 轴交于点C .(1)如图1,求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,连接PB 并延长交y 轴于点D ,若点P 的横坐标为t ,CD 长为d ,求d 与t 的函数关系式(并求出自变量t 的取值范围);(3)如图3,在(2)的条件下,连接AC ,过点P 作PH ⊥x 轴,垂足为点H ,延长PH 交AC 于点E ,连接DE ,射线DP 关于DE 对称的射线DG 交AC 于点G ,延长DG 交抛物线于点F ,当点G 为AC 中点时,求点F 的坐标.数 学 答 案一、 BCDDA ABCAC二、11、6104.5⨯ 12、21-≠x 13、337- 14、2)(m x m + 15、216 16、-1<<1 17、94 18、34或3119、4 20、7221、x-12….3分 13+=x ….2分 结果 =332-….2分 22、第一个图正确+结论(面积为12)….4分 第二图正确….3分 23、(1)1025%=40 ….1分 答….1分 (2)40-15-2-10=13 ….2分 画图….1分 (3)5010004013-15=⨯….2分 答带有估计字样….1分 24、每问4分25、解设A 款a 元,B 款b 元⎩⎨⎧=+=+140022240043b a b a ….3分 解⎩⎨⎧==300400b a ….2分 答:A 款400元,B 款300元.设让利的羽绒服有x 件,则已售出的有(20-x )件600 (20-) + 600×60% -400×10 -300×10≥3800 ……3分 解得5≤x ….2分 答最多让利5件. 26证明: (1) 连接BE ,∵AE 是⊙O 的直径∴∠ABE =90°….1分∵DG ⊥AB ∴∠ABE =∠AGD=90°∴ DG ∥BE ∴ ∠AEB =∠AHG……….1分∵∠ADB =∠AEB ∴∠ADB =∠AHG……….1分(2)连接AC 、DE ,∠GBC=∠HBG , DG ⊥AB ∴∠GHB=∠BCH BH=BC ∴ HG=CG……….1分 ∴AH=AC ∠AHC =∠HCA , ∠BAC =∠HAG∵∠E=∠HCA ∠DHE=∠AHC ∴∠E=∠DHE ,∴DH=DE……….1分 ∵∠EDB=∠EAB ∠CDB=∠BAC ∴∠EDB=∠CDB ∴HF=EF…….1分 (3)过点O 作ON ⊥DE ,OM ⊥AB 垂足分别为N 、M ∴BM=21AB=4……….1分 ∵DH =DE=6,HF =EF ∴DF ⊥AE ∴∠DAE+∠BDA=90° ∵∠E O D =2∠DAE ∠AO B =2∠ADB ∴ ∠BOA+∠EOD=180°∠DOE=2∠NOE ∠AOB =2∠BOM ∴∠NOE+∠BOM=90° ∠NOE+∠NEO=90°∠NEO =∠BOM……….1分 OE=OB ∴△NOE ≌△MBO∴NE=OM=3……….1分 由勾股定理可得OB =5 ∵∠ADB =∠BOM ∴∠DAF =∠OBM 在RT △OMB 中sin ∠OBM=53∴sin ∠DAE = 53……….1分 27、证明:c bx x y +-=241 过A (8,0)、B(2,0)两点 ⎪⎪⎩⎪⎪⎨⎧+-⨯=+⨯=c b c b 224108-841022解得⎪⎩⎪⎨⎧==425c b ………2分∴抛物线的解析式为:425412+-=x x y (2)过点P 作PH ⊥AB 于点H ,设点P (t, 425412+-t t ) BH =t -2 PH=4-2541-2t t + tan ∠HBP=………….1分∵ ∠OBD =∠HBP ∴tan ∠OBD =tan ∠HBP2)8(41OD t =-- OD=421+-t CD=4-OD=t 21 d=t 21(2<t<8) ……………2分 (3)设直线 AC 的解析式为b kx y +=⎩⎨⎧==+408b b k 解得⎪⎩⎪⎨⎧==421-b k 解析式为421-+=x y …….1分 ∴点E (t, 421+-t ) ∴EH=OD=421+-t EH ∥OD…….1分 ∴∠CED =∠CAO tan ∠CED =tan ∠CAO=21∴四边形DOHE 是矩形,∴DE ∥OH ,取AO 的中点M ,连接GM , 交DE 于点N ∴ GM ∥OC , ∴GN ⊥DE ∴四边形DOMN 是矩形OD=NM=421+-tNG=2-MN=221-t …….1分 ∵DN=OM=4tan ∠GDN=21814221-=-t t ∵由对称性得∠PDE =∠GDE=∠HBPtan ∠GDN =tan ∠HBP ∴2181-t )8(41--=t 320=t ………….1分 ∴OD=32 tan ∠GDN=31 设点F (m, )425412+-m m过点F 作F ⊥DE 交延长线于点,tan ∠GDN= 3132425412=-+-=m m m DK FK )(341021舍,==m m ∴ F (10,4)…………….1分。
上学期期末调研测试初 三(九年级) 数 学一、 选择题(每题3分共30分) 1.-3的相反数是( ) A.-3 B.3 C.31 D.31-2.下列计算中,正确的是( )A.10=a B.a a -=-1 C.523a a a =⋅ D.532532a a a =+3.下列图形中,既是轴对称图形,又是中心对称图形的是( )4.点(-2, 4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8) C .(﹣2,﹣4) D .(4,﹣2) 5.五个大小相同的正方体搭成的几何体如图所示,其左视图是( )6.将二次函数2x y =的图象向右平移2个单位,再向上平移1个单位后,所得图象的函数表达式是( )A.1)2(2+-=x y B.1)2(2--=x y C. 1)2(2++=x y D.1)2(2-+=x y7.某商品原价每盒25元,两次降价后每盒16元,则平均每次的降价百分率是( ) A .25% B. 20% C. 15% D. 10%8.如图,为测量学校旗杆的高度,小明用长为3.2m 的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( )m . A .8.8 B .10 C .12 D .149.如图,飞机飞行高度BC 为1500m ,飞行员看地平面指挥塔A 的俯角为α,则飞机与指挥塔A 的距离为第8题图( ) m.A.αsin 1500B.1500sin αC.1500cos αD.αtan 150010.一辆货车从A 地开往B 地,一辆小汽车从B 地开往A 地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s (千米),货车行驶的时间为t (小时),S 与t 之间的函数关系如图所示.下列说法中正确的有( )①A 、B 两地相距60千米;②出发1小时,货车与小汽车相遇; ③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米. A .1个 B .2个 C .3个 D .4个二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为 ______________. 12.函数y=12+x x中,自变量的取值范围是____________. 13.计算27312-的结果是____________________. 14.把多项式3222m x m mx ++分解因式的结果是____________________.15.一个扇形的弧长是π6cm ,面积是π152cm ,则此扇形的圆心角为 _________度 . 16.不等式组⎩⎨⎧<-<+2221x x 的解集为 .17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为 . 18.矩形ABCD 中,AB=3,AD=5,点E 在BC 边上,△ADE 是以AD 为一腰的等腰三角形,则tan ∠CDE=___________.19.已知,如图,CB 是⊙O 的切线,切点为B ,连接OC ,半径OA ⊥OC ,连接AB 交OC 于点D ,若OD=1,OA=3,则BC =____________.20.如图,直线DE 过等边△ABC 的顶点B ,连接AD 、CE ,AD ∥CE , ∠E =30°,若BE :AD=1:3,CE=34时,则BC=____________.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)21.先化简,再求代数式:第20题图C第19题图第10题图第9题图)21(12x xx x x -+÷+的值,其中x =2sin 60°+2cos60°. 22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A 关于BC 对称点D ,顺次连接ABDC ,并求出四边形ABDC 的面积; (2)在图2中画出一个面积是10的等腰直角三角形.23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数; (2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?24.在□ABCD 中,对角线AC 、BD 相交于O ,EF 过点O ,且AF ⊥BC. (1)求证:△BFO ≌△DEO ;(2)若EF 平分∠AEC ,试判断四边形AFCE 的形状,并证明.25.“双11”期间,某个体户在淘宝网上购买某品牌A 、B 两款羽绒服销售,若购买3件A ,4件B 需支付2400元,若购买2件A ,2件B ,则需支付1400元. (1)求A 、B 两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A 、B 两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件? 26.已知,△ADB 内接于⊙O ,DG ⊥AB 于点G ,交⊙O 于点C ,点E 是⊙O 上一点,连接AE 分别交CD 、BD 于点H 、F .第24题图(1)如图1,当AE 经过圆心O 时,求证:∠AHG =∠ADB ;(2)如图2,当AE 不经过点O 时,连接BC 、BH ,若∠GBC=∠HBG 时,求证:HF=EF ; (3)如图3,在(2)的条件下,连接DE ,若AB=8,DH=6,求sin ∠DAE 的值.27.在平面直角坐标系中,抛物线c bx x y +-=241与x 轴交于点A (8,0)、B(2,0)两点,与y 轴交于点C .(1)如图1,求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,连接PB 并延长交y 轴于点D ,若点P 的横坐标为t ,CD 长为d ,求d 与t 的函数关系式(并求出自变量t 的取值范围);(3)如图3,在(2)的条件下,连接AC ,过点P 作PH ⊥x 轴,垂足为点H ,延长PH 交AC 于点E ,连接DE ,射线DP 关于DE 对称的射线DG 交AC 于点G ,延长DG 交抛物线于点F ,当点G 为AC 中点时,求点F 的坐标.数 学 答 案一、 BCDDA ABCAC二、11、6104.5⨯ 12、21-≠x 13、337- 14、2)(m x m + 15、216 16、-1<<1 17、94 18、34或3119、4 20、7221、x-12….3分 13+=x ….2分 结果 =332-….2分 22、第一个图正确+结论(面积为12)….4分 第二图正确….3分 23、(1)1025%=40 ….1分 答….1分 (2)40-15-2-10=13 ….2分 画图….1分 (3)5010004013-15=⨯….2分 答带有估计字样….1分 24、每问4分25、解设A 款a 元,B 款b 元⎩⎨⎧=+=+140022240043b a b a ….3分 解⎩⎨⎧==300400b a ….2分 答:A 款400元,B 款300元.设让利的羽绒服有x 件,则已售出的有(20-x )件600 (20-) + 600×60% -400×10 -300×10≥3800 ……3分 解得5≤x ….2分 答最多让利5件. 26证明: (1) 连接BE ,∵AE 是⊙O 的直径∴∠ABE =90°….1分∵DG ⊥AB ∴∠ABE =∠AGD=90°∴ DG ∥BE ∴ ∠AEB =∠AHG……….1分∵∠ADB =∠AEB ∴∠ADB =∠AHG……….1分(2)连接AC 、DE ,∠GBC=∠HBG , DG ⊥AB ∴∠GHB=∠BCH BH=BC ∴ HG=CG……….1分 ∴AH=AC ∠AHC =∠HCA , ∠BAC =∠HAG∵∠E=∠HCA ∠DHE=∠AHC ∴∠E=∠DHE ,∴DH=DE……….1分 ∵∠EDB=∠EAB ∠CDB=∠BAC ∴∠EDB=∠CDB ∴HF=EF…….1分(3)过点O 作ON ⊥DE ,OM ⊥AB 垂足分别为N 、M ∴BM=21AB=4……….1分 ∵DH =DE=6,HF =EF ∴DF ⊥AE ∴∠DAE+∠BDA=90° ∵∠E O D =2∠DAE ∠AO B =2∠ADB ∴ ∠BOA+∠EOD=180°∠DOE=2∠NOE ∠AOB =2∠BOM ∴∠NOE+∠BOM=90° ∠NOE+∠NEO=90°∠NEO =∠BOM……….1分 OE=OB ∴△NOE ≌△MBO∴NE=OM=3……….1分 由勾股定理可得OB =5 ∵∠ADB =∠BOM ∴∠DAF =∠OBM 在RT △OMB 中sin ∠OBM=53∴sin ∠DAE = 53……….1分 27、证明:c bx x y +-=241 过A (8,0)、B(2,0)两点 ⎪⎪⎩⎪⎪⎨⎧+-⨯=+⨯=c b c b 224108-841022解得⎪⎩⎪⎨⎧==425c b ………2分∴抛物线的解析式为:425412+-=x x y (2)过点P 作PH ⊥AB 于点H ,设点P (t, 425412+-t t ) BH =t -2 PH=4-2541-2t t + tan ∠HBP=………….1分∵ ∠OBD =∠HBP ∴tan ∠OBD =tan ∠HBP2)8(41OD t =-- OD=421+-t CD=4-OD=t 21 d=t 21(2<t<8) ……………2分 (3)设直线 AC 的解析式为b kx y +=⎩⎨⎧==+408b b k 解得⎪⎩⎪⎨⎧==421-b k 解析式为421-+=x y …….1分 ∴点E (t, 421+-t ) ∴EH=OD=421+-t EH ∥OD…….1分 ∴∠CED =∠CAO tan ∠CED =tan ∠CAO=21∴四边形DOHE 是矩形,∴DE ∥OH ,取AO 的中点M ,连接GM , 交DE 于点N ∴ GM ∥OC , ∴GN ⊥DE ∴四边形DOMN 是矩形OD=NM=421+-tNG=2-MN=221-t …….1分 ∵DN=OM=4tan ∠GDN=21814221-=-t t ∵由对称性得∠PDE =∠GDE=∠HBPtan ∠GDN =tan ∠HBP ∴2181-t )8(41--=t 320=t ………….1分 ∴OD=32 tan ∠GDN=31 设点F (m, )425412+-m m过点F 作F ⊥DE 交延长线于点,tan ∠GDN= 3132425412=-+-=m m m DK FK )(341021舍,==m m ∴ F (10,4)…………….1分。