哈尔滨市平房区2020届中考调研测试数学试卷(一)含答案解析
- 格式:docx
- 大小:316.89 KB
- 文档页数:15
哈尔滨市2020年初中升学考试数学试卷(满分120分,考试时间120分钟)第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.答案与解析第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.【知识考点】倒数.【思路分析】根据乘积为1的两个数互为倒数,可求一个数的倒数.【解题过程】解:﹣8的倒数是﹣,故选:A.【总结归纳】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.【解题过程】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.【总结归纳】本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解题过程】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.【总结归纳】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°【知识考点】圆周角定理;切线的性质.【思路分析】根据切线的性质和圆周角定理即可得到结论.【解题过程】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.【总结归纳】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 【知识考点】二次函数图象与几何变换.【思路分析】根据“上加下减,左加右减”的原则进行解答即可.【解题过程】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.【总结归纳】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【知识考点】轴对称的性质.【思路分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解题过程】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.【总结归纳】本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=9【知识考点】解分式方程.【思路分析】根据解分式方程的步骤解答即可.【解题过程】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.【总结归纳】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】利用概率公式可求解.【解题过程】解:∵从袋子中随机摸出一个小球有9种等可能的结果,其中摸出的小球是红球有6种,∴摸出的小球是红球的概率是=,故选:A.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=【知识考点】相似三角形的判定与性质.【思路分析】根据平行线分线段成比例性质进行解答便可.【解题过程】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.【总结归纳】本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:4790000=4.79×106,故答案为:4.79×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解题过程】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.【知识考点】反比例函数图象上点的坐标特征.【思路分析】把(﹣3,4)代入函数解析式y=即可求k的值.【解题过程】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.【总结归纳】本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.计算+6的结果是.【知识考点】二次根式的性质与化简;二次根式的加减法.【思路分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解题过程】解:原式=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.把多项式m2n+6mn+9n分解因式的结果是.【知识考点】提公因式法与公式法的综合运用.【思路分析】直接提取公因式n,再利用完全平方公式分解因式得出答案.【解题过程】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.抛物线y=3(x﹣1)2+8的顶点坐标为.【知识考点】二次函数的性质.【思路分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解题过程】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).【总结归纳】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.不等式组的解集是.【知识考点】解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解题过程】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.【总结归纳】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.【知识考点】扇形面积的计算.【思路分析】根据扇形面积公式S=,即可求得这个扇形的圆心角的度数.【解题过程】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.【总结归纳】本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.【知识考点】含30度角的直角三角形.【思路分析】在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.【解题过程】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.【知识考点】菱形的性质.【思路分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=x,解得x=2,然后利用勾股定理计算OA,再计算AE 的长.【解题过程】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA===,在Rt△AOE中,AE===2.故答案为2.【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.【知识考点】分式的化简求值;特殊角的三角函数值.【思路分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解题过程】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.【知识考点】等腰三角形的判定;勾股定理;作图—应用与设计作图.【思路分析】(1)画出边长为的正方形即可.(2)画出两腰为5,底为的等腰三角形即可.【解题过程】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.EG==.【总结归纳】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.【知识考点】用样本估计总体;条形统计图.【思路分析】(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的,因此估计总体800名的是最喜欢“剪纸”的人数.【解题过程】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【总结归纳】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.【知识考点】全等三角形的判定与性质;等腰三角形的判定与性质.【思路分析】(1)根据SAS可证△ABD≌△ACE,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.【解题过程】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FBD=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.【总结归纳】考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.【解题过程】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.【总结归纳】本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.【知识考点】圆的综合题.【思路分析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.【解题过程】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.【总结归纳】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.【知识考点】一次函数综合题.【思路分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD (用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR =m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.【解题过程】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).【总结归纳】本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21。
黑龙江省哈尔滨市2020年中考试卷试卷第I 卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分) 1、-9的相反数是( )。
A 、-9; B 、-91; C 、9; D 、91【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣9的相反数是9, 故选:C .【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2、下列运算一定正确的是( )。
A 、2222a a a =+;B 、632a a a =∙; C 、6326)2(a a =; D 、22))((b a b a b a -=-+【分析】利用同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式解题即可; 【解答】解:2a +2a =4a ,A 错误;a 2•a 3=a 5,B 错误;(2a 2)3=8a 6,C 错误; 故选:D .【点评】本题考查整式的运算;熟练掌握同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式是解题的关键.3、下列图形中既是轴对称图形又是中心对称图形的是( )。
【分析】根据轴对称及中心对称图形的定义对各选项进行逐一分析即可. 【解答】解:A 、是轴对称图形,但不是中心对称图形,故此选项错误;B 、是中心对称图形,也是轴对称图形,故此选项正确;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误.故选:B .【点评】本题考查的是中心对称图形,熟知把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解答此题的关键.4、七个大小相同的正方体搭成的几何体如图所示,其左视图是()。
【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,故选:B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.5、如图,PA、PB分别与⊙0相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()。
2020年哈尔滨市初中升学考试模试题(一)数学试卷第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,比-3小的数是( )A .-3B .-2C .0D .-42.下列计算正确的是( )A .235m n mn +=B .()()623623x x x -÷-=C .11(3)3a a-=D .22(3)9x x -=-3. 下列图形中,既是中心对称图形又是轴对称图形的是( ) A . B . C .D .4. 下面的几何体中,主视图为三角形的是( )A .B .C .D .5.如图,点A 是反比例函数2(0)y x x=>图象上任意一点,AB y ⊥轴于点B ,点C 是x 轴上的一个动点,则ABC △的面积为( )A .1B .2C .4D .无法确定6.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对的二次函数的关系式为( )A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++7. 如图,已知AOB ∠是O 的圆心角,60AOB ∠=︒,则圆周角ACB ∠的度数是( )A .50°B .25°C .100°D .30°8.如图,把OAB △绕点O 逆时针旋转80°,到OCD △的位置,若AOB 45∠=︒,则AOD ∠等于( )A .35°B .90°C .45°D .50°9. 某农场2017年蔬菜产量为50吨,2019年蔬菜产量为60.5吨.该农场蔬菜产量的年平均增长率相同.设该农场蔬菜产量的年平均增长率为x ,则根据题意可列方程为( )A .260.5(1)50x -=B .250(1)60.5x -=C .250(1)60.5x +=D .260.5(1)50x +=10.如图,在平行四边形ABCD 中,E F 、分别是AD 、CD 边上的点,连接BE 、AF ,它们相交于点G ,延长BE 交CD 的延长线于点H ,下列结论错误的是( )A .AE BE ED EH =B .EH DH EB CD =C .EG AE BG BC =D .AG BG FG GH= 第Ⅱ卷(共90分)二、填空题(每题3分,满分30分,将答案填在答题纸上)11. 将20 200 000用科学记数法表示为 .12. 在函数y =x 的取值范围是 .13. = .14.不等式组21318x x -≥-⎧⎨->⎩的解集为 . 15.因式分解:244ax ax a -+= .16.已知扇形半径是9cm ,弧长为4 cm π,则扇形的圆心角为_________度.17. 布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的球都是白球的概率是 .18. 如图,AB 是O 的弦,4AB =,C 是O 上的一个动点,45ACB ∠=︒,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是 .19. ABC △中,ABC 90∠=︒,AC 边的垂直平分线交直线BC 于点E ,若3AB =,4BE =.则tan ACB ∠的值为 .20.如图,四边形ABCD 中,CD AD =,CDA ABD 90∠=∠=︒,点E 为CD 边的中点,连接BE ,2AB =,BC =BD= .三、解答题:(21,24题各7分,23,24题各8分,25-27题各10分,共计60分).解答应写出文字说明、证明过程或演算步骤.21. 先化简,再求值231122x x x -⎛⎫-÷ ⎪++⎝⎭的值,其中4sin 452cos60x ︒=-︒. 22.图1、图2分别是108⨯的网格,网格中每个小正方形的边长均为1,A 、B 两点在小正方形的顶点上,请在图1、图2中各取两点C 、D (点C 、D 必须在小正方形的顶点上).使以A 、B 、C 、D 为顶点的四边形分别满足以下要求:(1)在图1中画一个菱形ABCD ,连接AC ,且使1tan CAB 3∠=; (2)在图2中画一个以AB 为对角线的四边形AEBF ,且此四边形为轴对称图形,AFB 90∠=︒,并直接写出所画四边形的面积;23.哈市某中学为了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果外为A 、B 、C 、D 四个等级,请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若九年级共有600名学生,请你估计九年级学生中体能测试结果为D 等级的学生有多少名?24.已知平行四边形ABCD ,连接AF ,CE 、AF 平分BAD ∠交BC 于点F ,CE 平分BCD ∠交AD 于点E.(1)如图1,求证:四边形AFCE 为平行四边形;(2)如图2,连接BD ,分别交AF 、CE 于G 、H ,若2BC AB =,在不添加其他辅助线的情况下,直接找出图中面积为平行四边形ABCD 面积的14的三角形或四边形.25. 电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元、40元,商场销售4台A 型号和2台B 型号计算器,可获利润80元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?26.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠.(1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.27.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B.过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D.(1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H.设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.2020年哈尔滨市初中升学考试模拟题(—)数学试卷参考答案一、选择题1-5: DCDCA 6-10: CDACC二、填空题11.72.0210⨯12.2x >- 13. 14.3x >15.2(2)a x - 16.80 17.110 18.19.3或13 三、解答题21.化简结果11x +1x =原式4= 22.(1)图形正确-(2)图形正确面积为1023.解:(1)50(2)16图形正确(3)48024.(1)略(2)ABF △,DCE △ 四边形AMNE ,四边形FMNC25.解:(1)设A 型售价每台x 元,B 型每台售价y 元,由题意得: 4(30)2(40)806(30)3(40)120x y x y -+-=⎧⎨-+-=⎩解得:4256x y =⎧⎨=⎩ (2)设购A 型m 台,则B 型为()70m -台,根据题意得: 3040(70)2500m m +-≤解得:30m ≥26.(1)证明:设HAG ∠为α∵HAG BDC ∠=∠,∴HAG BDC α∠=∠=∵CD AB ⊥ ∴BDC DBE 90∠+∠=︒∴90DBE α∠=︒-∵AHG ∠与ABD ∠同对弧AD∴AHG ABD 90α∠=∠=︒-∴AHG HAG 90∠+∠=︒∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)连接AC 、AD 、CF∵AB 为直径,AB CD ⊥∴CE DE =∴AB 垂直平分CD ∴AC AD = FC FD = ∴ACD ADC ∠=∠ FCD FDC ∠=∠∴ACD FCD ADC FDC ∠-∠=∠-∠∴ACF ADF ∠=∠设ACF ADF β∠=∠= FCD FDC α∠=∠= ∵ADH ∠与ACH ∠同对弧AH∴ADH ACH β∠=∠=∴HCF HCA ACF 2β∠=∠+∠=∵HFC FCD FDC ∠=∠+∠∴HFC 2α∠=∵HC HF =∴HCF HFC ∠=∠ ∴22αβ=∴αβ=∵AB 为直径 ∴90ADB ∠=︒∴HDB 90β∠=︒-∵HAB ∠与HDB ∠同对弧BH∴HAB HDB 90β∠=∠=︒-∵AB CD ⊥∴BFD 9090αβ∠=︒-=︒-∵HFA BFD 9090αβ∠=∠=︒-=︒- ∴HFA HAF ∠=∠∴HF HA = ∴HC HA =(2)解:在DH 上截取DT HC =. ∵ADH ∠与ACH ∠同对弧AH ∴ADH ACH ∠=∠ ∵AB 为直径AB CD ⊥∴弧AC=弧AD ∴AC AD = ∴AHC ATD ≌△△∴AH AT = ∵AG HT ⊥ ∴HG TG =∴HG CH GT DT GD +=+=设HG 2k =,则CH 4k =,GD 6k =, ∵F 为DG 中点 ∴3GF DF k == ∴HF HG GF 5k =+=在HCF △中,由勾股定理逆定理得HCF 90∠=︒过点C 作CM HD ⊥于点M解HCD △得1tan CDF 2∠=解ACE △得1tan CAB 3∠= 易求OF ,OH由勾股定理逆定理得HOF 90∠=︒ 易求1tan KHG 2∠= 1tan HAG 3∠= ∴15KG AK =27.(1)112y x =-+ (2)过点E 作EM y ⊥轴于点M ,过点E 作EN x ⊥轴于点N , 令26112y x y x =+⎧⎪⎨=-+⎪⎩ 解得22x y =-⎧⎨=⎩ ∴()2,2E -易证EDM EAN ≅△△ENH EMG ≅△△∴AH DG ==∴1d t =-+(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK = 易证四边形BGMT 与四边形HNMC 均为矩形由(2)问可知AH GD 1t ==-,则HC 6t =-BG MT 6t ==-∴MN MT =∵KNM LTM 90∠=∠=︒∴ENH EMG ≅△△∴NKM L ∠=∠设KMN α∠=,则KMB KMN α∠=∠=∴NKM 90α∠=︒-∴NKM L 90α∠=∠=︒- ∵BL //MN∴MBL BMN 2α∠=∠=∴BML 180MBL L 90α∠=︒-∠-∠=︒- ∴BM ML = ∵1tan KCH 2∠=∴11KH CH 3t 22==- ∴13KN KH HN 3t t 3t TL 22=+=--=-=∴3BL BT TL 5t BM 2=+=-= 在Rt BMG △中, 222BM BG GM =+解得6t 5+=(不合题意舍去)或65t -=。
2020年黑龙江省哈尔滨市平房区中考数学一模试卷一、选择题(每小题3分,共30分)1.﹣2的相反数是()A.﹣B.﹣2 C. D.22.下列运算中,正确的是()A.x2•x3=x5B.(x3)2=x5C.3x2﹣x2=3 D.(2x)2=2x23.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个4.函数y=﹣的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0 B.y2<y1<0 C.y1>y2>0 D.y2>y1>05.如图所示的几何体是由五个大小相同的正方体搭建而成的,它的左视图是()A. B. C. D.6.如图,要焊接一个等腰三角形钢架,钢架的底角为35°,高CD长为3米,则斜梁AC的长为()米.A. B. C.3sin35°D.7.如图,在△ABC中,D为AB上的一点,过点D作DE∥BC交AC于点E,过点D作DF∥AC交BC 于点F,则下列结论错误的是()A.= B.= C.= D.=8.某班科技兴趣小组的学生,将自己的作品向本组其他成员各赠送一件,全组共相互赠送作品56件,若全组有x名同学,则根据题意列出的方程是()A.x(x﹣1)=56×2 B.2x(x+1)=56 C.x(x+1)=56 D.x(x﹣1)=569.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.2410.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校,若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有()个①学校到劳动基地距离是2400米;②小军出发53分钟后回到学校;③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A.1 B.2 C.3 D.4二、填空题(每小题3分,共30分)11.2310000用科学记数法表示为______.12.在函数y=中,自变量x的取值范围是______.13.计算:3﹣=______.14.把多项式mn2﹣6mn+9m分解因式的结果是______.15.扇形的圆心角为120°,弧长为6πcm,那么这个扇形的面积为______cm2.16.不等式组的解集是______.17.一个不透明的袋子内装有2个红球、2个黄球(这些球除颜色外完全相同),从中同时摸出两个球,都是红球的概率是______.18.方程的解为x=______.19.矩形ANCD中,AD=5,CD=3,在直线BC上取一点E,使△ADE是以DE为底的等腰三角形,过点D作直线AE的垂线,垂足为点F,则EF=______.20.已知等边△ABC,点E是AB上一点,AE=3,点D在AC的延长线上,∠ABD+∠BCE=120°,tan∠D=,则CD=______.三、解答题(其中21、22题各7分,23、24题各8分,25-27题各10分,共60分)21.先化简,再求代数式÷(a+2﹣)的值,其中a=tan45°+2sin60°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画以AB为一边的菱形ABEF,点E、F在小正方形的顶点上,且菱形ABEF 的面积为3;(2)在方格纸中画以CD为一边的等腰△CDG,点G在小正方形的顶点上,连接EG,使∠BEG=90°,并直接写出线段EG的长.23.某校对九年级的部分同学做一次内容为“最适合自己的考前减压方式”的抽样调查活动,学校将减压方式分为五类,每人必选且只选其中一类.学校收集整理数据后,绘制了如下的统计图,请你结合图中所提供的信息,解答下列问题:(1)一共抽查了多少名学生?(2)请把条形统计图补充完整;(3)若该校九年级共有350名学,请估计该年级学生选择“听音乐”来缓解压力的人数.24.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).25.某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B 种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变,若购买B种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?26.已知:AB为⊙O的直径,弦CD⊥AB于点E,F为⊙O上一点,且FB=FD.(1)如图1,点F在弧AC上时,求证:∠BDC=∠DFB;(2)如图2,点F在弧BC上时,过点F作FH∥CD分别交AB、BD于点G、H,求证:BD=2FG;(3)如图3,在(2)的条件下,连接AD、AF,DH:HG=3:5,OG=5,求△ADF的面积.27.已知直线y=x+m与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+3过A、C两点,交x轴另一点B.(1)如图1,求抛物线的解析式;(2)如图2,P、Q两点在第二象限的抛物线上,且关于对称轴对称,点F为线段AP上一点,2∠PQF+∠PFQ=90°,射线QF与过点A且垂直x轴的直线交于点E,AP=QE,求PQ 长;(3)如图3,在(2)的条件下,点D在QP的延长线上,DP:DQ=1:4,点K为射线AE 上一点连接QK,过点D作DM⊥QK垂足为M,延长DM交AB于点N,连接AM,当∠AMN=45°时,过点A作AR⊥DN交抛物线于点R,求R点坐标.2020年黑龙江省哈尔滨市平房区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣2的相反数是()A.﹣B.﹣2 C. D.2【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答】解:﹣2的相反数是2,故选:D.2.下列运算中,正确的是()A.x2•x3=x5B.(x3)2=x5C.3x2﹣x2=3 D.(2x)2=2x2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、积的乘方等于乘方的积,故D错误故选:A.3.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:图1、图5都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图3不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图2、图4既是轴对称图形,又是中心对称图形.故选B.4.函数y=﹣的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0 B.y2<y1<0 C.y1>y2>0 D.y2>y1>0【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到x1•y1=x2•y2=﹣6,然后根据x1<x2<0即可得到y1与y2的大小关系.【解答】解:根据题意得x1•y1=x2•y2=﹣6,而x1<x2<0,∴0<y1<y2.故选D.5.如图所示的几何体是由五个大小相同的正方体搭建而成的,它的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:C.6.如图,要焊接一个等腰三角形钢架,钢架的底角为35°,高CD长为3米,则斜梁AC的长为()米.A. B. C.3sin35°D.【考点】解直角三角形的应用.【分析】利用锐角三角函数关系分别得出AC的长即可.【解答】解:因为等腰三角形钢架,钢架的底角为35°,高CD长为3米,所以AC=,故选D.7.如图,在△ABC中,D为AB上的一点,过点D作DE∥BC交AC于点E,过点D作DF∥AC交BC 于点F,则下列结论错误的是()A.= B.= C.= D.=【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,再把它们等量代换,即可得出答案.【解答】解:∵DF∥AC,∴=,∵DE∥BC,∴四边形DECF为平行四边形,∴DE=CF,∴=,故A正确;∵DE∥BC,∴=,故B正确;∵DE∥BC,DF∥AC,∴=,=,故C错误;∵DE∥BC,DF∥AC,∴=,=,∴=,故D正确;故选C.8.某班科技兴趣小组的学生,将自己的作品向本组其他成员各赠送一件,全组共相互赠送作品56件,若全组有x名同学,则根据题意列出的方程是()A.x(x﹣1)=56×2 B.2x(x+1)=56 C.x(x+1)=56 D.x(x﹣1)=56【考点】由实际问题抽象出一元二次方程.【分析】若全组有x名同学,根据科技兴趣小组的学生,将自己的作品向本组其他成员各赠送一件,全组共相互赠送作品56件,可列方程求解.【解答】解:设全组有x名同学,每位同学将送出(x﹣1)件,由题意得x(x﹣1)=56.故选:D.9.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.24【考点】翻折变换(折叠问题).【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,易得△CEF的周长.【解答】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC﹣BF=10﹣6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=12.故选A.10.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校,若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有()个①学校到劳动基地距离是2400米;②小军出发53分钟后回到学校;③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A.1 B.2 C.3 D.4【考点】一次函数的应用.【分析】①令t=0,则S=2400,由此可知①正确;②根据速度=路程÷时间可算出小军的速度,由横坐标上的点可以知道小军往返的时间为2倍的(23﹣3)分钟,加上在劳动基地呆的10分钟可知小军出发50分钟后回到学校,②不正确;③由小军比小红早到校7分钟可知小红路上一共用了60分钟,由速度=路程÷时间可得出小红的速度,③正确;④由时间=路程÷速度和可算出相遇时小红出发的时间,由路程=速度×时间即可得出结论④不成立.结合上面分析即可得出结论.【解答】解:①令t=0,则S=2400,∴学校到劳动基地距离是2400米,①正确;②小军的速度为2400÷(23﹣3)=200(米/分),小军到学校的时间为(23﹣3)+10+(23﹣3)=50(分钟),②不正确;③小红到学校的时间为3+50+7=60(分钟),小红的速度为2400÷60=40(米/分),③正确;④两人第一次相遇的时间为3+÷=12.5(分钟),相遇的地点离学校的距离为2400﹣40×12.5=1900(米),④不正确.综上可知只有①③正确.故选B.二、填空题(每小题3分,共30分)11.2310000用科学记数法表示为 2.31×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2310000=2.31×106,故答案为:2.31×106.12.在函数y=中,自变量x的取值范围是x≥1且x≠2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:x﹣1≥0且2﹣x≠0,解得:x≥1且x≠2.故答案为x≥1且x≠2.13.计算:3﹣=﹣3.【考点】二次根式的加减法.【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式即可.【解答】解:原式=﹣4=﹣3.故答案为:﹣3.14.把多项式mn2﹣6mn+9m分解因式的结果是m(n﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(n2﹣6n+9)=m(n﹣3)2,故答案为:m(n﹣3)215.扇形的圆心角为120°,弧长为6πcm,那么这个扇形的面积为27πcm2.【考点】扇形面积的计算;弧长的计算.【分析】利用弧长公式可求得扇形的半径,那么扇形的面积=弧长×半径÷2.【解答】解:∵,∴r=9cm,∴扇形的面积=6π×9÷2=27πcm2.16.不等式组的解集是3<x≤4.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≤4,解②得:x>3.则不等式组的解集是:3<x≤4.故答案是:3<x≤4.17.一个不透明的袋子内装有2个红球、2个黄球(这些球除颜色外完全相同),从中同时摸出两个球,都是红球的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与都是红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,都是红球的有2种情况,∴从中同时摸出两个球,都是红球的概率是:=.故答案为:.18.方程的解为x=9.【考点】解分式方程.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为x(x﹣3),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘x(x﹣3),得2x=3(x﹣3),解得x=9.经检验x=9是原方程的解.19.矩形ANCD中,AD=5,CD=3,在直线BC上取一点E,使△ADE是以DE为底的等腰三角形,过点D作直线AE的垂线,垂足为点F,则EF=1或9.【考点】勾股定理;等腰三角形的性质;矩形的性质.【分析】分两种情形①当点E在CB的延长线上,②当点E在线段BC上,利用勾股定理求出EB,再利用全等三角形证明EF=EC即可解决问题.【解答】解;如图1中,∵四边形ABCD是正方形,∴AD=BC=5,AB=CD=3,∠ABC=∠C=∠ABE=90°,AD∥EC∵AE=AD=5,∴∠AED=∠ADE=∠DEC,在RT△ABE中,∵AE=5,AB=3,∴EB===4,在△EDF和△EDC中,,△EDF≌△EDC∴EF=EC=EB+BC=9.如图2中,∵AD=AE=5,AB=3,∴BE==4,∴EC=1,∵AD∥BC,∴∠ADE=∠DEC=∠AED,在△EDF和△EDC中,,∴△DEF≌△DEC,∴EF=EC=1,综上所述EF=9或1.故答案为9或1.20.已知等边△ABC,点E是AB上一点,AE=3,点D在AC的延长线上,∠ABD+∠BCE=120°,tan∠D=,则CD=.【考点】相似三角形的判定与性质;等边三角形的性质;解直角三角形.【分析】作∠BCD平分线交BD于F,可得∠BCF=∠DCF=∠A=60°,再根据∠ABD+∠BCE=120°可得∠FBC=∠ECA,即可证△FBC≌△ECA,从而得AE=CF=3,过点F作FG⊥CD于点G,由∠DCF度数可求得CG、FG的长,由tan∠D=可得DG,即可得答案.【解答】解:如图,作∠BCD平分线交BD于F,∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,AC=BC,∴∠ACD=120°,∴∠BCF=∠A=60°,又∵∠ABD+∠BCE=120°,即∠ABC+∠FBC+∠BCE=120°,∴∠FBC+∠BCE=60°,∵∠ECA+∠BCE=∠ACB=60°,∴∠FBC=∠ECA,在△FBC和△ECA中,∵,∴△FBC≌△ECA(ASA),∴AE=CF=3,过点F作FG⊥CD于点G,∴CG=CFcos∠FCD=3×=,FG=CFsin∠FCD=3×=,又∵tanD==,∴DG==3,∴CD=CG+DG=,故答案为:.三、解答题(其中21、22题各7分,23、24题各8分,25-27题各10分,共60分)21.先化简,再求代数式÷(a+2﹣)的值,其中a=tan45°+2sin60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再求出a的值代入进行计算即可.【解答】解:原式=÷=÷=•=,当a=tan45°+2sin60°=1+时,原式==.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画以AB为一边的菱形ABEF,点E、F在小正方形的顶点上,且菱形ABEF 的面积为3;(2)在方格纸中画以CD为一边的等腰△CDG,点G在小正方形的顶点上,连接EG,使∠BEG=90°,并直接写出线段EG的长.【考点】作图—应用与设计作图;等腰三角形的性质;勾股定理;菱形的性质.【分析】(1)根据题意、菱形的四边相等,菱形面积公式画图即可;(2)根据等腰直角的性质和题意画图即可.【解答】解:(1)如图所示:(2)如图所示:EG==.23.某校对九年级的部分同学做一次内容为“最适合自己的考前减压方式”的抽样调查活动,学校将减压方式分为五类,每人必选且只选其中一类.学校收集整理数据后,绘制了如下的统计图,请你结合图中所提供的信息,解答下列问题:(1)一共抽查了多少名学生?(2)请把条形统计图补充完整;(3)若该校九年级共有350名学,请估计该年级学生选择“听音乐”来缓解压力的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用“流谈心”的人数除以所占的百分比计算即可得解;(2)用总人数乘以“享受美食”所占的百分比计算求出体育活动的人数,然后补全统计图即可;(3)用总人数乘以“听音乐”所占的百分比计算即可得解.【解答】解:(1)一共抽查的学生:6÷15%=40人;(2)参加“享受美食”的人数为:40×20%=8,补全统计图如图所示:(3)“该校九年级300名学生中采用“听音乐”来减压方式的人数为:350×=105.24.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE=2DE ,过点C 作CF ∥BE 交DE 的延长线于F ,连接CD .(1)求证:四边形BCFE 是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC 面积相等的所有三角形(不包括△BEC ).【考点】菱形的判定与性质.【分析】(1)由题意易得,EF 与BC 平行且相等,故四边形BCFE 是平行四边形.又邻边EF=BE ,则四边形BCFE 是菱形;(2)根据平行线的性质、三角形的面积公式解答即可.【解答】(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,BC=2DE .∵CF ∥BE ,∴四边形BCFE 是平行四边形.∵BE=2DE ,BC=2DE ,∴BE=BC .∴▱BCFE 是菱形;(2)解:①∵由(1)知,四变形BCFE 是菱形,∴BC=FE ,BC ∥EF ,∴△FEC 与△BEC 是等底等高的两个三角形,∴S △FEC =S △BEC .②△AEB 与△BEC 是等底同高的两个三角形,则S △AEB =S △BEC .③S △ADC =S △ABC ,S △BEC =S △ABC ,则它S △ADC =S △BEC .④S △BDC =S △ABC ,S △BEC =S △ABC ,则它S △BDC =S △BEC .综上所述,与△BEC 面积相等的三角形有:△FEC 、△AEB 、△ADC 、△BDC .25.某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B 种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变,若购买B种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)分别利用购买6瓶A种饮料和4瓶B种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元分别得出等式求出即可;(2)分别表示出购买两种饮料的费用,进而得出不等式求出答案.【解答】解:(1)设购进A种饮料每瓶x元,购进B种饮料每瓶y元,根据题意可得:,解得:,答:购进A种饮料每瓶4.5元,购进B种饮料每瓶3元;(2)设购进A种饮料a瓶,购进B种饮料(2a+10)瓶,根据题意可得;20×4.5+4.5(a﹣20)×80%+3(2a+10)≤320,解得:a≤28,∵a取正整数,∴a最大为28,答:最多可购进A种饮料28瓶.26.已知:AB为⊙O的直径,弦CD⊥AB于点E,F为⊙O上一点,且FB=FD.(1)如图1,点F在弧AC上时,求证:∠BDC=∠DFB;(2)如图2,点F在弧BC上时,过点F作FH∥CD分别交AB、BD于点G、H,求证:BD=2FG;(3)如图3,在(2)的条件下,连接AD、AF,DH:HG=3:5,OG=5,求△ADF的面积.【考点】圆的综合题.【分析】(1)由AB为⊙O的直径,弦CD⊥AB,根据垂径定理的即可证得=,然后由圆周角定理,证得:∠BDC=∠DFB;(2)首先连接FO并延长交BD于点M,连接OD,易证得△FOD≌△FOB(SSS),证得BM=DM=BD,继而证得△FGB≌△BMF(AAS),则可证得结论;(3)首先设DH=3m,GH=5m,易证得△FHM≌△BHG(AAS),然后由勾股定理得方程(12m﹣5)2=(8m)2+52,解此方程即可求得答案.【解答】(1)证明:∵AB为⊙O的直径,弦CD⊥AB,∴=,∴∠BDC=∠DFB;(2)证明:如图2,连接FO并延长交BD于点M,连接OD,在△FOD和FOB中,,∴△FOD≌△FOB(SSS),∴∠DFO=∠BFO,∵FD=FB,∴FM⊥BD,∴BM=DM=BD,∵OF=OB,∴∠OFB=∠OBF,∵FH∥CD,∴∠CEG=∠FGB=90°,在△FGB和△FBM中,,∴△FGB≌△BMF(AAS),∴FG=BM,∴BD=2FG;(3)解:如图3,∵DH:HG=3:5,∴设DH=3m,GH=5m,∵△FGB≌△BMF,∴FM=BG,在△FHM和△BHG中,,∴△FHM≌△BHG(AAS),∴HM=GH=5m,DM=8m,BH=13m,在Rt△BGH中,HB=13m,GH=5m,由勾股定理得:GB=12m,在Rt△FGO中,FG=8m,OG=5,OF=OB=12m﹣5,∵FG2+OG2=OF2,∴(12m﹣5)2=(8m)2+52,解得:m1=,m2=0(舍去);∴OB=24,DM=12,OF=OB=13,AB=26,∵AB为⊙O的直径,∴∠ADB=90°,∴AD==10,=×AD×DM=60.∴S△ADF27.已知直线y=x+m与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+3过A、C两点,交x轴另一点B.(1)如图1,求抛物线的解析式;(2)如图2,P、Q两点在第二象限的抛物线上,且关于对称轴对称,点F为线段AP上一点,2∠PQF+∠PFQ=90°,射线QF与过点A且垂直x轴的直线交于点E,AP=QE,求PQ 长;(3)如图3,在(2)的条件下,点D在QP的延长线上,DP:DQ=1:4,点K为射线AE 上一点连接QK,过点D作DM⊥QK垂足为M,延长DM交AB于点N,连接AM,当∠AMN=45°时,过点A作AR⊥DN交抛物线于点R,求R点坐标.【考点】二次函数综合题.【分析】(1)先求点C的坐标,接着求出一次函数的解析式,进而可得A点坐标,然后将A点坐标代入二次函数解析式即可求出b;(2)由于P、Q关于抛物线对称轴对称,故PQ与x轴平行,所以只需求P、Q横坐标即可求出PQ长度.延长QP、AE交于点H,易证△HAP≌QEH,从而QH=AH,过点Q作QK ⊥AB于点G,则四边形AGQH是正方形,设出Q点坐标,利用QH=QG建立方程即可求出P、Q两点坐标,从而得出答案;(3)在(2)的条件下,过点A作AG⊥AM交DN延长线于点G,易证△AKM≌△ANG,从而AK=AN,过点D作DL⊥AB于点L,则四边形HALD是矩形,易得△HKQ≌△LND,进而求得HK=LN=2,设出R点坐标,由tan∠HQK=tan∠OAR=建立方程即可求出R点坐标.【解答】解:(1)∵当x=0时,,∴C(0,3),将点C代入得m=3,当y=0时,x=﹣6,∴A(﹣6,0),将点A代入得,∴抛物线的解析式为;(2)如图2,延长QP、AE交于点H,∵点P、Q关于对称轴对称,∴QP∥x轴,∵AE⊥x轴,∴∠H=90°,∵2∠PQF+∠PFQ=90°,∴∠PQF+∠PFQ=90°﹣∠PQF=∠HEQ=∠HAP+∠EFA,∴∠PQF=∠HAP,在△HAP和△QEH中,∴△HAP≌△QEH,∴QH=AH,过点Q作QK⊥AB于点G,∴四边形AGQH是正方形,设点Q(t,),∴QH=t+6,QG=,∴t+6=,解得:t=﹣1或t=﹣6(舍去),∴Q(﹣1,5);∵点P、Q关于x=﹣对称,∴点P(﹣4,5),∴PQ=3;(3)∵DP:DQ=1:4,∴DP=1,D(﹣5,5),HD=1,∵DN⊥QK,∠AMN=45°,过点A作AG⊥AM交DN延长线于点G,如图3,∴AM=AG,∴KMN+∠KAN=180°,∴∠MKA+∠MNA=180°,∠ANG+∠MNA=180°,∴∠MKA=∠ANG,∵KAN=∠MAG=90°,∴∠MAK=∠NAG,在△AKM和△ANG中,∴△AKM≌△ANG,∴AK=AN,过点D作DL⊥AB于点L,四边形HALD是矩形,∴HD=AL=1,AH=DL=QH,∠HKQ=∠DNL,在△HKQ和△LND中,∴△HKQ≌△LND,∴HK=LN,设HK=LN=m,则AN=AK=m+1,∴AH=m+1+m=5,∴m=2,∵∠HQK=∠OAR,∴tan∠HQK=tan∠OAR=,设R(m,﹣),过点R作RS⊥AB于点S,∴,∴m=或m=﹣6(舍),∴R(,).2020年9月27日。
哈尔滨市2020年初中升学考试数学试卷题序一二三四五六七八总分得分一、选择题(每小题3分,共计30分)1.(2020哈尔滨,1,3分)-13的倒数是( ).A.3B.-3C.-13D.13【答案】B.2.(2020哈尔滨,2,3分)下列计算正确的是( ).A.a3+a2=a3B.a3·a2=a6C.(a2)3=a6D.(a2)2=a22【答案】C.3.(2020哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A.B.C.D.【答案】D.4.(2020哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这( ).【答案】A.5.(2020哈尔滨,5,3分)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=x2+2 D.y=x2-2【答案】D.6.(2020哈尔滨,6,3分)反比例函数y=1-2kx的图象经过点(-2,3),则k的值为( ).A.6B.-6C.72D.-72正面第4题A.【答案】 C . 7.(2020哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ). A .4 B .3 C .52D .2(第7题图) 【答案】 B . 8.(2020哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2020哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2020哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2020哈尔滨,11,3分)把98000用科学记数法表示为_______________. 【答案】9.8×104.12.(2020哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________.【答案】x ≠3.13.(2020哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2020哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1. 15.(2020哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y ); 16.(2020哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2020哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2020哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%.19.(2020哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13.20.(2020哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin ∠BOE 的值为________.EODC B A(第20题图) 【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21.(2020哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2. 【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2,∴原式=1a +2=1 23-2+2=1 23=36.22.(2020哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 223.(2020哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题: (1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2020哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2020哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE . (1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BOAB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt△BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2020哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天. (2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天.27.(2020哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB为等边三角形,∴∠BAC=∠AOB=60º,∵BC⊥AB,∴∠ABC=90º,∴∠ACB=30º,∠OBC=30º,∴∠ACB=∠OBC,∴OC=OB=AB=OA=3,∴AC=6,∴BC=32AC=33.(2)解:如图1,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=60º=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3-t,∴ON=3-(3-t)=t,∴PN=t+t=2t,∵OE∥QN,∴△POE∽△PNQ,∴OEQN=OPPN,∴OE3-t=12,OE=32-12t,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=30º,∴EF=BE,∴m=BE=OB-OE=12t+32(0<t<3).(3)如图2,∵∠BE′F′=∠BEF=180º-∠EBF-∠EFB=120º,∴∠AE′G=60º=∠E′AG,∴GE′=GA,∴△AE′G为等边三角形.∵QE′=BE′-BQ=m-t=12t+32-t=32-12t,∴GE′=GA=AE′=AB-BE′=32-12 t=QE′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA=90º,∴QG=3AG=323-123t,∵EF∥OC,∴BFBC=BEOB,∴BF33=m3,∴BF=3m=323+123t,∵CF=BC-BF=323-123t,CP=CO-OP=3-t,∴CFCB=323-123t33=3-t6=CPAC.∵∠FCP=∠BCA,∴△FCP∽△BCA,∴PFAB=CPAC,∴PF=3-t2,∵2BQ-BF=33QG,∴2t-3-t2=33×(323-123t),∴t=1.∴当t=1时,2BQ-PF=33QG.28.(2020哈尔滨,28,10分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC 和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD点点G.(1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,F A =FC ,∴FE =F A ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GF A ,∴△AFG ∽△BF A ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .友情提示:一、认真对待每一次考试。
九年级中考调研测试数学试卷(一)一、单选题1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高()A.8℃B.-8℃C.-2℃D.2℃【答案】A【考点】有理数的减法【解析】【解答】解:5﹣(﹣3)=5+3=8.故答案为:A.【分析】求冷藏室比冷冻室温度高多少,就用冰箱冷藏室的温度减去冷冻室的温度,根据有理数的减法即可得出答案。
2.下列图形中,不是轴对称图形的是()A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:A.是轴对称图形,故不符合题意;B.是轴对称图形,故不符合题意;C.是轴对称图形,故不符合题意;D.不是轴对称图形,故符合题意.故答案为:D.【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据定义一一判断即可。
3.下列运算中,正确的是()A.x·x2= x2B.(xy)2=xy2C.D.x2+x2=2x4【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】A.x·x2=x3 ,故不符合题意;B.(xy)2=x2y2,故不符合题意;C. 符合题意;D.x2+x2=2x2,故不符合题意;故答案为:C.【分析】根据同底数幂的乘法,底数不变指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,只把系数相加减,字母和字母的指数都不变;幂的乘方,底数不变,指数相乘;根据法则一一判断即可。
4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从左向右看第一列是两个正方体,第二列式一个正方体,故答案为:B.【分析】求简单几何体的左视图,就是从左向右看得到的正投影,从左向右看第一列是两个正方体,第二列式一个正方体从而得出答案。
5.反比例函数(k为常数,k≠0)的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【答案】C【考点】反比例函数的图象【解析】【解答】解:∵k≠0,∴k2>0,∴﹣k2<0,∴反比例函数(k为常数,k≠0)的图象位于第二、四象限.故答案为:C.【分析】根据偶次方的非负性及已知条件可知:k2>0,故﹣k2<0,根据双曲线的比例系数小于0,则图像位于第二、四象限.即可得出答案。
数 学 试 卷(考试时间共100分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________{请同学们保持良好的心态,认真审真,认真答题,切不可马虎应付}一、选择题(每小题3分,共30分)1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高( )A.8℃ B.-8℃ C.-2℃ D.2℃2.下列图形中,不是轴对称图形的是( )3.下列运算中,正确的是( )A.2a 6a 2a 3=• B.()532a a = C.426a a -a =D.ab 8b 5a 3=+ 4.如图,是由几个相同的小正方体搭成的一个几何体,它的左视图是( )A B C D5.反比例函数x k -y 2=(k 为常数,k ≠0)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限6.如图,飞机在空中B 处探测到它的正下方地面上目标C,此时飞行高度BC=1200米,从飞机上看地面指挥台A 的俯角α的正切值为43则飞机与指挥台之间AB 的距离为( )米A.1200B.1600C.1800D.2000 7.将抛物线y=x 2向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是( )A.()3-2-x y 2=B.()32-x y 2+=C.()3-2x y 2+=D.()32x y 2++=8.如图,在菱形ABCB 中,点E 在AD 边上,EF ∥CD,交对角线BD 于点F,则下列结论中错误的是( )第8题 第9题 第10题A.BF DF AE DE = B.DB DF AD EF = C.BF DF AD EF = D.DB DF CD EF =9.如图,△ABC 为等边三角形,将△ABC 绕点A 逆时针旋转75°,得到△AED,过点E 作EF ⊥AC,垂足为点F,若AC=8,则AF 的长为( )A.4 B.3C.64D.2410.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图像(全程)如图所示,则乙比甲晚到( )小时。
哈尔滨市2020年初中升学考试数学试卷(满分120分,考试时间120分钟)第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.答案与解析第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.【知识考点】倒数.【思路分析】根据乘积为1的两个数互为倒数,可求一个数的倒数.【解题过程】解:﹣8的倒数是﹣,故选:A.【总结归纳】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.【解题过程】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.【总结归纳】本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解题过程】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.【总结归纳】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°【知识考点】圆周角定理;切线的性质.【思路分析】根据切线的性质和圆周角定理即可得到结论.【解题过程】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.【总结归纳】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 【知识考点】二次函数图象与几何变换.【思路分析】根据“上加下减,左加右减”的原则进行解答即可.【解题过程】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.【总结归纳】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【知识考点】轴对称的性质.【思路分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解题过程】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.【总结归纳】本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=9【知识考点】解分式方程.【思路分析】根据解分式方程的步骤解答即可.【解题过程】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.【总结归纳】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】利用概率公式可求解.【解题过程】解:∵从袋子中随机摸出一个小球有9种等可能的结果,其中摸出的小球是红球有6种,∴摸出的小球是红球的概率是=,故选:A.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=【知识考点】相似三角形的判定与性质.【思路分析】根据平行线分线段成比例性质进行解答便可.【解题过程】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.【总结归纳】本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:4790000=4.79×106,故答案为:4.79×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解题过程】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.【知识考点】反比例函数图象上点的坐标特征.【思路分析】把(﹣3,4)代入函数解析式y=即可求k的值.【解题过程】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.【总结归纳】本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.计算+6的结果是.【知识考点】二次根式的性质与化简;二次根式的加减法.【思路分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解题过程】解:原式=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.把多项式m2n+6mn+9n分解因式的结果是.【知识考点】提公因式法与公式法的综合运用.【思路分析】直接提取公因式n,再利用完全平方公式分解因式得出答案.【解题过程】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.抛物线y=3(x﹣1)2+8的顶点坐标为.【知识考点】二次函数的性质.【思路分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解题过程】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).【总结归纳】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.不等式组的解集是.【知识考点】解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解题过程】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.【总结归纳】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.【知识考点】扇形面积的计算.【思路分析】根据扇形面积公式S=,即可求得这个扇形的圆心角的度数.【解题过程】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.【总结归纳】本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.【知识考点】含30度角的直角三角形.【思路分析】在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.【解题过程】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.【知识考点】菱形的性质.【思路分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=x,解得x=2,然后利用勾股定理计算OA,再计算AE 的长.【解题过程】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA===,在Rt△AOE中,AE===2.故答案为2.【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.【知识考点】分式的化简求值;特殊角的三角函数值.【思路分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解题过程】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.【知识考点】等腰三角形的判定;勾股定理;作图—应用与设计作图.【思路分析】(1)画出边长为的正方形即可.(2)画出两腰为5,底为的等腰三角形即可.【解题过程】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.EG==.【总结归纳】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.【知识考点】用样本估计总体;条形统计图.【思路分析】(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的,因此估计总体800名的是最喜欢“剪纸”的人数.【解题过程】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【总结归纳】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.【知识考点】全等三角形的判定与性质;等腰三角形的判定与性质.【思路分析】(1)根据SAS可证△ABD≌△ACE,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.【解题过程】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FBD=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.【总结归纳】考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.【解题过程】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.【总结归纳】本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.【知识考点】圆的综合题.【思路分析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.【解题过程】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.【总结归纳】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.【知识考点】一次函数综合题.【思路分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD (用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR =m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.【解题过程】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).【总结归纳】本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21。
黑龙江省哈尔滨市平房区九年级中考调研测试数学试卷(一)一、单选题1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高()A.8℃B.-8℃C.-2℃D.2℃【答案】A【考点】有理数的减法【解析】【解答】解:5﹣(﹣3)=5+3=8.故答案为:A.【分析】求冷藏室比冷冻室温度高多少,就用冰箱冷藏室的温度减去冷冻室的温度,根据有理数的减法即可得出答案。
2.下列图形中,不是轴对称图形的是( )A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:A.是轴对称图形,故不符合题意;B.是轴对称图形,故不符合题意;C.是轴对称图形,故不符合题意;D.不是轴对称图形,故符合题意.故答案为:D.【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据定义一一判断即可。
3.下列运算中,正确的是()A.x·x2= x2B.(xy)2=xy2C.D.x2+x2=2x4【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】A.x·x2=x3 ,故不符合题意;B.(xy)2=x2y2,故不符合题意;C. 符合题意;D.x2+x2=2x2,故不符合题意;故答案为:C.【分析】根据同底数幂的乘法,底数不变指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,只把系数相加减,字母和字母的指数都不变;幂的乘方,底数不变,指数相乘;根据法则一一判断即可。
4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从左向右看第一列是两个正方体,第二列式一个正方体,故答案为:B.【分析】求简单几何体的左视图,就是从左向右看得到的正投影,从左向右看第一列是两个正方体,第二列式一个正方体从而得出答案。
5.反比例函数(k为常数,k≠0)的图象位于( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【答案】C【考点】反比例函数的图象【解析】【解答】解:∵k≠0,∴k2>0,∴﹣k2<0,∴反比例函数(k为常数,k≠0)的图象位于第二、四象限.故答案为:C.【分析】根据偶次方的非负性及已知条件可知:k2>0,故﹣k2<0,根据双曲线的比例系数小于0,则图像位于第二、四象限.即可得出答案。
黑龙江省哈尔滨市平房区2020届九年级中考调研测试数学试卷(一)一、单选题1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高()A. 8℃B. -8℃C. -2℃D. 2℃【答案】A【考点】有理数的减法【解析】【解答】解:5﹣(﹣3)=5+3=8.故答案为:A.【分析】求冷藏室比冷冻室温度高多少,就用冰箱冷藏室的温度减去冷冻室的温度,根据有理数的减法即可得出答案。
2.下列图形中,不是轴对称图形的是( )A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:A.是轴对称图形,故不符合题意;B.是轴对称图形,故不符合题意;C.是轴对称图形,故不符合题意;D.不是轴对称图形,故符合题意.故答案为:D.【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据定义一一判断即可。
3.下列运算中,正确的是()A. x·x2= x2B. (xy)2=xy2C.D. x2+x2=2x4【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】A.x·x2=x3 ,故不符合题意;B.(xy)2=x2y2,故不符合题意;C. 符合题意;D.x2+x2=2x2,故不符合题意;故答案为:C.【分析】根据同底数幂的乘法,底数不变指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,只把系数相加减,字母和字母的指数都不变;幂的乘方,底数不变,指数相乘;根据法则一一判断即可。
4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从左向右看第一列是两个正方体,第二列式一个正方体,故答案为:B.【分析】求简单几何体的左视图,就是从左向右看得到的正投影,从左向右看第一列是两个正方体,第二列式一个正方体从而得出答案。
5.反比例函数(k为常数,k≠0)的图象位于( )A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限【答案】C【考点】反比例函数的图象【解析】【解答】解:∵k≠0,∴k2>0,∴﹣k2<0,∴反比例函数(k为常数,k≠0)的图象位于第二、四象限.故答案为:C.【分析】根据偶次方的非负性及已知条件可知:k2>0,故﹣k2<0,根据双曲线的比例系数小于0,则图像位于第二、四象限.即可得出答案。
6.如图,飞机在空中B处探测到它的正下方地面上目标C,此时飞行高度BC=1200米,从飞机上看地面指挥台A 的俯角α的正切值为则飞机与指挥台之间AB的距离为( )米A. 1200B. 1600C. 1800D. 2000【答案】D【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:∵tanα=tanB= ,且tanB= ,∴BC= = =1600(米),则AB= = =2000.故答案为:D.【分析】根据等角的同名三角函数值相等得出tanα=tanB=,再根据正切函数的定义得出BC=,再根据勾股定理得出AB的长。
7.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是( )A. B. C. D.【答案】C【考点】二次函数图象的几何变换【解析】【解答】解:依题意可知:平移后得到的抛物线的解析式为:y=(x+2)2﹣3.故答案为:C.【分析】依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,﹣3),又因为平移不改变二次项系数,从而根据平移规律得出所得抛物线解析式。
8.如图,在菱形ABCB中,点E在AD边上,EF∥CD,交对角线BD于点F,则下列结论中错误的是( )A. B. C. D.【答案】C【考点】平行线分线段成比例,相似三角形的判定与性质【解析】【解答】解:∵四边形ABCD是菱形∴AB∥CD,AB=CD=AD.∵EF∥CD,∴EF∥AB,∴,△DEF∽△DAB,∴.∵AB=CD,∴,∴选项A、B、D不符合题意;选项C符合题意.故答案为:C.【分析】根据菱形的性质得出AB∥CD,AB=CD=AD,又EF∥CD,故EF∥AB,根据平行线分线段成比例定理,及相似三角形判定方法的准备定理得出DE∶AE=DF ∶BF ,△DEF∽△DAB,根据相似三角形对应边成比例得出EF∶AB=DF∶DB,又AB=CD=AD,从而得出EF∶CD=DF∶DB,EF∶AD=DF∶DB,故选项A、B、D 不符合题意,从而得出答案。
9.如图,△ABC为等边三角形,将△ABC绕点A逆时针旋转75°,得到△AED,过点E作EF⊥AC,垂足为点F,若AC=8,则AF的长为( )A. B. 3 C. D.【答案】D【考点】旋转的性质【解析】【解答】解:∵△ABC为等边三角形,∴∠CAB=60°,由旋转可得,AC=AD=AE=8,∠EAB=75°,∴∠EAF=180°﹣60°﹣75°=45°.∵EF⊥AC,∴△AEF是等腰直角三角形,∴AF= AE=4 .故答案为:D.【分析】根据等边三角形的性质得出∠CAB=60°,由旋转可得,AC=AD=AE=8,∠EAB=75°,根据平角的定义得出∠EAF的度数,进而判断出△AEF是等腰直角三角形,根据等腰直角三角形的边之间的关系即可得出答案。
10.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图像(全程)如图所示,则乙比甲晚到()小时.A. 0.4B. 0.3C. 0.2D. 0.1【答案】B【考点】通过函数图像获取信息并解决问题【解析】【解答】解:由图可知:甲的速度=10÷1=10(千米/时),甲的时间=2小时,总路程=10×2=20(千米).根据0.5~1.5小时内,乙半小时跑2km,可得1小时跑4km,故1.5小时跑了12km,剩余的8km 需要的时间为8÷10=0.8小时,根据1.5+0.8﹣2=0.3,可得乙比甲晚到0.3小时,故答案为:B.【分析】根据图像解决问题,由于甲是匀速行完全程,根据图像可以得出甲的速度10千米/时,甲行的时间为2小时,根据路程=速度乘以时间得出总路程是20千米;根据0.5~1.5小时内,乙半小时跑2km,可得1小时跑4km,故1.5小时跑了12km,剩余的8km需要的时间为8÷10=0.8小时,根据1.5+0.8﹣2=0.3,可得乙比甲晚到0.3小时,二、填空题11.把384000000用科学记数法表示为________.【答案】【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:384 000 000=3.84×108.故答案为:3.84×108.【分析】用科学计数法表示绝对值比较大的数,一般表示成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1。
12.函数的自变量的取值范围是________.【答案】x≠-3【考点】分式有意义的条件【解析】【解答】解:由题意得:2x+6≠0,解得:x≠﹣3.故答案为:x≠﹣3.【分析】根据分式有意义的条件:分母不能为0,得出不等式,求解即可得出x的取值范围。
13.计算: ________.【答案】【考点】二次根式的加减法【解析】【解答】解:原式=3 ﹣= .故答案为:.【分析】根据二次根式的性质分别化简各个二次根式,再合并同类二次根式即可。
14.不等式组的解集为________.【答案】x>3【考点】解一元一次不等式组【解析】【解答】解:由(1)得:x≥1;由(2)得:x>3,∴原不等式的解集为:x>3.故答案为:x>3.【分析】解出不等式组中的每一个不等式的解集,然后按照同大取大的方法得出不等式组的解集。
15.把多项式分解因式的结果是________.【答案】【考点】提公因式法与公式法的综合运用【解析】【解答】解:原式=3a(a2﹣4a+4)=3a(a﹣2)2.故答案为:3a(a﹣2)2.【分析】先利用提公因式法分解因式,再利用完全平方公式分解到每一个因式都不能再分解为止。
16.分式方程= 的解是________.【答案】x=2【考点】分式方程的解【解析】【解答】解:两边都乘以x(x﹣1)得:x=2(x﹣1),去括号,得:x=2x﹣2,移项、合并同类项,得:x=2,检验:当x=2时,x(x﹣1)=2≠0,∴原分式方程的解为:x=2,故答案为:x=2.【分析】观察可得这个分式方程的最简公分母为x(x﹣1),去分母,转化为整式方程求解,结果要检验.17.一个扇形的面积为12πcm2,圆心角为120°,则该扇形的半径是________.【答案】6cm【考点】扇形面积的计算【解析】【解答】解:设扇形半径为r,则,解得:r=6(cm).故答案为:6cm.【分析】设扇形半径为r,根据扇形的面积计算公式及扇形的面积列出方程,求解即可得出答案。
18.星期一早晨,小红、小丽两人同在新疆大街公交站等车去同一所学校上学,此时恰好有途经该校公交站的三辆车同时进站(不考虑其它因素),则小红和小丽同乘一辆车的概率为________.【答案】【考点】列表法与树状图法,概率公式【解析】【解答】解:将三辆车分别记为1,2,3,画树状图得:∵共有9种等可能的结果,小红和小丽同乘一辆车的有3种情况,∴小红和小丽同乘一是:= .故答案为:.【分析】根据题意画出树状图,由图可知:共有9种等可能的结果,小红和小丽同乘一辆车的有3种情况,根据概率公式即可得出小红和小丽同乘一辆车的概率。
19.在正方形ABCD中,点0为正方形的中心,直线m经过点0,过A、B两点作直线m的垂线AE、BF,垂足分别为点E、F,若AE=2,BF=5,则EF长为________.【答案】3或7【考点】正方形的性质【解析】【解答】解:分两种情况:①如图1,连接AO,BO.∵O是正方形ABCD的中心,∴OA=OB,∠AOB=90°,∴∠EOA+∠FOB=90°.∵∠EOA+∠EAO=90°,∴∠EAO=∠FOB.在△AEO和△OFB中,∵∠EAO=∠FOB,∠AEO=∠OFB,AO=OB,∴△AEO≌△OFB,∴AE=OF,EO=BF,∴EF=OE+OF=BF+AE=5+2=7.②如图2,同理可得:AE=OF,EO=BF,∴EF=OE-OF=BF-AE=5-2=3.综上所述:EF长为3或7.故答案为:3或7.【分析】分两种情况:①如图1,连接AO,BO.根据正方形的性质得出OA=OB,∠AOB=90°,然后根据同角的余角相等得出∠EAO=∠FOB,利用AAS判断出△AEO≌△OFB,根据全等三角形的性质得出AE=OF,EO=BF,根据线段的和差及等量代换得出EF的长;②如图2,同理可得:AE=OF,EO=BF,由EF=OE-OF=BF-AE得出答案;综上所述即可。