物理学史10.7 关于量子力学完备性的争论史
- 格式:doc
- 大小:36.00 KB
- 文档页数:5
爱因斯坦和玻尔的三次争论作文素材全文共8篇示例,供读者参考篇1【爱因斯坦和玻尔的三次争论作文素材】大家好,我是小明。
今天老师让我们写一篇关于爱因斯坦和玻尔的三次争论的作文。
我很喜欢学习科学知识,所以很高兴能写这个题目。
爱因斯坦和玻尔,你们听过这两个人吗?他们都是非常了不起的科学家。
爱因斯坦是大名鼎鼎的相对论创始人,玻尔则提出了量子论的理论。
第一次争论第一次争论发生在1920年代初期。
当时爱因斯坦提出了"上帝不掷骰子"的观点,他认为宇宙是遵循着确定性规律运行的。
但玻尔却坚持认为,在微观世界里存在着不确定性。
这次争论中,爱因斯坦持有传统的科学理念,坚信宇宙有一个内在的逻辑秩序。
而玻尔则代表了量子力学的革新思想,主张在微观世界存在着不可预测的随机性。
虽然当时爱因斯坦的声望很高,但玻尔的观点后来被实验所证实,这为量子理论在科学界站稳了脚跟。
第二次争论第二次争论发生在1927年。
那一年,爱因斯坦提出了一个著名的"EPR佯谬",试图找出量子理论的漏洞。
EPR佯谬描述了一种纠缠态的情况,爱因斯坦认为这种情况违背了相对论中"信息不能以超光速传播"的原理。
玻尔当时并没有直接回应爱因斯坦的挑战。
直到1935年,他提出了"量子不可分割性"来反驳EPR佯谬。
玻尔指出,在量子系统中,我们无法确定单个粒子的性质,只有将整个系统看作一个不可分割的整体才有意义。
这场争论虽然爱因斯坦占了先机,但后来被证实是玻尔更加正确。
这次争论进一步巩固了量子论的地位。
第三次争论第三次争论持续到1949年爱因斯坦去世。
这次争论的焦点是统一场论。
爱因斯坦希望能找到一个统一所有基本力(包括引力)的理论,但一直没有成功。
而玻尔则更关注量子论的发展和应用。
他指出量子力学只是一个统计理论,不可能完全描述微观世界的确定性运动过程。
在这场争论中,两人都没有说服对方。
但事实证明,量子理论在微观世界有着巨大的解释力和应用前景。
物理学史上的重要争议有哪些物理学作为一门探索自然规律的科学,其发展历程并非一帆风顺,充满了各种争议。
这些争议不仅推动了物理学的进步,也促使人们对自然界的认识不断深化。
其中一个著名的争议是关于光的本质。
在 17 世纪,牛顿提出了光的微粒说,认为光是由微小的粒子组成的。
而同一时期,惠更斯则主张光的波动说,认为光是一种波动现象。
微粒说能够很好地解释光的直线传播和反射现象,但对于光的折射和干涉等现象却难以解释。
波动说则能够解释光的折射和干涉,但在解释光的直线传播时存在困难。
这两种学说争论了很长时间,直到 19 世纪,随着电磁学的发展,麦克斯韦证明了光是一种电磁波,波动说才占据了主导地位。
然而,20 世纪初,爱因斯坦提出了光子的概念,成功解释了光电效应,又让人们认识到光具有粒子性和波动性的双重性质,即光的波粒二象性。
另一个重要的争议是关于热的本质。
在 18 世纪,有两种主要的观点:热质说和热动说。
热质说认为热是一种没有质量的流体,称为热质,可以从高温物体流向低温物体。
而热动说则认为热是物体内部分子无规则运动的表现。
在很长一段时间里,热质说占据了主导地位,因为它能够解释很多热现象,比如热传导和热容量。
但是,随着对热现象的深入研究,尤其是焦耳通过实验证明了热和功之间的等价关系,热动说逐渐被人们接受。
这一争议的解决,不仅让人们对热的本质有了更深刻的认识,也为热力学的发展奠定了基础。
相对论的提出也引发了巨大的争议。
在 19 世纪末,牛顿力学在解释宏观物体的运动时非常成功,被广泛认为是物理学的基石。
然而,爱因斯坦在 1905 年提出了狭义相对论,挑战了传统的时空观念。
狭义相对论指出,时间和空间不是绝对的,而是相对的,取决于观察者的运动状态。
这一理论与人们的日常经验和直觉相违背,因此在一开始遭到了很多质疑和反对。
后来,爱因斯坦又在 1915 年提出了广义相对论,进一步阐述了引力的本质是时空的弯曲。
广义相对论的预言,如光线在引力场中的弯曲和水星近日点的进动,在后来的观测中得到了证实,逐渐被科学界所接受。
量子力学的发展史量子力学是物理学中的一个分支,主要研究微观领域的物质和能量的行为规律。
20世纪初,物理学家们开始研究原子和分子的行为,但是经典物理学并不能解释这些微观领域的现象,于是量子力学就被提出来了。
量子力学的发展可以大致分为以下几个阶段:一、波动力学阶段1913年,丹麦物理学家玻尔提出了量子化假设,即能量是量子化的,也就是说能量只能存在于长为h的不连续的能量量子中。
这一假设打破了经典物理学中连续性的假设,为量子力学奠定了基础。
1924年,法国物理学家德布罗意提出了波粒二象性假说,即物质不仅具有粒子的性质,同时也具有波动的性质。
这个假说解释了一些微观领域的现象,如光电效应和康普顿效应,成为量子力学的重要理论基础。
波恩和海森堡等人在德布罗意理论的基础上创立了相应的波动力学,解释了氢原子光谱的结构。
二、矩阵力学阶段1925年,海森堡和约旦等人提出了矩阵力学,这是量子力学的另一种基本形式,它说明了物理量如何通过测量来测量,同时提出了著名的“不确定性原理”,即无法同时确定一个粒子的位置和动量。
三、波恩统计力学阶段1926年,波恩提出了统计力学的基本原理,解决了原子内部运动的问题。
他提出了概率波函数的概念,并对其作出了一些论证。
此外,他还对量子力学的哲学问题进行了探讨,认为量子力学不是描述自然的完整理论,而是对一些确定问题的理论描述。
四、量子力学的完善阶段1927年,波尔在量子力学的哲学问题上发表了著名的“科学是一个特殊的观察者”的文章,这为量子力学的进一步发展奠定了基础。
1932年,物理学家狄拉克提出了著名的“相对论性量子力学”,它将相对论和量子力学结合在一起,成为理论物理学的基石之一。
此外,量子力学的应用也越来越广泛,如半导体、材料科学和生物物理学等领域。
最后,需要指出的是,虽然量子力学已经发展了一个世纪之久,但它仍然存在许多未解之谜,例如解释量子纠缠、重正化等问题。
量子力学的发展是一个长期的过程,相信未来仍有很多值得探索的领域。
量子力学理论的历史与发展量子力学是20世纪物理学中最重要的一门学科,曾被喻为“现代物理学的基石”。
它的发展经历了一个漫长而又曲折的历史过程。
本文将从量子力学的起源、基本原理、实验验证、建立标准模型等方面来进行详细的讲述,以探究其历史和发展。
一、量子力学的起源与基本原理量子力学的起源始于1900年左右,当时德国物理学家普朗克在研究黑体辐射时,提出了一个假设:辐射在吸收和发射时的能量不是连续的,而是由一个一个被称为“量子”的能量单位构成的。
随着后来的研究,这个假设得到了证明,被称为“普朗克能量子”。
1905年爱因斯坦发表了光电效应理论,提出光子假说,即光是由一些分散的、能量离散的粒子组成的。
这一理论的确立,在量子力学发展中也起到了至关重要的作用。
随着科学家们在研究中发现更多的证据,量子力学逐渐奠定了与经典物理截然不同的基础。
基于量子力学,许多热门领域得以诠释和解释。
其最基本的原理是能量和物质的离散化,即能量存在于基本单元中,同时它也支持了一系列前所未有的量子效应,如量子隧道效应、量子纠缠、量子力学的不确定性原理等。
二、量子力学的实验验证理论的建立离不开实验的验证。
20世纪初,随着量子力学的发展,越来越多的实验被提出来,用来验证和探究这个新兴的物理学体系。
以双缝实验为例,它是探究光子与物质之间相互作用的重要手段之一。
在双缝实验中,以光子为例,它通过两个狭缝进行干涉,最终形成了干涉条纹,这种形象的结果直接说明了粒子波粒二象性的存在。
除此之外,狄拉克提出的“反粒子”假说也成功得到验证,情况是那么普遍,以至于最基本和常见的物理机制都可以在实验验证中得到印证。
三、标准模型的建立随着量子力学的逐步发展和实验验证,标准模型逐渐建立起来。
标准模型是一个涉及量子力学、相对论和各种粒子的理论框架,旨在对基本相互作用和基本粒子的特性进行描述。
它由强相互作用、弱相互作用和电磁相互作用三部分组成。
标准模型虽是一个与实验结果吻合度非常好的理论框架,但仍存在一些问题和挑战。
量子力学的发展历程量子力学的发展历程一、前言量子力学是20世纪物理学最重要的发现之一,它是现代物理学的基础。
它已经成为物理学,化学,电子学,材料学,晶体学等领域的核心概念和基础理论之一。
量子力学从20世纪初开始发展,至今已经发展了一个多世纪,取得了丰硕的成果,影响深远,极大地推动了科学技术的发展。
今天,我们聚焦于量子力学的历史发展,看看它是怎样一步步诞生、发展和完善的。
二、量子力学的发展1.经典物理学的基础量子力学的发展,最初要从1900年德国数学家马克斯·普朗克(Max Planck)提出的“计量物理学”开始。
他假设,在微观尺度上,物质是可以分解的,这种粒子受到热能的影响,可以以某种形式储存能量,如热量和热力学系统,这极大地推动了经典物理学的发展。
2.量子说的出现1905年,爱因斯坦提出的“光粒子理论”在物理学史上引起了轰动,他重新定义了光的实质:它不仅是一种电磁波,也是一种传播光子或量子的波动。
由于光子的效应受量子理论的约束,从而推动了量子说的出现。
3.波动力学的发展在爱因斯坦的光粒子理论基础上,1924年,德国物理学家路易斯·普朗特(Louis de Broglie)提出了“粒子波力学”这一概念,他认为,粒子也可以有波力学性质,这是经典物理学中受量子效应影响的一个重大突破,它大大促进了量子力学的发展。
4.量子力学的形成1926年,德国物理学家爱因斯坦、布鲁克、加登和赫兹等人提出了一系列量子力学原理,将量子说的理论和粒子波力学的研究有机结合起来,形成了量子力学这一新的物理学理论,它使科学家们能够以一种全新的视角深入揭示物质的本质,从而构成了现代科学技术的基础。
5.量子力学的发展量子力学的发展,在20世纪30年代的第二次工业革命中取得了重要成果,新的物理学理论和新的物理实验技术推动了数字电子技术的发展,持续发展到今天,它在物理学,化学,电子学,材料学,晶体学等领域都起到了重要作用,使量子力学在现代物理学中发挥着不可替代的重要作用。
量子力学史上的四次大论战20世纪初建立的量子力学,在物理学界引起了一场异常激烈而且旷日持久的论战。
这场论战的参与者都是当时理论物理的精英,主要有以尼尔斯·玻尔(NielsBohr)为核心的哥本哈根派,包括波恩(MaxBorn)、海森堡(WernerKarlHeisenberg)、泡利(WolfgangErnstPauli);还有就是哥本哈根派的反对者,主要有阿尔伯特·爱因斯坦(AlbertEinstein)、路易斯·德布罗意(LouisdeBroglie)、薛定谔(Schr?dinger)。
论战的内容涉及到对量子力学的物理图景、基本原理、完备性甚至哲学基础和世界观等根本问题的争论。
根据论战内容和时间可将这场大论战划分为四个阶段:第一阶段,1926年薛定谔应玻尔邀请到哥本哈根做《波动力学的基础》的演讲并由此爆发第一次论战;第二阶段,1927年第五届索尔维会议上关于“新量子理论的意思”的第二次论战;第三阶段,1928年第六届索尔维会议上关于不确定原理的第三次论战;第四阶段,1935年EPR论文发表,引起了关于量子力学对物理实在描述的完备性的第四次论战。
四次论战的内容极为丰富,而且极具深度,触及到物理学的基础和哲学的基本问题。
一、论战爆发▲薛定谔方程1925年至1926年薛定谔从经典力学的哈密顿——雅可比方程出发,利用变分法和德布罗意物质波理论,将电子看成德布罗意波,用一个波动方程表示,最后得到一个非相对论的波动方程,即著名的薛定谔方程,方程中的波函数用来描述微观粒子的状态,薛定谔的这套理论就是后来所谓的波动力学。
虽然薛定谔方程也能产生玻尔原子的量子化能级,但是薛定谔认为这应该表现为振动着的物质波的谐函数而不是跳跃的电子。
此后薛定谔很快证明了他的“波动力学”在数学上同哥本哈根学派的“矩阵力学”是等价的。
薛定谔认为:波函数本身代表一个实在的和物理的可观测量,即使在原子量级上,经典的连续过程和绝对的决定论照样成立。
量子力学的发展简史量子力学是在旧量子论的基础上发展起来的。
旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。
1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。
1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。
其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。
1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。
按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。
原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。
这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。
在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。
认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。
德布罗意的物质波方程:E=ħω,p=h/λ,其中ħ=h/2π,可以由E=p²/2m 得到λ=√(h²/2mE)。
由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。
当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。
量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。
在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。
为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。
近代物理学史论文题目:量子力学发展脉络及代表人物简介姓名:学号:学院:2016年12月27量子力学发展脉络量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。
可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。
而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。
可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。
尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。
本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。
通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。
旧量子理论量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。
在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。
然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。
对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。
随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。
普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。
量子力学时间轴
量子力学时间轴
1. 1900年:物理学家爱因斯坦提出的量子力学,是物理学中描述微观
世界的理论之一。
2. 1905年:爱因斯坦提出“光量子假说”,称电磁波是由光量子组成的。
3. 1913年:德国物理学家霍金斯提出有关原子结构的量子模型。
4. 1924年:爱因斯坦提出量子力学统计概念,揭示物质的统计学特征。
5. 1925年:正卜马提出哥本哈根解释,阐明了量子波动是原子结构的
基础。
6. 1926年:延鲁斯发现量子力学的隐形属性,称为“量子跳跃”。
7. 1927年:贝多提出质量-能量关系,揭示了能量的微观性质。
8. 1928年:布特维拉介绍量子的叠加性,表明量子系统的行为是彼此
叠加的。
9. 1929年:贝多提出量子学的统计解释框架,引入了量子数值的概念。
10. 1935年:和他的协作者马斯尔通过费米定理提出普朗克-费米定律,表明普朗克定律具有复杂的量子力学特性。
11. 1947年:斯特林和保罗提出轨道确定性原理,解释了原子结构在某
些情况下的量子力学性质。
12. 1957年:贝森和博格定义量子计算机与量子力学的统一视角,将量
子力学的概念引入计算机领域。
13. 1964年:量子场论从量子力学中单独分离出来,提出引力和物质在
量子尺度上的联系。
14. 1990年:光量子学把量子力学与光学融合了起来,实现了对光力学
现象的完全量子力学解释。
世纪之战:爱因斯坦和玻尔就“量子力学”大战3回合,谁赢了?量子力学建立初期,“纠缠”这个现象就引起了所有物理学家的好奇,爱因斯坦将其称之为“遥远地点之间的诡异互动”。
量子力学中的所谓纠缠是这样一种现象:两个处于纠缠态的粒子可以保持一种特殊的关联状态,两个粒子的状态原本都未知,但只要测量其中一个粒子,就能立即知道另外一个粒子的状态,哪怕它们之间相隔遥远的距离。
过去的大半个世纪里,这种现象背后的本质一直深深困惑着科学家们。
上世纪,关于纠缠现象的看法将物理学家划分成了两派:以玻尔为代表的哥本哈根学派认为,对于微观的量子世界,所谓的“实在”只有和观测手段连起来讲才有意义;但爱因斯坦等科学家无法接受这种观点,他们认为量子力学是不完备的,测量结果一定受到了某种“隐变量”的预先决定,只是我们没能探测到它。
1935年,爱因斯坦和Podolsky及Rosen一起发表了一篇题为《Can quantum mechanics description of physical reality be considered complete》的文章,论证量子力学的不完备性,通常人们将他们的论证称为EPR 佯谬或者Einstein定域实在论。
爱因斯坦与玻尔这场论战的源头要从牛顿说起。
第1回合爱因斯坦发动攻势在20世纪之前,整个物理学尽在牛顿经典物理学的掌控之下,在牛顿的宇宙里,世界就是一个精密的钟表,上帝造好表,上好发条,以后的一切就是确定无疑的。
然而进入了20世纪后,牛顿的这座巍峨神殿在新发现的撞击下轰然倒塌了。
在倒塌的废墟下两个新的门派站了起来,这两个门派,一个是爱因斯坦以一人之力独撑起来的相对论,另一个则是多位大师合力塑成的量子力学。
不过,这两个门派却无法和谐相处,相对论虽然推翻了牛顿的绝对时空观,却仍保留了严格的因果性和决定论,而量子力学却更激进,抛弃了经典的因果关系,宣称人类并不能获得实在世界的确定的结果,它称自己只有由这次测量推测下一次测量的各种结果的分布几率,而拒绝对事物在两次测量之间的行为做出具体描述。
10.7关于量子力学完备性的争论
玻恩、海森伯、玻尔等人提出了量子力学的诠释以后,不久就遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。
双方展开了一场长达半个世纪的大论战,许多理论物理学家、实验物理学家和哲学家卷入了这场论战,这一论战至今还未结束。
现在正在进行的关于隐参量的辩论就是他们论战的继续。
早在1927年10月召开的第五届索尔威会议上就爆发了公开论战。
那次会议先由德布罗意介绍自己对波动力学的看法,提出了所谓的导波理论。
在讨论中泡利对他的理论进行了激烈的批评,于是德布罗意声明放弃自己的观点。
接着,玻恩和海森伯介绍矩阵力学波函数的诠释和测不准原理。
最后他们说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步被修改的。
”玻尔也在会上发表了上节提到的演讲内容。
这些话显然是说给爱因斯坦听的,但爱因斯坦一直保持沉默。
只是在玻恩提到爱因斯坦的工作时,才起来作了即席发言,他用一个简单的理想实验来说明他的观点。
“设S是一个遮光屏,在它上面开一个不大的孔O(见图10-1),P是一个大半径的半球面形的照相胶片。
假定电子沿着箭头所指示的方向落到遮光屏S 上。
这些电子的一部分穿过孔O,由于孔小,而电子具有速度,因此它们均匀地分布在(按:即衍射到)所有的方向从而作用在胶片上。
”
这一事件的发生几率可由衍射的球面波在所考虑的点上的强度来量度。
爱因斯坦说,可以有两种不同的观点来解释实验结果。
按照第一种观点,德布罗意-薛定谔的ψ波不是代表一个电子,而是一团分布在空间中的电子云;量子论对于任何单个过程是什么也没有说的。
它只给出关于一个相对说来无限多个基元过程的集合的知识。
按照第二种观点,量子论可以完备地描述单个过程。
落到遮光屏上的每个粒子,不是由位置和速度来表征而是用德布罗意-薛定谔波束来描述,这些描述概括了全部的事实和规律性。
在经过一番论证之后,爱因斯坦表示:“我认为德布罗意先生在这个方向上的探索是对的。
仅就薛定谔波而言,第二种解释我认为是同相对性假设相矛盾的。
”①
爱因斯坦实际上是反对玻尔等人对量子力学的诠释,他的反对意见引起了热烈讨论。
会议本来的主题是《电子和光子》,实际上却变成了对量子力学诠释的一次全面讨论会。
讨论的结果是玻尔、海森伯等人经过仔细分析,批驳了爱因斯坦的意见。
爱因斯坦没有坚持己见,但他在内心是不服气的。
1930年10月第六届索尔威会议召开。
爱因斯坦主动出击,用一个被人们称为《爱因斯坦光子箱》的理想实验为例,试图从能量和时间这一对正则变量的测量上来批驳测不准原理。
为了提高测量时间和能量精确度,爱因斯坦想出了一个办法。
他考虑一个具有理想反射壁的箱子(如图10-2),里面充满辐射。
箱子上有一快门,用箱内的时钟控制,快门启闭的时间间隔△t可以任意短,每次只释放一个光子,能量可以通过重量的变化来测量。
只要测出光子释放前后整个箱子重量的变化,就可以根据相对论质能转化公式E=mc2计算出来,箱内少了一个光子,能量相应地减少△E,△E可以精确测定。
这样,△t和△E就都可以同时精确测定,于是证明了测不准原理不能成立。
玻尔等人对爱因斯坦的光子箱实验毫无思想准备,一时无言以对。
然而经过一个不眠之夜的紧张思考,玻尔终于找到了缺口。
他发现爱因斯坦没有注意到广义相对论的红移效应。
第二天一早,玻尔就在索尔威会议上发言,首先在黑板上画了一幅与图10-3相似的草图,实际上是昨天爱因斯坦那幅图的改进,他假设箱子是挂在弹簧秤下,箱子上安有指针,从标尺可以读出指针的位置。
然后他说①:
“在给定的精确度△q下对箱子位置的任一测定,都会给箱子的动量控制带来一个最小不确定量△p,它同△q是由关系式ΔqΔp联系着的。
这一不确定量Δp显然又一定小于引力场的整段时间T中所能给予一个质量为Δm的物体的总冲量,或者
Δp≈h/Δq<TgΔm
其中g是重力恒量①。
由此可见,指针读数q的精确度越高,秤量时间就必须越长,如果箱子及其内含物的质量要测到一个给定精确度的话。
“但是根据广义相对论,一个时钟当沿着引力方向移动一段距离Δq时,其快慢就会改变,它的读数在一段时间间隔T内将差一个量ΔT,它由下面的关系式给出:
ΔT/T=gΔq/c2
比较以上两式我们就可以看到,在秤量过程之后,我们关于时钟校准的知识中将有一个不确定量ΔT>h/c2·Δm。
这个关系式和公式E=mc2一起,再次得出ΔTΔE>h,与测不准原理是一致的。
”
玻尔的论证是如此地有力,使爱因斯坦不得不放弃自己的看法,承认量子力学的理论是自洽的,海森伯的测不准原理是合理的。
以后爱因斯坦就转而论证量子力学理论的不完备性。
1935年,爱因斯坦与波多尔斯基(B.Podolsky)以及罗森(N.Rosen)合作,三人联名发表《能认为量子力学对物理实在的描述是完备的吗?》一文,提出:
“波函数所提供的关于物理实在的量子力学描述是不完备的,”表示相信,会有比量子力学更充分的描述。
他们通过理想实验提出一个著名的悖论,人称EPR
悖论。
他们的论点是,完备理论的必要条件应该是:物理实在的每一要素在理论中都必需具有对应的部分,而要鉴别实在要素的充分条件则应是:“不干扰这个体系而能够对它作出确定的预测。
”量子力学中一对共轭的物理量,按照海森伯的测不准原理,精确地知道了其中一个量就要排除对另一个量的精确认识。
对于这一对共轭的物理量,在下面两种论断中只能选择一个:或者认为量子态ψ对于实在的描述是不完备的;或者认为对应于这两个不能对易的算符的物理量不能同时具有物理的实在性。
玻尔立即以同一题目作答。
他认为:物理量本来就同测量条件和方法紧密联系,任何量子力学测量结果的报导给我们的不是关于客体的状态,而是关于这个客体浸没在其中的整个实验场合。
这个整体性特点保证了量子力学描述的完备性。
以爱因斯坦为代表的EPR一派和以玻尔为代表的哥本哈根学派的争论,促使量子力学完备性的问题得到了系统的研究。
1948年爱因斯坦对这个问题又一次发表意见,进一步论证量子力学表述的不完备性。
1949年,玻尔发表了长篇论文,题为《就原子物理学的认识论问题和爱因斯坦商榷》,文中对长期论战进行了总结,系统阐明了自己的观点。
而爱因斯坦也在这一年写了《对批评者的回答》,批评了哥本哈根学派的实证主义倾向。
双方各不相让,论战持续进行,直到爱因斯坦去世后,玻尔仍旧没有放下他和爱因斯坦的争议,甚至在他去世的前一天,还在思考这个问题。
他在办公室黑板上画的最后一张图,就是爱因斯坦1930年提出的那个光子箱。
一代科学伟人,他们既是严肃论战的对手,又是追求真理的战友,争论时不留情面,生活中友谊真诚,这样的事例在科学史中实在难得。
1953年,玻姆(D.Bohm)提出隐参量理论,也认为哥本哈根学派的量子力学只给微观客体以统计性解释是不完备的。
他提出有必要引入一些附加的参量,以便对微观客体作进一步描述,这些新参量就叫隐参量。
1965年,贝尔(J.Bell)在定域性隐参量理论的基础上,提出了一个著名的关系,人称贝尔不等式,于是有可能对隐参量理论进行实际的实验检验,从而判断哥本哈根学派对量子力学的解释是否正确。
从70年代初开始,各国物理学家先后完成了十几项检验贝尔不等式的实验。
大家主要从三个方面来进行实验,一是从原子级联辐射的两个光子的偏振关联分析,一是从电子偶素湮没所产生的两个γ光子的偏振关联分析,再就是质子-质子散射的自旋关联分析。
这些实验结果的大多数都明显地违反了贝尔不等式,而与量子力学理论预言的相符。
但也有几个实验满足贝尔不等式。
应该指出,即使实验证明贝尔不等式不成立,也不能认为对爱因斯坦-玻尔争论作出了最后裁决。
目前这场论战还在进行之中,未有最后结论。
①爱因斯坦文集,第一卷,第230页。
①转引自M.Jammer,The Philosophy of Quantum Mechanics。