带电粒子在有界磁场中的运动时间
- 格式:doc
- 大小:36.00 KB
- 文档页数:1
带电粒子在有界磁场中运动时间问题的解题策略作者:冯守灿来源:《中学物理·高中》2013年第10期求解带电粒子在有界磁场中运动时间问题是磁场中一种常见题型,求解粒子运动时间的基本方法是:根据粒子圆周运动的周期T和轨道所对应的圆心角,并根据求得。
除粒子运动时间计算问题之外,还有磁场中粒子运动时间的定性分析问题,比如:不同粒子在磁场中运动时间的比较以及粒子在磁场中运动时间的最值问题,此类问题除了用常规方法求解之外,还可以结合题目所给条件,从不同角度加以分析判断,效果更好,现结合实例从两方面分析如下:1、如何求解粒子在磁场运动时间1.1利用周期和圆心角求时间例1、如图所示,有界匀强磁场的磁感应强度B=2×10-8 T;磁场宽度L=0.2 m、一带电粒子电荷量q=-3.2×10-19 C,质量m=6.4×10-27 kg,以v=4×104 m/s的速度沿OO′垂直射入磁场,在磁场中偏转后从右边界射出.求:(1)大致画出带电粒子的运动轨迹;(画在题图上)(2)带电粒子在磁场中运动的轨道半径;(3)带电粒子在磁场中运动时间?解析:(1)轨迹如图.(2)带电粒子在磁场中运动时,由牛顿运动定律,有qvB=mv2R R=mvqB=6.4×10-27×4×1043.2×10-19×2×10-3 m=0.4 m.(3)带点粒子在磁场中运动的周期为设粒子在磁场中运动对应的圆心角为,由上图可知:所以粒子在磁场中运动的时间为1.2利用周期和速度偏转角求时间例2、如图所示,一束电子(质量为m,电量为e)以速度v0沿水平方向由S点射入垂直于纸面向里,磁感应强度为B,而宽度为d的匀强磁场。
射出磁场时的速度方向与竖直边界成30°,则穿过磁场所用的时间是多少?解析:已知初速度和末速度的方向,易得速度的偏转角,由几何知识可知:粒子运动的圆弧对应的圆心角等于粒子速度的偏转角。
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
带电粒子在磁场中的运动时间公式
在磁场中,带电粒子会受到洛伦兹力的作用,这个力会改变粒
子的运动轨迹。
带电粒子在磁场中的运动时间公式可以表示为:T = 2πm / (|q|B)。
其中,T表示带电粒子在磁场中运动一周所需的时间,m是粒子
的质量,q是粒子的电荷,B是磁场的磁感应强度。
这个公式告诉我们,带电粒子在磁场中的运动时间与粒子的质
量和电荷以及磁场的磁感应强度有关。
当磁场的磁感应强度增大时,粒子的运动时间会减小;当粒子的电荷增大时,运动时间也会减小;而当粒子的质量增大时,运动时间会增大。
带电粒子在磁场中的运动时间公式的应用非常广泛。
在物理学
和工程学中,我们可以利用这个公式来设计和控制粒子在磁场中的
运动,从而应用于粒子加速器、磁共振成像等领域。
这个公式也为
我们提供了理论基础,帮助我们更好地理解和研究带电粒子在磁场
中的运动规律。
总之,带电粒子在磁场中的运动时间公式是一个重要的物理公式,它为我们提供了理论基础和实际应用价值,帮助我们更好地理解和控制带电粒子在磁场中的运动。
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图→动态分析→找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。
)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。
已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m 的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。
【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。
例1.如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( B )A.电子在磁场中运动的时间越长,其轨迹越长B.电子在磁场中运动的时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线一定重合D.电子的速率不同,它们在磁场中运动的时间一定不相同例2.如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的( )A.带电粒子的比荷B.带电粒子在磁场中运动的周期C.带电粒子的初速度D.带电粒子在磁场中运动的半径解析:由带电粒子在磁场中运动的偏向角,可知带电粒子运动轨迹所对的圆心角为60°,因此由几何关系得磁场宽度l =R sin 60°=mv 0qB sin 60°,又未加磁场时有l =v 0t ,所以可求得比荷q m =sin 60°Bt,A 项对;周期T =2πm qB可求出,B 项对;但初速度未知,所以C 、D 项错. 答案:AB例3.如右图所示为圆柱形区域的横截面,在该区域加沿圆柱轴线方向的匀强磁场.带电粒子(不计重力)第一次以速度v 1沿截面直径入射,粒子飞入磁场区域时,速度方向偏转60°角;该带电粒子第二次以速度v 2从同一点沿同一方向入射,粒子飞出磁场区域时,速度方向偏转90°角.则带电粒子第一次和第二次在磁场中运动的( )A .半径之比为3∶1 B.速度之比为1∶ 3C .时间之比为2∶3 D.时间之比为3∶2答案:AC1.如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电量均相同的正、负离子,从O 点以相同的速度射入磁场中,射入方向均与边界成 角。
弦长公式秒杀磁场计算•直线边界如图1所示,粒子进入磁场时与磁场边界的夹角为θ,弦长为l由几何关系可得l =2R sin θ=2mv sin θqB其中θ为速度与弦的夹角,称为弦切角.且有α=2θ当题目中弦切角未知时,弦长公式可以写成l =2mv ⊥qB其中v ⊥为垂直于弦的分速度.•圆边界如图3所示,粒子沿半径方向进入磁场磁场圆边界轨迹特点:直进直出:沿径向射入,必沿径向射出.弦长公式能适用l=2R sinθ=2mv sinθqB其中θ为速度与弦的夹角,称为弦切角.q m =√3v0RBC.qm=√3v03RBB .2:1C .√2:1O 答案AO 解析弦长公式:由左手定则可知M 向左上偏转,N 向右下偏转,则弦切角分别为θM =60◦θN =30◦则由弦长公式l =2mv 0sin θqB得d M d n =sin 60◦sin 30◦=√31B .1:2C .√2:1O 答案AO 解析弦长公式:由几何关系可知两次偏转的弦切角分别为θ1=60◦θ2=30◦两次偏转的弦长分别为l 1=dl 2=√3d则由弦长公式l =2mv 0sin θqB得v 1v 2=l 1sin θ2l 2sin θ1=13($$$$)如图所示,两导体板水平放置,两板间电势差为U,两板右边一定距离处有一范围足够大、方向垂直纸面向内的匀强磁场,其左边界为竖直平面.有一带电粒子(重力不计)以初速度v0沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入磁场,则:粒子射入磁场和射出磁场的M、N两点间的距离d随着U和v0的变化情况是().A.d随v0增大而增大B.d随v0增大而减小A.d随U增大而增大 D.d随U增大而减小O答案AO解析弦长公式:由弦长公式l=2mv⊥qB=2mv0qB可知弦长与垂直于弦长的速度有关,垂直于弦长的速度越大,弦长越大.则M、N两点间的距离d随v0增大而增大,与U无关.习题1($$)如图所示,矩形abcd内存在纸面向里的匀强磁场,ab=2ad,e为cd的中点.速率不同的同种带电粒子从a点沿ab方向射入磁场,其中从e点射出的粒子速度为v1;从c点射出的粒子速度为v2,则v1:v2为(不计粒子重力)().A.1:2B.2:5C.1:3D.3:5习题2($$$$)图中左边有一对平行金属板,两板相距为d。
带电粒子在有界磁场中的运动时间
一、如何求解粒子在磁场运动时间
1、利用周期和圆心角求时间
模型:有界直双线边界匀强磁场的磁感应强度B;磁场宽度L、一带电粒子电荷量q,质量m,以v的速度垂直射入磁场,在磁场中偏转后从右边界射出.求:
(1)大致画出带电粒子的运动轨迹;
(2)带电粒子在磁场中运动的轨道半径;
(3)带电粒子在磁场中运动时间
2、利用周期和速度偏转角求时间
掌握圆心角和偏转角关系后,在已知偏转角情况下,可直接求解,而不需再画轨迹和找圆心角,从而简化了解题。
3、利用周期和弦切角求时间
例3、在直角区域aob内,有垂直纸面向里的匀强磁场,一对正、负电子从o点沿纸面以相同速度射入磁场中,速度方向与边界ob成30°角,求正、负电子在磁场中运动的时间之比.
二、如何比较粒子在磁场中运动时间
1、若粒子运动周期相同,利用圆心角、偏转角比较时间
例、正方形空间存在方向垂直于纸面向里的匀强磁场,一细束由两种粒子组成的粒子流沿垂直于磁场的方向从一条边的中点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()
A.入射速度不同的粒子在磁场中的运动时间一定不同
B.入射速度相同的粒子在磁场中的运动轨迹一定相同
C.在磁场中运动时间相同的粒子,其运动轨迹一定相同
D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大
2、若粒子周期和轨道半径均相同,利用弦长比较时间
3、若粒子运动速率相同,还可以利用弧长大小比较时间
例、在半径为R的圆形区域内有匀强磁场.在边长为2R的正方形区域里也有匀强磁场,两个磁场的磁感应强度大小相同.两个相同的带电粒子以相同的速率分别从M、N两点射入匀强磁场.在M点射入的带电粒子,其速度方向指向圆心;在N点射入的带电粒子,速度方向与边界垂直,且N点为正方形边长的中点,则下列说法正确的是()
A.带电粒子在磁场中飞行的时间可能相同
B.从M点射入的带电粒子可能先飞出磁场
C.从N点射入的带电粒子可能先飞出磁场
D.从N点射入的带电粒子不可能比M点射入的带电粒子先飞出磁场
三、巩固提升
如图甲示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。
位于极板左侧的粒子源沿x 轴正右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。
已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。
上述m、q、l、t0、B为已知量。
(不考虑粒子间相互影响及返回板间的情况)
(1)求电压U的大小。
(2)求t0/2时进入两板间的带
电粒子在磁场中做圆周运动的
半径。
(3)何时进入两板间的带电粒
子在磁场中的运动时间最短?
求此最短时间。