4逻辑式与真值表
- 格式:ppt
- 大小:266.00 KB
- 文档页数:14
南通工贸技师学院教案首页授课日期班级15对口2课题:§11.4 逻辑式与真值表教学目的要求:了解逻辑式的定义及其对应的真值表的概念,能够进行逻辑式与真值表的互化.教学重点、难点: 逻辑式的运算及逻辑式对应的真值表、逻辑式与真值表的互化授课方法:任务驱动法小组合作学习法教学参考及教具(含多媒体教学设备):《单招教学大纲》授课执行情况及分析:板书设计或授课提纲§11.4逻辑式与真值表1、逻辑非的定义2、例题2、逻辑非的真值表3、“或”、“与”、“非”的复合运算规则教 学 内 容 、方 法 和 过 程附 记 一、复习引入1、复习“与运算”、“或运算”、“非运算”的真值表和运算法则2、引入新课 二、讲授新知1、逻辑代数式:是由常量1,0以及逻辑变量经逻辑运算构成的式子,逻辑代数式简称逻辑式;2、逻辑式真值表:是用表格的形式列出逻辑变量的一切可能值与相应的逻辑式的值的表.由于逻辑变量只能取0或1,所以逻辑式的值也只有0或1;3、逻辑运算的次序:依次为先“非运算”,再“与运算”,最后是“或运算”,如果逻辑式有括号,则要先进行括号内的运算.三、例题分析【例1】 写出下列各式的运算结果.(1)011⋅+ ;(2)001++ ;(3)0101⋅+⋅ ;(4)0111++⋅ . 解:(1)0101011==+=⋅+ ; (2)11001001=+=+=++ ; (3)1100100101=+=+⋅=⋅+⋅ ; (4)11100110111=++=++=++⋅ .做好逻辑运算主要包括:(1)了解运算次序,依次为“非运算”“与运算”“或运算”,有括号的逻辑式,先进行括号内的运算;(2)熟悉运算规律.举 一 反 三写出下列各式的运算结果.(1)101⋅+ ;(2)()101⋅+ ; (3)()0100+⋅+ ; (4)0100⋅++ .教 学 内 容 、方 法 和 过 程附 记 【例2】 列出逻辑式C A B A +的真值表. 解:表11-20ABCBCB AC AC A B A +1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 011列出逻辑式对应的真值表的步骤:(1) 明确逻辑变量的个数n ; (2) 列出逻辑变量可取的n2组值;(3) 按照先“非”再“与”后“或”,括号先行的次序逐一代入运算.举 一 反 三列出逻辑式AB B A ++的真值表.教 学 内 容 、方 法 和 过 程附 记 四.课堂练习1.写出下列各式的运算结果. (1)1111+⋅+ ;(2)()01011+⋅+⋅ ; (3)()11000⋅+⋅+;(4)()()11101+++.6.列出下列逻辑式的真值表. (1)C B A ;(2)BC A C AB +五.课堂总结本节课,我们学习了逻辑式、逻辑式对应的真值表及它们相互转换的方法.由常量1和0以及逻辑变量经过逻辑运算构成的式子叫 ;逻辑式对应的真值表就是将 的各种可能的取值和相对应的 排列在一起而组成的表格;一般地,有n 个输入变量的逻辑函数,就应该有 种不同的输入变量的取值组合.六.课外作业《教与学新方案》P36页5、6。
复合命题及其推理(下)
授课教师刘滨
一、负命题的性质和逻辑形式:
1.负命题
负命题是复合命题
则相应的负命题
例如所有科学家都是大学毕业的
等值式:
(1)“并非所有S 都是P ”等值于“有的S 不是P ”
即:A O
(3)S
C. 并非有的商人不是奸商。
2.联命题的负命题
例如:西瓜又熟又甜
负命题:支命题为相负命题的逻辑形式:
负命题:支命题为负命题的逻辑形式:
小周高但。
熊不可得
A. 乙中至少
充分条件言
即使气温降到零度以下,也仍然能施工。
负命题:支命题为
负命题:支命题为
等值命题:
四、负命题推理n理:
效推﹁(
a. 明李或
股评有巧妙
第六节复合命题推理的扩展——假言推理的推广形式
假要求的
通过
理。
选言
1.如故意犯罪,
如过失
,结
,结论
你娶到
论否定了假
武松打死
(2推理的a言
言前提
达哥拉斯耐烦
勒士
,中一
况,对的部落
且q,
乙:如王经理
第七节多重复合命题
与真值表的判定作用
或量
结
Ⅰ式是:
析施肥料
场的为
究员。