判断以下各组中集合之间的关系:
(1)A={x|x是12的约数},B={x|x是36的约数};
(2)A={x|x2-x=0},B={x∈R|x2+1=0};
(3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x是正方
形};
(4)M= {x|x=n,nZ} ,N= {x|x=1+n,nZ}.
【解析】由题意得1-2a=3或1-2a=a,解得a=-1或a= 1 .当a=-1时,A={1,3,-1},
3
B={1,3},符合条件.
当a= 1 时,A= { 1 ,3 ,1 } ,B= { 1 , 1 } ,符合条件.所以a的值为-1或 1 .
3
3
3
3
答案:-1或 1
3
本课结束
【知识生成】 1.子集:对于两个集合A,B,如果集合A中_任__意__一__个__元素都是集合B中的元素,那么 称集合A为集合B的子集. 记作:_A_⊆__B_(或_B_⊇__A_). 读作:“A包含于B〞(或“B包含A〞). 2.真子集:如果集合A⊆B,但存在元素__x_∈_B__,_且__x_∉_A,称集合A是集合B的真子集. 记作:A B(或B A).
3.以下四个集合中是空集的是 ( )
A.{∅}
B.{x∈R|x2+1=0}
C.{x|x<4或x>8}
D.{x|x2+2x+1=0}
【解析】选B.A,D选项各有一个元素,C项中有无穷多个元素,x2+1=0无实数解.
4.设集合A={1,3,a},B={1,1-2a},且B⊆A,那么a的值为________.
2
2
探究点二 子集、真子集的个数问题 【典例2】(1)集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},那么满足条件 A C B的集合C的个数为 ( )