第九章统计热力学习题解..
- 格式:ppt
- 大小:585.00 KB
- 文档页数:32
大学物理Ⅱ习题集第9 章热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。
2. 掌握内能、功和热量的概念。
3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。
4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。
5. 了解可逆过程与不可逆过程的概念。
6. 解热力学第二定律的两种表述,了解两种表述的等价性。
7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。
二. 内容提要1. 内能功热量内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。
对于理想气体,其内能 E 仅为温度T 的函数,即EM M iC TVMmolM 2molRT当温度变化ΔT 时,内能的变化EM M iC TVM Mmol 2molR T功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。
在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功 A 也不相同。
系统膨胀作功的一般算式为A V2V1pdV在p—V 图上,系统对外作的功与过程曲线下方的面积等值。
热量热量是系统在热传递过程中传递能量的量度。
热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。
2. 热力学第一定律系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即Q E A热力学第一定律的微分式为1大学物理Ⅱ习题集dQ dE pdV3. 热力学第一定律的应用——几种过程的A、Q、ΔE的计算公式(1)等体过程体积不变的过程,其特征是体积V =常量;其过程方程为1pT常量在等体过程中,系统不对外作功,即 A 0。
等体过程中系统吸收的热量与系统内V能的增量相等,即R TM M iQ E C TV 2VM Mmol mol(2) 等压过程压强不变的过程,其特点是压强p =常量;过程方程为1VT常量在等压过程中,系统对外做的功MV 2APd ( ) R(T T )p V p V VV1 2 1 2 1MmolM系统吸收的热量( 2 T )Q C TP P 1Mmol式中C C RP 为等压摩尔热容。
习题九9-1 一系统由图示的状态。
经Q&/到达状态。
,系统吸收了320J热量,系统对外作功126J。
⑴若。
沥过程系统对外作功42J,问有多少热量传入系统?(2)当系统由b沿曲线ba返回状态。
,外界对系统作功84 J,试问系统是吸热还是放热?热量是多少?懈]由热力学第一定律Q = \E + A p得星=。
-4在a<b过程中,E b - E = M = 0 - A = 320 -126 = 194/在讪过程中Q2 =^ + 4 = 194 + 42 = 236/o在ba过程中Q, = E. - E b + & = -AE + & = -194-84 = -278J本过程中系统放热。
9-2 2mol氮气由温度为300K,压强为 1.013x10*)(latm)的初态等温地压缩到 2.026 xl05Pa(2atm)o求气体放出的热量。
[解]在等温过程中气体吸收的热量等于气体对外做的功,所以Q T=A=/?TIn-^- = 2x8.3lx300x In-= -3.46x 103JM ]P,2mol 2即气体放热为3.46x103, o9-3 一定质量的理想气体的内能E随体积的变化关系为E- V图上的一条过原点的直线,如图所示。
试证此直线表示等压过程。
[证明]设此直线斜率为奴则此直线方程为E = ki,又E随温度的关系变化式为E = M—Cv ・T = k'TM mo i所以kV = k'T因此堂= C = C(C为恒量)T k又由理想气体的状态方程知,华=。
'(C'为恒量)所以P为恒量即此过程为等压过程。
9-4 2mol氧气由状态1变化到状态2所经历的过程如图所示:⑴沿I一所一2路径。
(2)1 — 2 直线。
试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。
[解](1)在1-初一2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。
第9章热力学基础习题解答9-1 Imol单原了分了理想气体,在4 atm、27°C时体积*=6L,终态体积K2=12L O若过程是:(1)等温;(2)等压;求两种情况下的功、热量及内能的变化。
解:(1)等温过程:M = 0A; E vRTQ T=A T= f;pdV = \—dV = vRT\nV2IV[J;J:V= 8.31x3001n2 = 1728 (J)(2)等压过程:\E = viRAT/2 = 3/?(^2 - )/2 = 3647 (J)A = p(V2 -^) = 2431 (J)Q p— AE A — 6078 (J)9-2 Imol单原子分子理想气体从300 K加热到350 K。
( 1)体积保持不变;(2)压强保持不变;在这两过程中系统各吸收了多少热量?增加了多少内能?气体对外做了多少功?解:(1)等体过程:A v =0Q v =AE = viR\T/2 = 3x8.31 x50/2 = 623.3 (J)(2)等压过程:A =-^) = ^7 = 8.31x50 = 415.5 (J)Q P=\E^A = 623.3 + 415.5 = 1039 (J)9-3将400 J的热量传给标准状态下的2mol纭l气。
(1)若温度不变,纽气的压强、体积各变为多少?(2)若压强不变,纣气的温度、体积各变为多少?(3)若体积不变,氢气的温度、压强各变为多少?哪一过程中它p 。
做功最多?为什么?哪一过程中内能增加最多?为什么?5 , rz vRT. 2x8.31x273 叫。
解:(1)V =— = -------------- =44.8(L)°l.OBxlO 5等温过程:Q T =V RT\X \VJV.K = V () exp-^- = 44.8 exp --- ------- = 48.9 (L)vRT 2x8.31x273P I =p()、)/「=44.8/48.9 = 0.916 (atm) =9.27xl04(Pa) (2)等压过程:Q P =V C P (T 1-T Q )L=£ + L=————+ 273 = 279.9 (K)'vC p 0 2x7x8.31/2V 2 =T*L =279.9x44.8/273 = 45.9 (L)(3)等体过程:0 =“G,(4 一舄)7; =&- + /;)=——竺——+ 273 = 282.6 (K)3 vC v ° 2x5x8.31/2P3 fp/To = 282.6 X1.013 X105 / 273 = 1.049 x 105(Pa)等温过程做功最多,因为热量全部转化为功。
第九章统计热力学练习题一、是非题1、由理想气体组成的系统是独立子系统。
( )2、由非理想气体组成的系统是非独立子系统。
( )3、由气体组成的统计系统是离域子系统。
( )4、由晶体组成的统计系统是定域子系统。
( )5、假设晶体上被吸附的气体分子间无相互作用,则可把该气体系统视为定域的独立子系统。
( )6、独立子系统必须遵守∑∑==ii i ii N N N εε的关系,式中ε为系统的总能量, εi 为粒子在i 能级上的能量,N 系统总粒子数,Ni 为分布在能级i 上的粒子数。
( )7、平动配分函数与体积无关。
( )8、振动配分函数与体积无关。
( )9、设分子的平动、振动、转动、电子等配分函数分别以等表示,则分子配分函数q 的因子分解性质可表示为:e r v t q q q q q ln ln ln ln ln +++=。
( )10、对离域子系统,热力学函数熵S 与分子配分函数q 的关系为ln NU q S Nk Nk T N=++。
( ) 二、选择题1、按照统计热力学系统分类原则,下述系统中属于非定域独立子系统的是:( )(1)由压力趋于零的氧气组成的系统。
(2)由高压下的氧气组成的系统。
(3)由氯化钠晶体组成的系统。
2. 对定域子系统,某种分布所拥有的微观状态数W D 为:( )。
(1)D !i N i i i g W N =∏ (2) D !!i g i i i N W N N =∏(3)D !i g i i i N W N =∏ (4) D !!i n i i i g W N n =∏3、玻耳兹曼分布:( )(1)就是最概然分布,也是平衡分布;(2)不是最概然分布,也不是平衡分布;(3)只是最概然分布,但不是平衡分布;(4)不是最概然分布,但是平衡分布。
4、玻耳兹曼熵定理ln S k =Ω:( )(1)适用于相依子系统;(2)仅适用于理想气体;(3)适用于大量粒子组成的独立子系统;(4)适用于单个粒子。
第九章统计热力学基础一、基本公式玻尔兹曼公式:Ωk S ln =玻尔兹曼分布:∑--=ikTi kTi i e g e g N n //εε两个能级上的粒子数之比kT j kTi j i ji e g e g n n //εε--=分子的配分函数:kT ii ie g q /ε-∑=(能级求和)kTjj eq /ε-∑=(量子态求和)能级能量公式:平动⎪⎪⎭⎫ ⎝⎛++=22222228c n b n a n m h z y x i ε转动Ih J J r 228)1(πε+=振动νεh v v⎪⎭⎫⎝⎛+=21平动配分函数:一维L h mkT q t 2122⎪⎭⎫ ⎝⎛=π;二维A h mkT q t ⎪⎭⎫ ⎝⎛=22π;三维Vh mkT q t 2322⎪⎭⎫ ⎝⎛=π转动配分函数:线型分子rr ΘTh IkT q σσπ==228,转动特征温度Ik h Θr 228π=非线型分子zy x r I I I hkT q 3232)2(8σππ=振动配分函数:双原子分子T ΘTΘkT h kT h v v v e e e e q /2//2/11-----=-=νν,振动特征温度v Θh h ν多原子线型∏-=---=531/2/1n i kTh kT h v i ie e q νν多原子非线型∏-=---=631/2/1n i kT h kTh v iie e q νν电子运动配分函数kTe e j q /0)12(ε-+=原子核运动配分函数kT n e e S q /0)12(ε-+=热力学函数与配分函数的关系N q kT A ln -=(定位)!ln N q kT A N -=(非定位)N V N T q NkT q k S ,ln ln ⎪⎭⎫ ⎝⎛∂∂+=(定位)N V N T q NkT N q k S ,ln !ln ⎪⎭⎫ ⎝⎛∂∂+=(非定位)N T N V q NkTV q kT G ,ln ln ⎪⎭⎫ ⎝⎛∂∂+-=(定位)N T N V q NkTV N q kT G ,ln !ln ⎪⎭⎫ ⎝⎛∂∂+-=(非定位)NV T q NkT U ,2ln ⎪⎭⎫ ⎝⎛∂∂=N T N V V q NkTV T q NkT H ,,2ln ln ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=NT T q NkT p ,ln ⎪⎭⎫ ⎝⎛∂∂=VN V V T q NkT T c ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=,2ln 4.设有一个极大数目的三维平动子组成的粒子体系,运动于边长为a 的立方容器中体系的体积、粒子质量和温度有如下关系:kT ma h 10.0822=,求处于能级22149ma h =ε和222427mah =ε上粒子数目的比值是多少?解:kTkTe g e g n n 212121εε--=kT ma h ma h 8.18184922221===ε18222=++z y x n n n 31=g kT ma h 7.2827221==ε42=g 84.1437.28.121==--e e n n 5.将N 2气在电弧中加热,从光谱中观察到处于第一激发振动态的相对分子数26.001===ννN N ,式中ν为振动量子数N ν=0为基态占有的分子数,N ν=1为第一激发振动态占有的分子数,已知N 2的振动频率ν=6.99×1013s -1。
[论述题]写出等概率原理,举例说明为什么它是平衡态统计物理的基本原理答:等概率原理讲的是:处于平衡态的孤立系统,系统各种可能的微观状态出现的概率相同。
该原理适用条件:平衡态、孤立系统,大量粒子组成的宏观系统。
它是统计物理的一个最基本的原理,其原因是:①它是实验观察的总结;而不能由其它定理或原理来推证。
②各种统计规律的建立均以它为基础。
例如:(1)推导玻尔兹曼统计、玻色统计、费米统计时找出最可几分布,正是等概率原理,才可由确定微观状态数最多的分布来确定;(2)微正则系综概率分布的建立也是以等概率原理为基础。
[论述题]被吸附在平面上的单原子理想气体分子总分子数N,温度T,面积A。
求:(1)用玻尔兹曼统计公式求系统的内能、定容热容量、状态方程、熵令常数,得到绝热过程方程常数[论述题]写出第二定律的文字叙述、数学表示、适用条件和微观意义。
参考答案:写出第二定律的文字叙述、数学表示、适用条件和微观意义答:1、热力学第二定律的经典表述克劳休斯说法:不可能把热由低温物体转移到高温物体,而不留下其它变化。
开尔文说法:不可能从单一热源吸热使之完全变为功,而不留下其它变化。
2、数学表达式3、适用条件:大量微观粒子构成的宏观系统,且在时间和空间上有限,不适用宇宙。
4、微观意义:⑴定义了熵⑵揭示了过程进行方向⑶否定了第二类永动机制造的可能性。
[论述题]被吸附在面积为A的平面上的分子,可作为单原子分子理想气体,分子总数、温度,用经典玻尔兹曼统计求气体的内能U,热容量和状态方程。
参考答案:波尔兹曼统计求粒子自由度r=2,粒子哈密顿h=(P x2+P y2)/2m粒子配分函数Z1=A(2pm/h2B)1/2状态方程p=(N/B)( dlnZ1/dA)=N/BA即pA= NkT内能u=-N (dlnZ1/dB)=NkT。
热力学统计物理第九章答案【篇一:热力学统计物理课后习题答案】t>8.4求弱简并理想费米(玻色)气体的压强公式.解:理想费米(玻色)气体的巨配分函数满足ln?????lln1?e?????ll??在弱简并情况下:2?v2?v3/23/22ln???g3?2m???1/2ln1?e?????ld???g3?2m???d?3/2ln1?e??? ??l30hh0????????2?v3/22?3/2??g3?2m????ln1?e?????l3?h?????0?3/2dln1?e???????l???? ?2?vd?3/22 ??g3?2m????3/2????l30he?1与(8.2.4)式比较,可知ln??再由(8.2.8)式,得3/23/2??1n?h2??1?h2?????????nkt?1??ln???nkt?1?????v2?mkt??2?mkt?????42???42???2?u 3?e??n?h2?????v?2?mkt??3/2?3/2h2???n????? ????e?????v?t?2?mkt??n?n v3/23/2??1?n?h2????n?n?h2?????????p?ln??kt?1???nkt?1???????v2?mkt?t2?mkt?t???? ???42????42??8.10试根据热力学公式 s?熵。
解:(8-4-10)式给出光子气体的内能为u?cv??u?dt及光子气体的热容量c???,求光子气体的v?t??t?v?2k415c3?4vt-------(1) 3?u4?2k4)v?vt3---------(2)则可以得到光子气体的定容热容量为cv?(33?t15c?根据热力学关于均匀系统熵的积分表达式(2-4-5),有s??[cv?pdt?()vdv]?s0----------(3) t?t取积分路线为(0,v)至(t,v)的直线,即有t4?2k44?2k423s?vtdt?vt----------------(4) 3333?015c?45c?其中已经取积分常量s0为零。
第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV = V n R TP P n R T V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV RnT P P V /1)(1==∂∂=β P Pn R T V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp pVdT T V dV T p )()(∂∂+∂∂=,因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题1.8 满足C pV n =(常量)的过程称为多方过程,其中常数n 为多方指数。
试证明:理想气体在多方过程中的热容量n C 为: V n C n n C 1--=γ 解:多方过程的热容量nn T n T V p T U T Q C ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∆∆=→∆0lim (1)对于理想气体,内能U 只是温度T 的函数,V nC T U =⎪⎭⎫ ⎝⎛∂∂ 所以,nV n T V p C C ⎪⎭⎫⎝⎛∂∂+= (2)将多方过程的方程式C pV n =与理想气体的物态方程联立,消去压强p 可得11C TV n =-(常量) (3)将上式微分,有0)1(11=-+--T d V V n dT V n n 所以T n V T V n)1(--=⎪⎭⎫ ⎝⎛∂∂ (4) 代入式(2),即得Tn pVC C V n )1(--=V C n n 1--=γ习题1.9试证明:理想气体在某一过程中的热容量n C 如果是常数,该过程一定是多方过程,多方指数Vn p n C C C C n --=。
天津大学《物理化学》第四版习题及解答目录第一章气体的pVT性质 (2)第二章热力学第一定律 (6)第三章热力学第二定律 (24)第四章多组分系统热力学 (52)第五章化学平衡 (67)第六章相平衡 (78)第七章电化学 (87)第八章量子力学基础 (110)第九章统计热力学初步 (113)第十一章化学动力学 (120)第一章气体的pVT性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 °C,另一个球则维持0 °C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 °C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。